
Pontifical Catholic University of Rio Grande do Sul
Faculty of Informatics

Computer Science Graduate Program

DOMAIN-SPECIFIC LANGUAGE
& SUPPORT TOOLS FOR

HIGH-LEVEL STREAM
PARALLELISM

DALVAN GRIEBLER

Dissertation submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fullfillment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Luiz Gustavo Fernandes
Co-Advisor: Prof. Prof. Marco Danelutto

Porto Alegre
2016

Dados Internacionais de Catalogação na Publicação (CIP)

G848d Griebler, Dalvan

Domain-specific language & support tools for high-level

stream parallelism / Dalvan Griebler. – 2016.

243 p.

Tese (Doutorado) – Faculdade de Informática, Pontifícia

Universidade Católica do Rio Grande do Sul.

Orientador: Prof. Luiz Gustavo Fernandes

Co-orientador: Prof. Marco Danelutto

1. Linguagem de Programação de Domínio Específico

(Computadores). 2. Programação Paralela (Computação).

3. Avaliação de Desempenho (Computação). 4. Framework

(Programa de Computador). 5. Cluster (Sistema de Computador).

6. Informática. I. Fernandes, Luiz Gustavo. II. Danelutto, Marco.

III. Título.

CDD 23 ed. 005.133

Salete Maria Sartori CRB 10/1363
Setor de Tratamento da Informação da BC-PUCRS

ABSTRACT

Stream-based systems are representative of several application domains including
video, audio, networking, graphic processing, etc. Stream programs may run on different kinds
of parallel architectures (desktop, servers, cell phones, and supercomputers) and represent
significant workloads on our current computing systems. Nevertheless, most of them are
still not parallelized. Moreover, when new software has to be developed, programmers often
face a trade-off between coding productivity, code portability, and performance. To solve
this problem, we provide a new Domain-Specific Language (DSL) that naturally/on-the-fly
captures and represents parallelism for stream-based applications. The aim is to offer a
set of attributes (through annotations) that preserves the program’s source code and is not
architecture-dependent for annotating parallelism. We used the C++ attribute mechanism to
design a “de-facto” standard C++ embedded DSL named SPar. However, the implementation
of DSLs using compiler-based tools is difficult, complicated, and usually requires a significant
learning curve. This is even harder for those who are not familiar with compiler technology.
Therefore, our motivation is to simplify this path for other researchers (experts in their domain)
with support tools (our tool is CINCLE) to create high-level and productive DSLs through
powerful and aggressive source-to-source transformations. In fact, parallel programmers can
use their expertise without having to design and implement low-level code. The main goal
of this thesis was to create a DSL and support tools for high-level stream parallelism in the
context of a programming framework that is compiler-based and domain-oriented. Thus, we
implemented SPar using CINCLE. SPar supports the software developer with productivity,
performance, and code portability while CINCLE provides sufficient support to generate
new DSLs. Also, SPar targets source-to-source transformation producing parallel pattern
code built on top of FastFlow and MPI. Finally, we provide a full set of experiments showing
that SPar provides better coding productivity without significant performance degradation in
multi-core systems as well as transformation rules that are able to achieve code portability
(for cluster architectures) through its generalized attributes.

SOMMARIO

I sistemi che elaborano stream di dati vengono utilizzati in svariati domini applicativi
che includono, per esempio, quelli per il trattamento di video, audio, per la gestione delle
reti e per la grafica. I programmi che elaborano stream di dati possono essere utilizzati
e fatti girare su diversi tipi di architetture (dai telefoni cellulari, ai sistemi desktop e server,
ai super computer) e di solito hanno unpeso computazionale significativo. Molti di questi
programmi sono ancora sequenziali. Inoltre, nel caso di sviluppo di nuove applicazioni su
stream, i programmatori devono impegnarsi a fondo per trovare un buon compromesso fra
programmabilità, produttività, portabilità del codice e prestazioni. Per risolvere i problemi
relativi alla parallelizzazione e allo sviluppo di applicazioni su stream, abbiamo messo a dis-
posizione un linguaggio di programmazione domain-specific (DSL) che cattura e rappresenta
gli aspetti legati al parallelismo in applicazioni su stream. Lo scopo è quello di offrire una
serie di attributi (annotazioni) che, modellando gli aspetti relativi al calcolo parallelo dei dati
sugli stream, permettano di preservare il codice originale e non dipendano dall’architettura
considerata. Abbiamo utilizzato gli attributi C++11 per mettere a disposizione un DSL “interno”
chiamato SPar pienamente conforme allo standard C++. L’implementazione di un DSL medi-
ante compilatori è un processo complicato e che normalmente richiede un lungo processo di
apprendimento relativo agli strumenti utilizzati; il processo è tanto più lungo quanto meno
familiari si è rispetto alla tecnologia degli strumenti di compilazione. La motivazione che ci ha
spinto a questo lavoro è dunque quella di semplificare la vita ad altri ricercatori (esperti del
loro specifico dominio applicativo) mettendo a disposizione strumenti (CINCLE) che permet-
tono la realizzazione di DSL di alto livello attraverso trasformazioni di codice source-to-source
efficaci e potenti. Tramite gli strumenti messi a disposizione i programmatori di applicazioni
parallele possono utilizzare la loro esperienza senza dover progettare e implementare codice
di basso livello. Lo scopo principale di questa tesi è quello di creare un DSL ad alto livello di
astrazione per computazioni parallele su stream e di metterne a disposizione gli strumenti
di supporto in un framework basato su compilatori e orientato al dominio delle applicazioni
stream parallel. Si è arrivati così alla realizzazione di SPar basata su CINCLE. SPar mette a
disposizione dello sviluppatore di applicazioni un ambiente ad alta produttività, alte prestazioni
e che garantisce la portabilità del codice, mentre CINCLE mette a disposizione il supporto
necessario a generare nuovi DSL. SPar mette a disposizione trasformazioni source-to-source
che producono codice parallelo basato su pattern in FastFlow e MPI. Alla fine della tesi
presentiamo una serie completa di esperimenti che mostrano sia come SPar fornisca una
buona produttività nella progettazione e realizzazione delle applicazioni parallele su stream
senza al contempo portare a un degrado nelle prestazioni su sistemi multi core, sia come le
regole di trasformazione utilizzate per la generazione del codice FastFlow o MPI permettano
di realizzare laiv portabilità del codice basato su attributi su architetture di tipo diverso.

RESUMO

Sistemas baseados em fluxo contínuo de dados representam diversos domínios
de aplicações, por exemplo, video, áudio, processamento gráfico e de rede, etc. Os progra-
mas que processam um fluxo contínuo de dados podem executar em diferentes tipos de
arquiteturas paralelas (estações de trabalho, servidores, celulares e supercomputadores) e
representam cargas de trabalho significantes em nossos sistemas computacionais atuais.
Mesmo assim, a maioria deles ainda não é paralelizado. Além disso, quando um novo
software precisa ser desenvolvido, os programadores necessitam lidar com soluções que
oferecem pouca produtividade de código, portabilidade de código e desempenho. Para re-
solver este problema, estamos oferecendo uma nova linguagem específica de domínio (DSL),
que naturalmente captura e representa o paralelismo para aplicações baseadas em fluxo
contínuo de dados. O objetivo é oferecer um conjunto de atributos (através de anotações)
que preservam o código fonte do programa e não é dependente de arquitetura para anotar o
paralelismo. Neste estudo foi usado o mecanismo de atributos do C++ para projetar uma
DSL embarcada e padronizada com a linguagem hospedeira, que foi nomeada como SPar.
No entanto, a implementação de DSLs usando ferramentas baseadas em compiladores é
difícil, complicado e geralmente requer uma curva de aprendizagem significativa. Isto é ainda
mais difícil para aqueles que não são familiarizados com uma tecnologia de compiladores.
Portanto, a motivação é simplificar este caminho para outros pesquisadores (sabedores do
seu domínio) com ferramentas de apoio (a ferramenta é chamada de CINCLE) para imple-
mentar DSLs produtivas e de alto nível através de poderosas e agressivas transformações
de fonte para fonte. Na verdade, desenvolvedores que criam programas com paralelismo
podem usar suas habilidades sem ter que projetar e implementar o código de baixo nível. O
principal objetivo desta tese foi criar uma DSL e ferramentas de apoio para paralelismo de
fluxo contínuo de alto nível no contexto de um framework de programação que é baseado
em compilador e orientado a domínio. Assim, SPar foi criado usando CINCLE. SPar oferece
apoio ao desenvolvedor de software com produtividade, desempenho e portabilidade de
código, enquanto CINCLE oferece o apoio necessário para gerar novas DSLs. Também,
SPar mira transformação de fonte para fonte produzindo código de padrões paralelos no topo
de FastFlow e MPI. Por fim, temos um conjunto completo de experimentos demonstrando que
SPar oferece melhor produtividade de código sem degradar significativamente o desempenho
em sistemas multi-core bem como regras de transformações que são capazes de atingir
a portabilidade de código (para arquiteturas multi-computador) através dos seus atributos
genéricos.

ACKNOWLEDGEMENTS

First of all, I would like to thank God for this opportunity and support given to me
during my whole life. Second, all the people that were around me, that were part of this project.
Their patience and help were fundamental. I especially thank my advisors for supporting and
guiding this research as well as their availability to discuss and teach.

PREFACE

Research in parallel computing has been necessary aiming to achieve high-performance
and exploit parallelism in Cluster, Multi-Core, and General-Purpose Graphic Processing Unit
(GPGPU) architectures. We have had the pleasure of seeing the growth of new programming
models, methodologies, and programming interfaces for the efficient use of such a great
amount of computational power. These contributions have supported discoveries in many
scientific research fields including molecular dynamic simulations, data analysis, weather
forecasting, and aerodynamics simulations.

Even though several new interesting results have been achieved in parallel com-
puting over the last two decades, more work still needs to be done to achieve higher level
programming abstractions, coding productivity, better performance, etc. At the moment,
exploiting parallelism is still a challenging task that requires significant expertise in parallel
programming. For example, a software engineer must have a great deal of knowledge of one
or more of the following aspects along with their respective challenges:

1. Hardware infrastructure: Optimization is not always abstracted by using programming
frameworks. Thus, memory locality, cache misses, network communication, thread-
/process affinity, storage implementation, and energy consumption will significantly
impact the application’s performance and are heavily dependent on hardware optimized
features.

2. Programming models: May be used and carefully optimized in different ways for
synchronizing and communicating threads or processes. For instance, in shared
memory, one must pay attention to race conditions and deadlocks. In message passing,
deadlocks and process synchronizations are the most important. For heterogeneous
programming, there are thread synchronization and memory copy between CPU and
GPU. Finally, hybrid programming is a challenge for the efficient use of message passing
and shared memory models.

3. Problem decomposition: Is the computational mapping in the processors. One must
identify concurrent works and decompose them by using task, data, DataFlow, and
stream parallelism.

4. Parallelism strategies: Are algorithmic skeletons and design patterns for helping pro-
grammers to express parallelism. Usually strategies like farm, pipeline, and MapReduce
are already provided in programming frameworks through a template library such as
FastFlow or TBB.

5. Load balancing: Refers to workloads being partitioned across CPUs. In general, a
static and dynamic approach may be adopted. Some frameworks implement these

primitives in their runtime system, such as OpenMP. However, it is up to the user to
define appropriate chunk sizes so that the work will be balanced.

6. Scheduling policies: These are used to efficiently distribute jobs among CPUs. Most
of the frameworks do not offer the user the freedom to implement their own scheduler,
instead they must use one of the pre-defined scheduling policies such as round robin,
fixed priority, FIFO or EDF. In some applications, if the runtime scheduler is not efficient
enough, an ad-hoc scheduling policy must be implemented.

7. Different Programming frameworks: These may be used to help developers express
parallelism. There are several available such as OpenMP, TBB, MPI, OpenCL, X10,
CUDA, and FastFlow. They are not able to abstract all the previous aspects and most
of them are designed for a particular programming model.

These items are only a partial list of the problems and possibilities regarding parallel
programming. We could also highlight many challenges related to each one of these items
that are still being researched to improve performance and abstraction. Moreover, some
researchers prefer to focus on a specific set of aspects, concerning a specific architecture.
Focusing on a specific domain helps people to achieve better and more efficient solutions.
Thus, when looking at the current state-of-the-art, only experts are able to efficiently parallelize
their applications. It is clear that abstractions are also needed for software engineers and
application developers because they already have to face the complexities of their domain.

This research problem initially prompted my Master’s thesis, which proposed an
external Domain-Specific Language for Pattern-Oriented Parallel Programming (named
DSL-POPP) [Gri12]. The first version provided building block annotations for implementing
master/slave-like computations on multi-core platforms. The results demonstrated significant
programming effort reduction without performance losses [GAF14]. During the Ph.D., a
second version was released, which supported pipeline-like parallelization [GF13]. Even
though the results also demonstrated good performance, some abstraction limitations were
discovered that considerably changed the subsequent domain and interface [GDTF15]. In
general, many other problems arose from this initial research which made the work more
advanced, primarily regarding high-level parallelism and DSL design.

Another related domain-specific language for MapReduce-like computations was
proposed in [AGLF15a], which had the same principles as DSL-POPP. However, a completely
new and unified programming language was created. The goal was to avoid MapReduce
application developers from having to implement their code twice in order to run in distributed
and shared memory environments. The performance results based on the transformation
rules were efficient and the DSL significantly reduced the programming effort. The results
of this collaboration further reinforced the importance of having a high-level abstraction to
avoid architecture details (Chapter 6). Additionally, the experience with the external DSL also

demonstrated many advantages for coding productivity, as presented before in DSL-POPP
[AGLF15b].

These past experiences were fundamental to the planning and development of the
proposed programming framework (Chapter 3). DSL-POPP was initially an external interface
and a cross-compiler was manually developed. Since the goal was always to preserve the
sequential source code by only adding annotations, developers still had to learn another
language when using it. Consequently, the drawback was that it did not preserve the syntax of
the C language. Also, as the compiler did not follow any standardization and due to its internal
customization for a specific pattern, there was no modularity for adding new annotations and
features. In the literature there are only a small set of tools for creating internal DSLs in C/C++
(Clang and GCC plugins). Most of them only extend language capabilities and their internal
implementations vary. Thus, there is a significant learning curve to implement a solution,
which nonetheless has more or less the same limitations found previously in DSL-POPP.

One of the design goals of our framework is modularity and simplicity for building
high-level C/C++ embedded DSLs. The challenge is to allow parallel programming experts to
provide custom annotations by using the standard C++ mechanism so that parallel code can
be automatically generated. Although this mechanism (C++11 attributes) was released in
2011, GCC plugins (compilation time callbacks for the AST) and Clang (compiler front-end on
top of LLVM) are still difficult to customize and create new attribute annotations.

Another limitation is that these tools do not allow for transformations in the Abstract
Syntax Tree (AST). Thus, there are only two options: use pretty print parallel code or build
another AST when parsing the code so that modifications will be performed in the new one.
GCC plugin constraints and complexities are justified by the C/C++ flexibility and its design
goal is not for source-to-source code transformations/generations. On the other hand, Clang
provides better modularity with functionalities for parsing AST and creating another one, but it
still requires significant expertise in its front-end library and compilers.

The major difference between the annotation-based proposal is that instead of
using pragma annotations, C++11 attributes are not preprocessing annotations and are fully
represented in the AST with other C/C++ statements. Consequently, they are parsed in
the AST, giving more power to the language developer to perform transformations. All of
these aspects demonstrate that a Compiler Infrastructure for building New C/C++ Language
Extensions was necessary, which is referred to in the text as CINCLE1 (Chapter 4). This
contribution allows one to achieve high-level parallelism abstractions, as will be presented in
Chapter 5 by implementing a DSL for stream parallelism (SPar).

Stream domain was chosen as the annotation interface because it is interesting,
widely used, simple enough, general, and suitable for teaching purposes. Moreover, it helps
us to address another new perspective and allows application-level DSL designers to integrate
automatic parallelization through SPar. Vertical validation of the framework was done through

1This is also the name of the bird that lives on shallow streams in Italy, France and Germany

a DSL for geospatial data visualization targeting multi-core parallelism [LGMF15] [Led16].
When compared with TBB, SPar was able to increase coding productivity by 30% 2 without
significant performance losses.

This research is also a collaboration with the University of Pisa, providing inspiration
for this work (e.g. such as the adoption of the stream parallelism domain and the use of the
C++ annotation mechanism). The major ideas come from EU (European Union) projects
such as REPARA3 (annotation mechanism) and the open source project at UNIPI such as
FastFlow4 (stream parallelism). Both projects have justified and inspired some of our work.

In this thesis, we will provide a new programming framework perspective for high-
level stream parallelism. Our motivation is to contribute to the scientific community with a
high-level parallelism design with support tools for generating new embedded C++ DSLs. It
primarily supports users to build custom and standardized annotation-based interfaces to
perform powerful source-to-source transformations.

Another contribution is to enable productive stream parallelism by preserving the
sequential source code of the application. In this case, we prototyped a new DSL with suitable
attributes at the stream domain level by using our designed infrastructure, which also became
the use case to illustrate its capabilities and robustness. Moreover, as a consequence of
the generalized transformation rules created, our DSL seeks to support code portability by
performing automatic parallel code generation for multi-cores and clusters.

2Measuring the source lines of code.
3http://repara-project.eu/
4http://calvados.di.unipi.it/

LIST OF PAPERS

1. Towards a Domain-Specific Language for Patterns-Oriented Parallel Program-
ming. Programming Languages - 17th Brazilian Symposium - SBLP [GF13].

2. Performance and Usability Evaluation of a Pattern-Oriented Parallel Program-
ming Interface for Multi-Core Architectures. The 26th International Conference
on Software Engineering & Knowledge Engineering [GAF14].

3. An Embedded C++ Domain-Specific Language for Stream Parallelism. Interna-
tional Conference on Parallel Computing (ParCo 2015) [GDTF15].

4. A Unified MapReduce Domain-Specific Language for Distributed and Shared
Memory Architectures. The 27th International Conference on Software Engineer-
ing & Knowledge Engineering [AGLF15a].

5. Coding Productivity in MapReduce Applications for Distributed and Shared Mem-
ory Architectures. International Journal of Software Engineering and Knowledge
Engineering [AGLF15b].

6. Towards a Domain-Specific Language for Geospatial Data Visualization Maps
with Big Data Sets. ACS/IEEE International Conference on Computer Systems and
Applications [LGMF15].

LIST OF ABBREVIATIONS

SPar Stream Parallelism

CINCLE Compiler Infrastructure for New C/C++ Language Extensions

AST Abstract Syntax Tree

GCC GNU C Compiler

GPGPU General-Purpose Graphics Processing Unit

GPU General-Purpose Graphics Processing Unit

CPU Central Processing Unit

FIFO First In, First Out

EDF Earliest Deadline First

OpenMP Open MultiProcessing

TBB Threading Building Blocks

MPI Message Passing Interface

OpenCL Open Computing Language

CUDA Compute Unified Device Architecture

UNIPI University of Pisa

REPARA Reengineering and Enabling Performance and poweR of Applications

DSL Domain-Specific Language

IoT Internet of Things

DAG Directed Acyclic Graph

PPL Pervasive Parallelism Laboratory

IR Internal Representation

API Application Program Interface

PIPS Parallelization Infrastructure for Parallel Systems

RTL Register Transfer Language

LLVM Low-Level Virtual Machine

EDG Edison Design Group

ANTRL Another Tool For Language Recognition

IDE Integrated Development Environment

FPGA Field-Programmable Gate Array

DSP Digital Signal Processor

MIT Massachusetts Institute of Technology

APGAS Asynchronous Partitioned Global Address Space

SLOC Source Lines of Code

List of Figures

1.1 Reactive systems representation. 40

1.2 DataFlow/DataStream systems representation. 41

1.3 Stream systems representation. 43

1.4 Thesis flowchart. 47

2.1 REPARA’ workflow. Extracted from [REP16] . 50

2.2 Stanford pervasive parallelism research framework. Extracted from [PPL16]. 52

2.3 Cetus overview. Extracted from [JLF+05]. 55

2.4 PIPS infrastructure. Extracted from [AAC+11]. 56

2.5 GCC internals overview. Extracted from [Ló14]. 57

2.6 LLVM infrastructure. Extracted from [LA14]. 58

2.7 ROSE overview. Extracted from [SQ03, ROS16]. 59

3.1 The programming framework picture. 75

3.2 The CINCLE Infrastructure . 78

4.1 The environment of CINCLE infrastructure. 86

4.2 CINCLE AST node. 87

4.3 CINCLE AST representation. 87

4.4 AST visualizations. 92

4.5 Performance comparison (machine with SSD hard drive). 93

4.6 Only SPar compiler performance (machine with SSD hard drive). 94

5.1 Annotation methodology schema. 106

5.2 Activity graphs on SPar. 107

5.3 SPar Compiler. 113

5.4 SPar AST. 114

6.1 Overview of different parallel patterns. Extracted from [MRR12]. 120

6.2 A set of task-based parallel patterns for stream parallelism. 120

6.3 FastFlow Architecture. Adapted from [DT15]. 121

6.4 FastFlow Queues. Adapted from [Fas16]. 122

6.5 FastFlow skeletons from the core pattern layer. 122

6.6 MPI farm implementation (circle represents process and arrows represent
communications). 124

6.7 MPI pipeline implementation (circle represents process and arrows represent
communications). 124

6.8 MPI skeleton compositions. 125

6.9 Mapping the transformations to FastFlow generated code. 130

6.10 Mapping the transformations to MPI generated code. 132

7.1 Time performance using balanced workload (Listing 7.1) 145

7.2 Time performance using balanced workload (Listing 7.2) 145

7.3 Stream performance using balanced workload (Listing 7.1) 146

7.4 Stream performance using balanced workload (Listing 7.2) 146

7.5 HPC performance using balanced workload (Listing 7.1) 147

7.6 HPC performance using balanced workload (Listing 7.2) 147

7.7 CPU Socket performance using balanced workload (Listing 7.1) 148

7.8 CPU Socket performance using balanced workload (Listing 7.2) 148

7.9 Memory performance using balanced workload (Listing 7.1) 149

7.10 Memory performance using balanced workload (Listing 7.2) 149

7.11 Source line of code for filter Sobel application. 150

7.12 Time performance comparison using balanced workload (Listing 7.1) 151

7.13 Time performance comparison using balanced workload (Listing 7.2) 152

7.14 Stream performance comparison using balanced workload (Listing 7.1) . . . 152

7.15 Stream performance comparison using balanced workload (Listing 7.2) . . . 152

7.16 HPC performance comparison using balanced workload (Listing 7.1) 153

7.17 HPC performance comparison using balanced workload (Listing 7.2) 153

7.18 CPU Socket performance comparison using balanced workload (Listing 7.1) 154

7.19 CPU Socket performance comparison using balanced workload (Listing 7.2) 154

7.20 Memory performance comparison using balanced workload (Listing 7.1) . . 155

7.21 Memory performance comparison using balanced workload (Listing 7.2) . . 155

7.22 Time performance (Video OpenCV) . 158

7.23 Stream performance (Video OpenCV) . 159

7.24 HPC performance (Video OpenCV) . 159

7.25 CPU Socket performance (Video OpenCV) . 159

7.26 Memory performance (Video OpenCV) . 160

7.27 Source line of code for Video OpenCV application. 160

7.28 Time performance comparison (Video OpenCV) . 161

7.29 Stream performance comparison (Video OpenCV) . 162

7.30 HPC performance comparison (Video OpenCV) . 162

7.31 CPU Socket performance comparison (Video OpenCV) 162

7.32 Memory performance comparison (Video OpenCV) 163

7.33 Time performance (Mandelbrot) . 165

7.34 Stream performance (Mandelbrot) . 165

7.35 HPC performance (Mandelbrot) . 166

7.36 CPU Socket performance (Mandelbrot) . 166

7.37 Memory performance (Mandelbrot) . 167

7.38 Source line of code for Mandelbrot application. 167

7.39 Time performance comparison (Mandelbrot) . 168

7.40 Stream performance comparison (Mandelbrot) . 168

7.41 HPC performance comparison (Mandelbrot) . 169

7.42 CPU Socket performance comparison (Mandelbrot) 169

7.43 Memory performance comparison (Mandelbrot) . 170

7.44 Time performance (Prime Numbers) . 172

7.45 Stream performance (Prime Numbers) . 172

7.46 HPC performance (Prime Numbers) . 173

7.47 CPU Socket performance (Prime Numbers) . 173

7.48 Memory performance (Prime Numbers) . 174

7.49 Source line of code for Prime Number application. 174

7.50 Time performance comparison (Prime Numbers) . 175

7.51 Stream performance comparison (Prime Numbers) 175

7.52 HPC performance comparison (Prime Numbers) . 176

7.53 CPU Socket performance comparison (Prime Numbers) 176

7.54 Memory performance comparison (Prime Numbers) 177

7.55 Time performance (K-Means) . 180

7.56 Stream performance (K-Means) . 181

7.57 HPC performance (K-Means) . 181

7.58 CPU Socket performance (K-Means) . 181

7.59 Memory performance (K-Means) . 182

7.60 Source line of code for K-Means application. 182

7.61 Time performance comparison (K-Means) . 183

7.62 Stream performance comparison (K-Means) . 183

7.63 HPC performance comparison (K-Means) . 184

7.64 CPU Socket performance comparison (K-Means) . 184

7.65 Memory performance comparison (K-Means) . 184

7.66 Time performance using balanced workload (Sobel Filter) 187

7.67 Stream performance using balanced workload (Sobel Filter) 187

7.68 Time performance (Prime Numbers) . 188

7.69 Stream performance (Prime Numbers) . 188

9.1 Statistics of StreamIt benchmarks [TA10]. Extracted from [Won12]. 201

A.1 Time performance using unbalanced workload (pipe-like) 218

A.2 Time performance using unbalanced workload (farm-like) 218

A.3 Stream performance using unbalanced workload (pipe-like) 219

A.4 Stream performance using unbalanced workload (farm-like) 219

A.5 HPC performance using unbalanced workload (pipe-like) 219

A.6 HPC performance using unbalanced workload (farm-like) 220

A.7 CPU Socket performance using unbalanced workload (pipe-like) 220

A.8 CPU Socket performance using unbalanced workload (farm-like) 220

A.9 Memory performance using unbalanced workload (pipe-like) 221

A.10 Memory performance using unbalanced workload (farm-like) 221

A.11 Time performance comparison using unbalanced workload (Listing 7.1) . . . 221

A.12 Time performance comparison using unbalanced workload (Listing 7.2) . . . 222

A.13 Stream performance comparison using unbalanced workload (Listing 7.1) . 222

A.14 Stream performance comparison using unbalanced workload (Listing 7.2) . 222

A.15 HPC performance comparison using unbalanced workload (Listing 7.1) . . . 223

A.16 HPC performance comparison using unbalanced workload (Listing 7.2) . . . 223

A.17 CPU Socket performance comparison using unbalanced workload (Listing
7.1) . 223

A.18 CPU Socket performance comparison using unbalanced workload (Listing
7.2) . 224

A.19 Memory performance comparison using unbalanced workload (Listing 7.1) 224

A.20 Memory performance comparison using unbalanced workload (Listing 7.2) 224

A.21 Time performance comparison (Prime Numbers Default) 225

A.22 Stream performance comparison (Prime Numbers Default) 225

A.23 HPC performance comparison (Prime Numbers Default) 226

A.24 CPU Socket performance comparison (Prime Numbers Default) 226

A.25 Memory performance comparison (Prime Numbers Default) 226

A.26 Stream performance comparison (Mandelbrot) . 227

A.27 Time performance using unbalanced workload (Filter Sobel) 228

A.28 Stream performance using unbalanced workload (Filter Sobel) 228

List of Tables

2.1 Related works for C/C++ DSL design space. 61

2.2 Related parallel programming frameworks. 68

4.1 Basic API functions. 91

4.2 Statistics of CINCLE (number of nodes on the AST). 94

5.1 Statistics of SPar annotations on the experiment. 115

7.1 The Pianosau machine configurations. 139

7.2 The Dodge cluster machines’ configuration (total of 4 nodes). 140

Contents

I Scenario 33

1 INTRODUCTION . 35

1.1 CONTEXTUALIZATION . 36

1.1.1 PERSPECTIVES ON HIGH-LEVEL PARALLELISM . 36

1.1.2 STREAM PARALLELISM DOMAIN . 39

1.2 GOALS . 45

1.3 CONTRIBUTIONS . 46

1.4 OUTLINE . 46

2 RELATED WORK . 49

2.1 HIGH-LEVEL PARALLELISM . 50

2.1.1 REPARA RESEARCH PROJECT . 50

2.1.2 STANFORD PERVASIVE PARALLELISM RESEARCH . 51

2.1.3 DISCUSSION . 53

2.2 C/C++ DSL DESIGN SPACE . 53

2.2.1 CETUS . 54

2.2.2 PIPS . 55

2.2.3 GCC-PLUGINS . 56

2.2.4 CLANG . 58

2.2.5 ROSE . 59

2.2.6 COMPARISON . 60

2.3 PARALLEL PROGRAMMING FRAMEWORKS . 62

2.3.1 STREAM-BASED . 62

2.3.2 ANNOTATION-BASED . 64

2.3.3 GENERAL-PURPOSE FRAMEWORKS . 65

2.3.4 COMPARISON . 66

2.4 CONCLUDING REMARKS . 69

II Contributions 71

3 OVERVIEW OF THE CONTRIBUTIONS . 73

3.1 INTRODUCTION . 74

3.2 THE PROGRAMMING FRAMEWORK . 74

3.3 A COMPILER-BASED INFRASTRUCTURE . 76

3.4 HIGH-LEVEL AND PRODUCTIVE STREAM PARALLELISM 78

3.5 INTRODUCING CODE PORTABILITY FOR MULTI-CORE AND CLUSTERS . . 79

4 CINCLE: A COMPILER INFRASTRUCTURE FOR NEW C/C++ LANGUAGE
EXTENSIONS . 81

4.1 INTRODUCTION . 82

4.2 ORIGINAL CONTRIBUTION . 83

4.3 IMPLEMENTATION DESIGN GOALS . 83

4.4 THE CINCLE INFRASTRUCTURE . 85

4.5 CINCLE FRONT-END . 86

4.6 CINCLE MIDDLE-END . 88

4.7 CINCLE BACK-END . 89

4.8 SUPPORTING NEW LANGUAGE EXTENSIONS . 90

4.9 REAL USE CASES . 93

4.10 SUMMARY . 95

5 SPAR: AN EMBEDDED C++ DSL FOR STREAM PARALLELISM 97

5.1 INTRODUCTION . 98

5.2 ORIGINAL CONTRIBUTIONS . 99

5.3 DESIGN GOALS . 99

5.4 SPAR DSL: SYNTAX AND SEMANTICS . 101

5.4.1 TOSTREAM . 101

5.4.2 STAGE . 103

5.4.3 INPUT . 104

5.4.4 OUTPUT . 104

5.4.5 REPLICATE . 105

5.5 METHODOLOGY SCHEMA: HOW TO ANNOTATE . 106

5.6 EXAMPLES AND GOOD PRACTICES . 107

5.7 SPAR COMPILER . 113

5.8 SPAR INTERNALS . 114

5.9 ANNOTATION STATISTICS ON REAL USE CASES . 114

5.10 SUMMARY . 115

6 INTRODUCING CODE PORTABILITY FOR MULTI-CORE AND CLUSTER . . . 117

6.1 INTRODUCTION . 118

6.2 ORIGINAL CONTRIBUTION . 118

6.3 PARALLEL PATTERNS IN A NUTSHELL . 118

6.4 MULTI-CORE RUNTIME (FASTFLOW) . 120

6.5 CLUSTER RUNTIME (MPI BOOST) . 123

6.5.1 FARM . 123

6.5.2 PIPELINE . 124

6.5.3 PATTERN COMPOSITIONS . 125

6.6 GENERALIZED TRANSFORMATION RULES . 125

6.7 SOURCE-TO-SOURCE TRANSFORMATIONS USE CASES 129

6.7.1 TRANSFORMATIONS FOR MULTI-CORE . 129

6.7.2 TRANSFORMATIONS FOR CLUSTER . 131

6.8 SUMMARY . 133

III Experiments 135

7 RESULTS . 137

7.1 INTRODUCTION . 138

7.2 EXPERIMENTAL METHODOLOGY . 138

7.2.1 BENCHMARKING SETUP . 138

7.2.2 TESTS ENVIRONMENT . 139

7.2.3 PERFORMANCE EVALUATION . 140

7.2.4 CODING PRODUCTIVITY INSTRUMENTATION . 141

7.3 MULTI-CORE ENVIRONMENT . 141

7.3.1 SOBEL FILTER . 142

7.3.2 VIDEO OPENCV . 157

7.3.3 MANDELBROT SET . 163

7.3.4 PRIME NUMBERS . 170

7.3.5 K-MEANS . 178

7.4 CLUSTER ENVIRONMENT . 186

7.4.1 SOBEL FILTER . 186

7.4.2 PRIME NUMBER . 187

7.5 SUMMARY . 189

IV Discussions 191

8 CONCLUSIONS . 193

8.1 OVERVIEW . 194

8.2 ASSESSMENTS . 195

8.3 LIMITATIONS . 196

8.4 CONSIDERATIONS . 196

9 FUTURE WORK . 199

9.1 PROGRAMMING FRAMEWORK . 200

9.1.1 CINCLE . 200

9.1.2 SPAR . 200

9.1.3 TRANSFORMATION RULES . 201

9.2 EXPERIMENTS . 202

V Complements 203

REFERENCES . 205

APPENDIX A – Appendix . 217

A.1 COMPLEMENTARY RESULTS ON MULTI-CORE . 218

A.1.1 FILTER SOBEL SPAR PERFORMANCE . 218

A.1.2 FILTER SOBEL PERFORMANCE COMPARISON . 220

A.1.3 PRIME NUMBERS PERFORMANCE COMPARISON . 225

A.1.4 MANDELBROT SET PERFORMANCE COMPARISON 227

A.2 COMPLEMENTARY RESULTS ON CLUSTER . 228

A.3 SOURCES FOR CODING PRODUCTIVITY . 228

A.3.1 FILTER SOBEL . 228

A.3.2 VIDEO OPENCV . 233

A.3.3 MANDELBROT . 235

A.3.4 PRIME NUMBERS . 238

A.3.5 K-MEANS . 241

Part I

Scenario

33

35

1. INTRODUCTION

This chapter will introduce and contextualize the dissertation research.

Contents

1.1 CONTEXTUALIZATION . 36

1.1.1 PERSPECTIVES ON HIGH-LEVEL PARALLELISM . 36

1.1.2 STREAM PARALLELISM DOMAIN . 39

1.2 GOALS . 45

1.3 CONTRIBUTIONS . 46

1.4 OUTLINE . 46

36

1.1 Contextualization

In order to contextualize the research problems and challenges, the first section
will present the central perspectives regarding high-level parallelism. The goal is to present
the main challenges and issues of providing high-level parallelism in respect to the state-
of-the-art alternatives, and show how our research provides solutions to these concerns.
The subsequent section will introduce the stream parallelism domain and highlight its central
difficulties when parallelizing with current state-of-the-art tools. Additionally, we believe that
stream parallelism properties are generic enough to increase the level of abstraction. Thus,
we will show their advantages and how we plan to implement them using a standard C++
mechanism.

1.1.1 Perspectives on High-Level Parallelism

For many years parallel computing has been mostly considered in specialized
supercomputer centers, but this has dramatically changed in the last decade. Currently, there
are different degrees of parallelism from embedded systems to high-performance servers,
due to the availability of multiprocessing architectures such as multi-core, accelerators and
clusters [RJ15, RR10]. Also, technology improvements have contributed to increasing the
capabilities of hardware resources such as memory, network and storage, and supporting
complex software on different kinds of devices. This heterogeneity raises many challenges
for software developers regarding performance portability1, code portability2 and coding
productivity3.

In the software industry, many general-purpose programming languages are making
progress on higher-level abstractions, supporting software engineers in the building process
of complex applications with better code productivity. However, these applications have
many challenges to achieve performance and code portability on parallel architectures
while preserving their coding productivity. Unfortunately, compilers such as GCC are not
able to automatically parallelize code from these high-level language abstractions. In fact,
from a compiler’s point of view only vectorized code is automatically parallelized, while
other high-level abstractions (viewed as coarse-grained code regions) do not provide the
necessary semantic information for the compiler to perform code parallelization. Consequently,
developers are forced to restructure their application by using low-level and architecture-
dependent programming interfaces such as MPI [GHLL+98], CUDA [KmWH10] and Pthreads
[NBF96] if they hope to exploit parallel hardware efficiently.

1It means the code achieves the same performance on different platforms and architectures.
2Allows a code to run in different architectures and platforms without any changes.
3Reduces the amount of code and programming effort.

37

The current software development process consists of prototyping an efficient
program in a high-level language and then implementing some kind of high-performance
code. This two-step process is very time-consuming, especially if we take into account that
the code eventually produced is strongly architecture-dependent. For instance, it requires
the programmer to have expert knowledge in hardware and parallel programming to produce
high-performance code when targeting different architectures. In big team projects, some
programmers will work on the high-level part while others will have to implement the lowest-
level version of the application. The problem is that different versions of the parallelized
application will have to be implemented in order to target different architectures. Thus, a
project will usually have many versions that differ slightly from the original and any update
could require rethinking the parallelization strategy in order to better exploit the architecture’s
resources.

To solve this problem, the Domain-Specific Language (DSL) approach has proven to
be a suitable alternative to high-level parallelism abstractions in recent years [Gri12, GAF14,
GF13, AGLF15a, AGLF15b]. Also, DSLs have proven to be effective when targeting code
productivity, code portability, and performance in different general-purpose programming
languages [SLB+11, DJP+11, HSWO14, Suj14]. Though these solutions lack generality,
they increase optimization and abstraction to enable the user to focus on better ideas and
algorithms rather than on general problems related to parallelism exploitation.

A DSL can be implemented using different techniques. An “External” DSL implemen-
tation is a language completely distinct from the host language. Thus, it is necessary to create
a custom compiler [Fow10, Gho11]. Usually, external DSLs are more flexible and easier to
model for the domain-specific scenario. Yet, depending on the environment, they require much
more expertise in compiler design even using compiler frameworks like LLVM, because the
high-level interface must be translated into the low-level intermediate representation. On the
other hand, “Internal” DSL implementations are fully integrated with the host language syntax
and semantics. They are provided as a library or by using specific host language mechanisms
[VBD+13]. Our DSL uses the embedded C++11 attributes [ISO11b, ISO14] already present
in the host language grammar and therefore it is “de facto” an internal/embedded DSL.

According to the literature, an internal DSL should be easier to implement because
the host language should provide an alternative to suitably integrate custom language
constructions. However, in C++, the context is entirely different when one intends to use
its standard annotation mechanism. It requires a profound knowledge of compiler design.
We solved this problem by providing a new compiler infrastructure so that we can provide
a suitable alternative because the literature does not enable higher abstraction level and
aggressive code transformations. In addition, our programming framework perspective aims
to facilitate other kinds of language extensions or compiler-based tools to benefit from the
infrastructure. This and other new perspectives will be discussed and proven throughout this
dissertation.

38

In spite of the DSL benefits, designing an embedded C++ DSL for high-level par-
allelism abstractions is still a challenging task. It requires expertise in multiple areas such
as parallel programming, programming languages, compiler architecture, etc. Recently,
researchers from Stanford University have been working on the same subject to create
high-performance and high-level embedded DSLs for the Scala language [OSV10]. They
developed the Delite compiler framework to enable DSL designers to quickly and efficiently
target parallel heterogeneous hardware [SBL+14]. Overall, their research builds on a stack of
domain-specific solutions that in principle share similar goals with this work. In contrast, our
idea is to contribute to the C/C++ [Str14] community, which is widely used in several market
and real world applications.

Delite is logically between a high-level application DSL and low-level hardware and
runtime libraries. Integrated with Scala, its framework provides parallel patterns that can
be instantiated by the application’s DSL designer without worrying about the parallelism
aspect of heterogeneous hardware. Unlike C++, Scala is more recent and was created
along with the DSL support implementation, which requires parallelism abstractions. In our
proposed research, in addition to providing high-level parallelism to an application’s DSL
designers, we have also proposed a compiler infrastructure as an alternative for experts in
parallelism exploitation to quickly prototype DSLs based on annotations. This contribution can
significantly improve the abstraction level of parallelism in C++ programs. Similar to Delite,
we propose an embedded C++ domain-specific language, yet for stream-oriented parallelism.
Our goal is that the programmer will not be required to instantiate patterns or methods as in
Delite. Instead we aim to preserve the application’s source code as much as possible, only
requiring the programmer to insert proper annotations for annotating the stream parallelism
features.

In the C++ community, a research closest to ours is Re-engineering and Enabling
Performance and poweR of Applications (REPARA) [REP16]. Its vision is to help develop
new solutions for parallel heterogeneous computing [GSFS15] in order to strike balance
between source code maintainability, energy efficiency, and performance [DTK15]. In general,
REPARA differs from our work in many ways, but shares the idea of maintaining the source
code by introducing abstract representations of parallelism through annotations [DGS+16].
Thus, a standard C++11 attribute mechanism is used as skeleton-like code annotations (farm,
pipe, map, for, reduce, among others). Attributes are preprocessed and exploited within a
methodology, which eventually produces code targeting heterogeneous architectures.

From the high-level parallelism perspective of REPARA, attributes are interpreted by
a refactoring tool that is on top of eclipse IDE (Integrated Development Environment), which
is responsible for the source-to-source transformations to C++/FastFlow. As a consequence
of refactoring methodologies, theses transformations occur in place and produce code that
is transparent to users. Like REPARA, we aim to be standard C++ compliant. However, in
our programming framework, attributes are used at compiler level and source-to-source code

39

transformations are hidden from the users. Moreover, our goal is to be domain-specific for
stream parallelism, targeting multi-core and clusters to support an application’s DSL designer
as in the Delite framework’s vision.

There are also other programming interfaces that provide high-level parallelism
that are not DSLs. Examples are MapReduce [MS12, DG08, CCA+10, Had16], Charm++
[AGJ+14, Cha16], X10 [Mil15, X1016], Spark [KKWZ15], Storm [And13], and Intel Cilk Plus
[BJK+95, Cil16]. While offering many suitable features for different applications, these ap-
proaches force programmers to deal with different programming models that are not natural
to the application domain. This negatively impacts coding productivity. Moreover, it is difficult
for them to provide good performance when targeting different parallel architectures, because
their embedded interface is still too low-level. Therefore, they require different implementation
versions of the source code to target different hardware.

Our perspective on high-level parallel programming relies on language attributes
that annotate abstract representations of potential parallelism. In our vision, other annotation-
based models such as OpenMP [Qui03] are conceptually much lower-level, because users
have to express the parallelism and deal with low-level details relative to high-performance
coding. These interfaces achieve coding productivity only in specific cases such as indepen-
dent loop parallelization. In addition, code portability is still strongly architecture-dependent,
which requires the production of different versions of the application in order to target other
architectures.

1.1.2 Stream Parallelism Domain

Stream processing is one of the most commonly used paradigms in computer
systems [TA10, AGT14]. We can find it in our daily software applications and computational
hardware. All personal computer processors run a sequence of instructions in a streaming
fashion to achieve throughput, latency, and quality of service at the user level. On the software
side, the increase of the Internet of Things (IoT) field and the big data explosion has made
stream processing a trending topic in computer science. There are millions of data sources
on the Internet that are collecting and exchanging information through devices and social
media. Therefore, the need for high throughput and low latency is also crucial for software
that deals with image, video, networking, and real time data analysis.

Different variants of the stream programming paradigm have emerged over the years
(reactive, DataFlow and stream parallelism) [TA10, AGT14, TKA02a, ADKT14, ADK+11].
They characterize the stream as a set of continuous data/instructions/tasks that flows naturally
through a sequence of operations. Each operation consumes input and produces output
like an assembly line that is also called as a pipeline. In general, stream processing has
a continuous flow and unbounded stream behavior. However, some of today’s application

40

scenarios are irregular and have bounded streams. Consequently, it is a challenge for stream-
based systems to control the end of the stream and maintain good performance even if there
is not infinite flow.

Stream processing variants share similar motivations, goals, and characteristics that
make it difficult for a layperson to differentiate among them. Some scientists simply say that
they are equivalent in many aspects. In fact, they all share the same principles. However,
the resulting systems have subtle distinctions. It is possible to highlight that, for example,
a reactive system is more concerned with latency than throughput. A typical example is a
spreadsheet, where a person is usually applying several mathematical equations (stream
operations) in the data cells (stream sources). Subsequently, the system reacts to all data
updated in the cell, ensuring that latency is small when compared to human perception
[Fur14].

A representation of reactive environmental characteristics can be found in Figure
1.1. Each actor in the system propagates operation results and reacts when they receives a
new input event. Many web services use reactive programming for different types of events.
For instance, the most common is to answer over click events such as subscriptions to a
social network and to purchase goods. The system may have to deal with different click
sources and instantaneously react to the event. Thus, parallelism is especially designed for
each application to achieve latency, attend many events, react over data scaling, and recover
when failures happen in a timely manner.

Figure 1.1 – Reactive systems representation.

Listing 1.1 illustrates an example of a simple reactive stream code from the pro-
gramming perspective. It is a program that reads events from the keyboard and can print
the multiplication table. Therefore, the stream source is a digit or a set of digits that will be
processed to return a multiplication table. Through this example it is possible to see the
following challenges: Providing scalability and low response time when the user enters a set
of digits to be computed; and preserving resiliency when a non-digit character is inserted so
that the application does not stop, crash or lose information.

1 void proc () {
2 i n t stream_source ;
3 while (1) {
4 s td : : cout << " Enter a d i g i t : " ;
5 s td : : c in >> stream_source ; / / gets event

41

6 for (i n t i = 1 ; i < 11; ++ i) { / / computes the event
7 std : : cout << stream_source * i << std : : endl ; / / p r i n t s the r e s u l t
8 }
9 s td : : cout << " \ n−−−−−−−−−−−\n " ;

10 }
11 }

Listing 1.1 – Reactive stream code example.

DataFlow programming is another stream-based paradigm, which is also called
DataStream by some scientists to avoid being confused with the architectural term DataFlow
[AGT14]. It is a way for runtime systems to automatically extract parallelism from an applica-
tion. In order to do so, the programmer explicitly indicates how data will flow in the program
in such a way that the system may build a Directed Acyclic Graph (DAG). Then, when there
are independent operations, that have all of their input data available, they are designed to
execute in parallel.

Figure 1.2 – DataFlow/DataStream systems representation.

A representative illustration can be found in Figure 1.2, where the spheres are
operators and arrows are dependencies. Usually, DataFlow computations are represented
through dependency graphs in the main memory. Operators are processed by threads or
processes as soon as all their input data items become available as shown in Figure 1.2.
Hence, each data operator thread will know when its work can be done and go ahead. When
input dependencies are used it means that an operator can only perform its computation
after the input data is available. Similarly, an output dependency is a specification for subse-
quent operators stating where they will obtain their results. Consequently, the connections
and synchronizations between operators are represented and ensured by input and output
dependencies. This behavior is quite similar to reactive programming. However, DataFlow is
more closely related to data parallelism than event driven parallelism (reactive systems).

When looking at the literature regarding parallel programming interfaces for multi-
core architectures, we can point out different solutions that target the DataFlow paradigm
[CJvdP07, PC11, Omp16]. OpenMP was originally designed for data parallelism in FORTRAN
and C, but has also introduced task parallelism and some clauses (depend, in, out, inout)
targeting a kind of DataFlow parallelism in task regions since its 4.0 version. A simple code

42

example is given in Listing 1.2 to illustrate the programmer’s point of view, presenting a
program that performs a sequence of operations over a contiguous bounded data stream.

1 void proc () {
2 #pragma omp p a r a l l e l
3 {
4 #pragma omp single
5 {
6 for (i n t i = 0 ; i < NREGION; ++ i) {
7 i n t * persons = new i n t [NPERSON] ;
8 #pragma omp task depend (out : persons [i]) / / task group 1
9 {

10 load (persons) ;
11 }
12 #pragma omp task depend (i n : persons [i]) / / task group 2
13 {
14 regions_min [i] = min (persons) ;
15 }
16 #pragma omp task depend (i n : persons [i]) / / task group 3
17 {
18 regions_max [i] = max(persons) ;
19 }
20 }
21 }
22 }
23 }

Listing 1.2 – OpenMP DataFlow code example.

The program performs a data analysis to identify the maximum and minimum age
of people in each region. Therefore, the loop iterates for each region, loading everyone’s
age into a vector to find and store the maximum and minimum age. In order for OpenMP
to exploit DataFlow parallelism, we have to describe the data dependencies in such a way
that OpenMP can run the max and min operations in parallel, as presented in Listing 1.2 in
the pragma task annotations. Nonetheless, its usage is strongly dependent on the OpenMP
programming model. For instance, it is not enough to describe the data dependency. One
must be aware of task parallelism, where task pragmas are a group of tasks that will run
concurrently, and the output and input dependency will synchronize the data flow. In our
OpenMP example, the first task group will update the input data of the next two task groups
(max and min operators) so that they execute in parallel. Finally, note that a DataFlow region
must also be encapsulated by parallel and single directives.

Stream parallelism programming inherits many of the capabilities of previous paradigms.
In contrast to DataFlow programming, stream operations’ dependencies are not determined
by input and output data specifications. In stream parallelism, the operation sequence is
structured in such a way that dependencies are evidenced and input and output describes

43

what will be consumed and produced by a kernel as illustrated in Figure 1.3. A kernel is
composed of an operator or a set of operations performed at each element of the stream.

Inside kernels, operations are expected to be sequential and they are performed
locally during the computation. The specifications of input and output also help the system to
prevent global data manipulation, whereas local operations can improve memory performance
through data locality. The stream parallelism paradigm also simplifies the implementation of
the task scheduler since the flow is completely deterministic. In DataFlow for example, the
model is highly data dependent, resulting in a non-deterministic flow and complex scheduler
implementation because the flow of tokens within the graph may vary depending on the input
token values during the execution of the program. Depending on the token flow, the scheduler
should make different scheduling decisions.

Figure 1.3 – Stream systems representation.

Stream parallelism applications work over intensive and unbounded streams, focus-
ing on high throughput rates and low latency. The undefined end of a stream is a difficult for
DataFlow systems. On the other hand, stream systems have DataFlow semantics. Therefore,
not all the graphs we can express with DataFlow may be expressed with stream parallelism.
For example, similar undefined behavior is also present in reactive applications, but there
is an elastic stream (a set of events) frequency that must be addressed in timely manner,
while stream applications usually have bigger streams with a constant frequency where the
throughput may be a priority instead of latency. Examples of real world applications are face
tracking, video streaming, network packet routing, image processing, among others. Listing
1.3 outlines the structure of a typical stream parallel application.

The code example implements a stream application, where each element of the
stream is a string. Therefore, the stream application starts on the “while” loop. At each
iteration, the loop reads a stream element, computes a result using the element, and writes
the result on a given output stream. The end of the stream is monitored by a condition
checked after reading one element. Note that it is common that the number of computations
of the stream elements (also called as filter) vary among the applications, but a stream
application will usually have a sequence for these three operations: read, filter, and write
[TA10].

1 void proc_seq () {
2 s td : : s t r i n g stream_element ;
3 while (1) {
4 read_in (stream_element) ; / / reads each element o f a given stream

44

5 i f (stream_in . eof ()) break ; / / t e s t i f stream i s empty
6 compute (stream_element) ; / / apply some computat ion to the stream
7 wr i t e_ou t (stream_element) ; / / w r i t e the r e s u l t s i n t o a given output stream
8 }
9 }

Listing 1.3 – Stream application code example.

Due to the fact that OpenMP is not designed for naturally annotating these kinds of
applications, the most efficient way to explore stream parallelism is to use FastFlow [Fas16,
ADKT14] or TBB [Rei07, TBB16] frameworks. Both frameworks also support DataFlow
parallelism and present a similar programming interface because they leverage the same
meta-programming features. However, the runtime systems are very different as are the
design goals, which will be explained in detail later in this dissertation (Chapter 2). To
exemplify the expressiveness of stream parallelism when using such frameworks, a pseudo
code in FastFlow is given in Listing 1.4, extending the example of Listing 1.3. From this code,
we can point out the main drawbacks of these frameworks are source code rewriting and
restructuring.

1 struct f i r s t S t a g e : f f_node_t <s td : : s t r i n g > {
2 s td : : s t r i n g stream_element ;
3 s td : : s t r i n g * svc (s td : : s t r i n g *) {
4 while (1) {
5 read_in (stream_element) ;
6 i f (stream_in . eof ()) break ;
7 f f_send_out (new std : : s t r i n g (stream_element)) ;
8 }
9 return EOS;

10 }
11 } ;
12 struct secondStage : f f_node_t <s td : : s t r i n g > {
13 s td : : s t r i n g * svc (s td : : s t r i n g * stream_element) {
14 compute (* stream_element) ;
15 return stream_element ;
16 }
17 } ;
18 struct t h i rdS tage : f f_node_t <std : : s t r i n g > {
19 s td : : s t r i n g * svc (s td : : s t r i n g * stream_element) {
20 wr i t e_ou t (* stream_element) ;
21 delete stream_element ;
22 return GO_ON;
23 }
24 } ;
25 void p r o c _ f f () {
26 f f_P ipe <> pipe (make_unique< f i r s t S t a g e > () ,
27 make_unique<secondStage > () ,
28 make_unique< th i rdStage > ()) ;

45

29 i f (p ipe . run_and_wait_end () <0) e r r o r (" running pipe ") ;
30 }

Listing 1.4 – FastFlow stream code example.

In contrast to these frameworks, the scope of this research is limited to stream
parallelism and does not address similar approaches such as DataFlow or Reactive paral-
lelization. The main expected state-of-the-art contribution is to provide a high-level DSL for
expressing stream parallelism. Even though C++ template libraries can provide interesting
coding productivity and abstractions, this work aims to raise the abstraction level without
significantly affecting performance. The proposal is to use the standard C++ attribute mech-
anism [MW08, ISO14], maintaining on-the-fly stream parallelism such as the example in
Listing 1.5, where the sequential source code (Listing 1.3) is not restructured. Chapter 5
will present and discuss the proposed DSL in detail to address stream parallelism by using
standard C++ attributes.

1 void proc_spar () {
2 s td : : s t r i n g stream_element ;
3 [[spar : : ToStream , spar : : Input (stream_element)]] while (1) {
4 read_in (stream_element) ;
5 i f (stream_in . eof ()) break ;
6 [[spar : : Stage , spar : : Input (stream_element) , spar : : Output (stream_element)]]
7 { compute (stream_element) ; }
8 [[spar : : Stage , spar : : Input (stream_element)]]
9 { w r i t e_ou t (stream_element) ; }

10 }
11 }

Listing 1.5 – Proposal interface exemplification for stream parallelism.

1.2 Goals

The main objectives of this dissertation are the following:

• G1: The first goal is to provide support tools that enable parallel programming experts
to create standard C++ embedded DSLs.

• G2: The second goal is to provide high-level stream parallelism and coding productivity
without significant performance degradation in multi-core systems.

• G3: The third goal is to introduce code portability in multi-core and cluster systems.

46

1.3 Contributions

This work contributes to a programming framework for high-level parallelism abstrac-
tions that includes the following specific contributions:

• C1: A compiler infrastructure for generating new language extensions in C/C++.

• C2: A domain-specific language for stream parallelism.

• C3: Generalized transformation rules for source-to-source code generation that
exploits parallelism in multi-core and cluster.

• C4: Experimental validation through the implementation of several different use
cases to access features of the framework and design choices.

1.4 Outline

This dissertation is organized in five parts:

• Scenario: This part of the dissertation introduces the context, problems, challenges,
and motivations in Chapter 1. Chapter 2 presents the related works to highlight the
differences and similarities to our research.

• Contributions: This is the most important part of the dissertation. Chapter 3 gives
an overview of the contributions, first presenting the programming framework. Then, it
informally discusses each one of the contributions related to the framework. Chapter 4
details this contribution C1 (see Section 1.3), presenting the Compiler Infrastructure for
New C/C++ Language Extensions (CINCLE). Then, Chapter 5 details contribution C2,
presenting an Embedded C++ DSL for Stream Parallelism (SPar). Chapter 6 details
contribution C3, introducing code portability for multi-core and cluster systems.

• Experiments: This corresponds to Chapter 7 and contribution C4. First we present our
experimental methodology. Secondly we discuss the experiments that were performed
with a set of applications for evaluating productivity and performance in a multi-core
environment, comparing it with other frameworks. Finally, we evaluate the coding
productivity along with performance in the cluster environment.

• Discussions: In Chapter 8 we conclude the dissertation. Chapter 9 then describes
future works and research perspectives.

• Complements: This is the complementary part of the work. Chapter 10 is composed
of the bibliographies and Chapter A has the appendixes that support our discussions.

47

Readers may prefer to navigate the document in different ways. Figure 1.4 illustrates
a flowchart of the dissertation as a reading guideline. The preface is an extended abstract to
give more details about the dissertation and origins of the subject. The introduction discusses
the problem, motivations, and the expected contributions in respect to the state-of-the-art.
Consequently, if the reader is comfortable with the scenario, it is possible to go directly to the
overview of the contribution chapter and then read related work for accurate information.

Figure 1.4 – Thesis flowchart.

In the overview of the contribution chapter, we illustrate the thesis picture and
informally summarize the contributions. As in the flowchart, this part should be read in
sequence. First, the CINCLE chapter describes the technical aspects of the infrastructure
used to subsequently implement SPar, which is a high-level domain-specific language for
annotating stream parallelism. Then, we introduce code portability with transformation rules
based on the SPar attributes.

After the contributions, the experiments portion presents the results of the productiv-
ity, performance, and portability evaluation. Here one may refer to the appendix chapter to
see complementary materials for the assessments. Having become aware of the achieved
results, one can then go to the discussion portion, where they will find the conclusions and
future research perspectives.

48

49

2. RELATED WORK

This chapter presents an overview of the state-of-the-art works related to this
research.

Contents

2.1 HIGH-LEVEL PARALLELISM . 50

2.1.1 REPARA RESEARCH PROJECT . 50

2.1.2 STANFORD PERVASIVE PARALLELISM RESEARCH 51

2.1.3 DISCUSSION . 53

2.2 C/C++ DSL DESIGN SPACE . 53

2.2.1 CETUS . 54

2.2.2 PIPS . 55

2.2.3 GCC-PLUGINS . 56

2.2.4 CLANG . 58

2.2.5 ROSE . 59

2.2.6 COMPARISON . 60

2.3 PARALLEL PROGRAMMING FRAMEWORKS 62

2.3.1 STREAM-BASED . 62

2.3.2 ANNOTATION-BASED. 64

2.3.3 GENERAL-PURPOSE FRAMEWORKS . 65

2.3.4 COMPARISON . 66

2.4 CONCLUDING REMARKS . 69

50

2.1 High-Level Parallelism

In this section we aim to present two research projects that inspired our work.
First, we introduce the REPARA research project which shares similar ideas regarding
C++ programming and tools. Then we present the research framework from the pervasive
parallelism laboratory at Stanford University which shares the domain-specific perspective.
Finally, we will discuss both works and compare them with ours.

2.1.1 REPARA Research Project

Re-engineering and Enabling Performance and poweR of Applications (REPARA) is
a research project that started in September 2013 [REP16], founded by the Seven Framework
Programme (FP7-ICT). Its vision is to help develop new solutions for parallel heterogeneous
computing [GSFS15], balancing source code maintainability, energy efficiency, and perfor-
mance [DTK15]. Figure 2.1 presents the workflow proposed to meet their goals (detailed in
[REP16]), starting from the original source code and moving to parallel the heterogeneous
platforms (GPU and FPGA accelerators and multi-cores).

Figure 2.1 – REPARA’ workflow. Extracted from [REP16]

The first step is to prepare the source code. This is necessary to provide explicit rules
to express algorithms, tools for statical analysis and interactive refactoring, and techniques
for annotating source codes. The second step is application partitioning in order to help
application transformation to be mapped onto different devices. This is based on the source
code description for dynamic (run-time) and static (compile-time) partitioning. The next
step (transformation analysis) creates an abstract representation of the opportunities for
transformation. Consequently, the source code transformation step takes into account this
analysis to implement parallel code refactoring. The goal is to work with interactive refactoring

51

(tools integrated into IDE) to offer specific transformations and non-interactive modes to
re-apply the changes after refactoring has been done.

REPARA also has a runtime integration step because transformations are not
enough to integrate different platforms. Primarily this is done to target different frameworks
with distinct libraries and tools. This can be managed inside application partitioning tools,
where the main goal is to change the application configuration dynamically to achieve better
balancing of power efficiency and performance. Moreover, the central point of continuous eval-
uation goal is to also provide: I) qualitative estimations to evaluate the effects of partitioning;
II) quantitative predictions to list opportunities in the transformation analysis; III) estimations
of performance and energy efficiency during transformations; IV) software maintainability
addressing the application source code; and V) the integrated application to be monitored to
improve predictions.

All of these projects aim to develop different solutions. They have implemented algo-
rithmic skeletons that are introduced by using the C++11 attribute mechanism for language
representation. REPARA has created a set of partitioning tools that target parallel patterns
including pipe, farm, kernels, map, reduce, and others [DGS+16, Pro14]. Also, some of the
attributes have been integrated into Eclipse IDE plugin to source-to-source transformations
with FastFlow targeting multi-core and DSP/FPGA [Pro15]. Because the project is still being
developed, other tools are being created that will validate REPARA’s approach regarding the
workflow of ideas and goals.

2.1.2 Stanford Pervasive Parallelism Research

The Stanford Pervasive Parallelism Laboratory (PPL) has a related research interest
in the field of domain-specific languages. The research project has been active since 2011
[BSL+11, CSB+11] and aims to develop a parallel computing platform by the year 2020
[PPL16]. The primary goal is to make new DSLs for software developers (domain experts)
available, while taking advantage of heterogeneous parallelism for those who are not experts
in parallel programming. To achieve such a challenging task, they are building a framework
to support tools that are fully domain-oriented, as shown in Figure 2.2. It provides a stack
of multiple layers that goes from major scientific applications to heterogeneous hardware
devices.

This approach aims to create a consolidated environment for the Scala language
community and DSL designers with a parallel compiler and runtime infrastructure. Their
research efforts are mainly related to the development of efficient mechanisms for commu-
nication, synchronization, and performance monitoring. As a result, new domain-specific
application DSLs will arise where parallel programming should be completely transparent

52

to the users [BSL+11, CSB+11]. Moreover, unlike the REPARA project, the research is
supported through the collaboration of open industrial affiliates.

PPL’s first layer consists of embedding a DSL with a high-level host language
(Scala). Thus, it can be integrated within the compiler, which is called Staging and known
as Lightweight Modular Staging for generating code by using Scala facilities [RO10]. Along
with this support, there are also domain-specific optimizations and polymorphic embedding
provided by the parallel runtime. In principle, they are APIs implemented by the Delite compiler
architecture that integrate several techniques for source-to-source code transformations and
data structures [BSL+11, CSB+11].

Delite was primarily created to support a large number of IR node types to create
a common IR to represent the source code for different targets [SBL+14]. It also includes
data structures, parallel operators, built-in optimizations (matrix multiplication and vector
plus support), traversals and transformers (IR level rewriting rules using pattern matching),
and code generators for different platforms (from IR to optionally Scala, C++, CUDA, and
OpenCL). In fact, parallel operators available through API’s library may extend a pattern
operator to enable parallelism. They provide these pattern operators in a simple way to target
task and data parallelism and other domain-specific optimizations, such as scheduling and
data locality.

Figure 2.2 – Stanford pervasive parallelism research framework. Extracted from [PPL16].

Although the target date is 2020, they have provided many contributions in all the
framework layers. In addition to Delite, many DSLs were created on top of the framework to
support major important scientific applications [SLB+11, DJP+11, HSWO14, Suj14].

53

2.1.3 Discussion

In this section, we presented two distinct research projects that inspired our program-
ming framework for research (Section 3.2) and underlying DSL with support tools for high-level
stream parallelism. Although there are many differences in their design goals and methods,
these researchers share similar perspectives related to high-level parallelism. We are aiming
for an appropriate solution to achieve and provide simpler programming environments as well
as to productively and efficiently exploit parallelism in a different manner.

In contrast to REPARA, whose annotations target general purpose parallelism
with closed semantics to support stream parallelism, we follow a domain-oriented and
compiler-based approach to introduce parallelism. In fact, REPARA is more concerned
with performance and energy efficiency through static and dynamic partitioning, which are
implemented based on the information of the annotated source code. Thus, the attribute
must be generic and capable of providing and retaining enough information for the IR to
enable sophisticated analysis and transformations. Also, their annotations are integrated into
a refactoring tool (IDE plugin), where the attributes are generated by the partitioning tools
(or, for the initial part of the project, by programmers), then the IDE plugin tool re-factors the
attributes to run-time calls (FastFlow Calls).

We can observe that REPARA and PPL projects seek to create runtime support
for heterogeneous devices such as reconfigurable and GPU accelerators. In contrast, we
aim to reuse these runtimes to elevate the abstraction level, providing better code portability
and productivity. Another similarity of these two projects is that they both provide abstraction
at parallel pattern level. Yet, we generate parallel code by using generalized transformation
rules that target parallel patterns.

Unlike from PPL, we are contributing to the C++ community by allowing non-expert
parallel programmers to take advantage of parallelism in different architectures. Similarly
to Delite, we create support tools to support C++ DSL designers with a compiler-based
infrastructure that can offer simpler abstractions and aggressive source-to-source code
transformations. Yet, even though PPL benefits from a high-level productive language like
Scala, parallelism is not delivered by using annotations as we are providing for the DSL
designers.

2.2 C/C++ DSL Design Space

The DSL design space for C/C++ requires a compiler infrastructure or a framework
able to provide suitable features to extend languages and support an abstract representation
of the source, as presented in the compiler design [ALSU07]. Among several tools available

54

in the literature, we considered only the tools implementing the characteristics related to the
needs of our research. Also, we took into account open source projects since proprietary tools
are not compatible with our design goals. In this section, we will discuss the aspects related
to automatic source-to-source transformation as well as compiler-based tools’ infrastructure.

2.2.1 Cetus

Cetus is a source-to-source compiler infrastructure for multi-core systems [DBM+09].
It targets automatic parallelization through C pragmas to support source-to-source code
transformations in C programs. The infrastructure is written in Java and uses ANTRL [Par13]
to provide an internal C parser. Currently, this project is maintained by Purdue University and
supported by the National Science Foundation [BML+12].

In general, Cetus provides features to implement parallelization techniques focusing
on parallelism extraction though OpenMP directives. Cetus users may perform analysis
and transformations of data dependency, variable recognition/substitution, reduction recog-
nition/transformation, scalar/array privatization, and loop parallelization. Moreover, Cetus’
Internal Representation (IR) allows users to work with high-level general passes such as
symbolic analysis, alias analysis, and function inlining. However, Cetus does not provide other
general purpose tools for restructuring transformations. Also, unlike traditional compilers,
it provides an IR instead of AST, and users have limited access to IR facilities to add new
representations.

Figure 2.3 illustrates an overview of Cetus, presenting its architecture and IR. In
Figure 2.3(a), we identify how the infrastructure is designed in a stack of layers. In fact, they
use ANTRL to provide a symbol table to Cetus so that its IR is created from standard C
sources (see Figure 2.3(b)). There is also a API layer available to the users to perform different
kinds of activities such as parsing the IR, transformations, analysis, and optimizations. The
driver layer is the module where the user has to implement source-to-source transformations,
which is a Java class where the programmer implements its transformations for Cetus to
compile it with other internal implementations.

An example of Cetus’ IR is given in Figure 2.3(b). Their tree abstracts several
standard C grammar constructions. There is a translation unit for each program to represent
the content of a source file and procedures which represent a individual functions. The
procedures include a list of simple or compound statements, while the expressions represent
operations over variables and variable assignments [JLF+05]. Also, data types are divided
into basic types, extender, and modifiers. Therefore, providing this high-level abstraction,
the developer may have less flexibility and have to learn a new way to represent/parse the
standard grammar.

55

(a) Cetus architecture. (b) Cetus IR of a program.

Figure 2.3 – Cetus overview. Extracted from [JLF+05].

To modify the program, Cetus has an annotation system (implemented through
a class) to simplify the insertion of comments, pragmas, and raw text as well as low-level
code insertion of new constructors in their IR tree. In fact, we can observe that Cetus
was primarily designed for simple source-to-source transformation, such as the insertion of
OpenMP directives based on compile-time analysis to automatically exploit parallelism in
multi-core systems. In the past, some experimental tests have been performed targeting code
generation from OpenMP to MPI code [BE05, BME07], but this feature seems to no longer
be supported in the latest versions. Recently, Cetus has also been used to exploit parallelism
targeting GPU architectures by inserting annotations [SLJ+14].

2.2.2 PIPS

The research activities related to the PIPS (Parallelization Infrastructure for Parallel
Systems) compiler infrastructure started in 1988 at MINES Paris Tech. Initially, PIPS provided
automatic parallelization of Fortran code and since 1991 it began supporting C language
[IJT91]. Its key features are inter-procedural analysis and abstract interpretation on poly-
hedral lattices. The front-end includes Flex/Bison tools to parse C and Fortran codes and
implement the intermediate code representation (IR). Moreover, PIPS only supports string
transformations. Thus, the user has to: (1) parse the IR, (2) find the regions in the IR to
perform a transformation, (3) pretty print code in a separate file, and (4) gather all the files to
compile the code (assembling source codes into machine code) [AAC+11].

Figure 2.4 illustrates the PIPS infrastructure that is represented as a stack of
layers. On top, there are compiler tools that derive from the PIPS infrastructure. They
are user end tools to make automatic parallelization for vectorized instructions and code
optimizations. For transformations, the pass manager layer provides a set of APIs useful

56

to interact with the internal representation, which is a custom AST from the source code
[Gue11]. Therefore, we can highlight that PIPS is a lower level compiler source-to-source
transformation when compared with Cetus. Although PIPS claims to be used as a source-
to-source compiler, it is also possible to generate machine code. Moreover, most source-to-
source compilers implement automatic code parallelization using empirical methods, while
PIPS uses a polyhedric approach [AI91]. This method consists of five compilation phases: (1)
static checker; (2) building an array DataFlow Graph (DFG), which is a kind of dependency
graph; (3) creating a scheduling function based on DFG; (4) computing a map function
that places the code identifying physical parallel machine resources; and (5) generating the
parallel code.

Figure 2.4 – PIPS infrastructure. Extracted from [AAC+11].

PIPS’s research perspective aims to become an extensible workbench for analysis
and source-to-source transformations. Inter-procedural and polyhedral analysis are math-
ematical approaches that allow the compiler to perform sophisticated analysis to identify
array privatization, control flow, dependencies, reduction detection, among other techniques
[AAC+11]. Transformations (e.g., loop reductions, loop distribution, coarse grain paralleliza-
tion, and many others) and reconstructions (e.g., dead code elimination, declaration cleaning,
and many others) can eventually output Fortran/C code annotated with OpenMP directives or
MPI calls. In fact, PIPS generates MPI coarse grain parallelism from OpenMP annotated code
[MMPSC08]. Nonetheless, recent PIPS efforts have been targeting heterogeneous machines
mainly using the inter-procedural technique to perform source-to-source transformations
[Ami12].

2.2.3 GCC-Plugins

The GNU GCC compiler [GCC16a] is the default compiler for many open source
systems and is widely used by C/C++ communities [Hag06]. Since the GCC 4.5 version,

57

there is a new feature called GCC-Plugins [GCC16b]. This allows developers to implement
research experiments and code analysis tools on the compiler without changing the core
of the compiler source code. Thus, programmers may extend automatic optimizations and
languages based on C pragmas and C/C++ attributes, which are registered/executed in
compile time when loading with the input code.

(a) GCC passes.

(b) GCC generic tree example.

Figure 2.5 – GCC internals overview. Extracted from [Ló14].

To better understand this technique, Figure 2.5 presents a general view of the GCC
internal representation, including the main passes (2.5(a)) and an example of the AST (2.5(b)).
As can be noted in Figure 2.5(a), GCC performs several modifications (organized in passes)
when compiling a program. When creating a new plugin it is necessary to specify the passes
that GCC will give access to the AST. At the front-end, the parser is able to recognize different
language grammars and build a generic tree (known as AST) for each. During this process,
many passes occur that are specific to the language to prepare the AST for the “gimpler”.
Most of the passes that GCC allows to access the plugin accessing are related to the GIMPLE
(machine-independent intermediate representation). Consequently, the only code generation
is for gimple intermediate language or SSA (Static Single Assignment) format.

In GCC-plugins, the programmer may parse the AST of a given C/C++ code. Figure
2.5(b) illustrates an example where there is a tree for a variable declaration (int var). This
is a generic representation of the source code that is preserved in different passes to be
optimized until generating the RTL (Register Transfer Language) code. GCC represents the
code in a different way than the standard grammar. Other drawbacks are poor documentation
and constant changes for every new stable released version, which will require a new version

58

of the developed plugin. Although it is possible to parse the AST, there is no support for
performing modifications and attach new nodes at the plugin level.

2.2.4 Clang

Clang is under the umbrella of the LLVM (Low-Level Virtual Machine) project. LLVM
is one of the most modern compiler infrastructures and it has been used by several re-
searchers to prototype new ideas in compiler design. Also, it has been successfully used in
industry by several companies, including Apple Inc. and Intel to implement C-based language
and commercial compilers [LA14]. Clang is the LLVM’s front-end compiler that has been
proven to be more efficient than the GNU GCC compiler when compiling sequential programs.

Figure 2.6 illustrates the workflow of LLVM. Note that LLVM only interprets interme-
diate representation language (LLVM IR) as a sort of GIMPLE of GNU GCC. As such, LLVM
is implemented as a virtual machine to support source-to-binary code generation in other
programming languages, while GCC is not modular. Moreover, its infrastructure provides
a set of tools to perform optimizations in the passes and handle IR’s back and forth, from
memory to disk [LA14].

Figure 2.6 – LLVM infrastructure. Extracted from [LA14].

At the front-end, Clang is constantly being improved to support users to create
standalone C++ tools by using its LibTooling library [Cla16]. Among the alternatives is the
static analyzer, which is a set of bug checks aimed to provide accurate warning messages
to find errors during software development. Another particularly interesting characteristic
of Clang (with respect to our research), is the possibility to create source-to-source trans-
formation and refactoring tools, which are loaded at the time of compilation. This library
facilitates implementation and AST navigation. However, its AST represents the code in a
more abstract way than the standard grammar describes and it is not possible to perform
code transformation directly on the AST.

59

2.2.5 ROSE

ROSE [ROS16] integrates a set of tools to simplify research on compiler design,
code analysis, optimizations, and source-to-source transformations. Since 2003, [SQ03]
when its architecture was proposed, many tools have been integrated into its core framework.
Figure 2.7 provides an overview of the architecture’s ideas and the current infrastructure.
The architecture is classified at the front-end, middle-end, and back-end. The front-end
was initially built using Flex and Bison tools and now integrates another tool called EDG1 to
parse C/C++ code [QSYS04]. At the middle-end, ROSE creates a high-level and generic
IR to represent the source code with little specific language syntax. This AST also stores
attributes and annotations that may be used to perform advanced analysis and optimizations.
All transformations are made directly in the IR, like the AST level to transform either into
low-level IR LLVM code or into original C/C++ code. Then, a vendor compiler (GCC or Clang)
is reused to generate the machine code.

(a) ROSE architecture. (b) ROSE infrastructure.

Figure 2.7 – ROSE overview. Extracted from [SQ03, ROS16].

In contrast to traditional compiler infrastructures, ROSE allows one to disassemble
binary code and represent it in their generic AST. In fact, it can perform an analysis of a system
that was previously compiled by another compiler. However, to perform AST transformation
for code optimizations and parallelization of vectorized code, the AST needs to be from a
source code. A fragmentation technique is used to successfully perform transformations,
which is explained in detail in [SQ03]. ROSE seems more suitable for supporting internal
compiler research for information extraction (e.g., data flow analysis) from source and binary
code as well as easy loop parallelization by inserting OpenMP directives into the source code.
Moreover, for building new language extensions, ROSE has proven to be quite hard because
programmers need to learn its customized IR as well as a set of non-standard tools.

1https://www.edg.com/

60

2.2.6 Comparison

This section compares the tools previously discussed with our proposed support
tool named as CINCLE (Compiler Infrastructure for New C/C++ Language Extensions). In
order to highlight the differences and similarities, only the most important features regarding
the DSL design space are detailed in Table 2.1. Those are:

• C++11 Attr. Integrated: This characteristic reveals if the infrastructure supports the
implementation of the C++11 attribute mechanism.

• AST Transformations: This feature reveals if the infrastructure supports AST to AST
transformations.

• C++ Support: Demonstrates if the infrastructure is able to parse C++ programs.

• Documentation: Determines the amount of documentation available to learn about the
internal representation as well as language design.

• Source-to-Source: Reveals if the infrastructure can support source-to-source code
transformations.

• Recover Original File: Indicates if the tool is able to produce the original source code
again from its internal representation .

• Purpose: Describes the primary goal of the tools.

In addition to the previous features, it is important to highlight that all tools face the
same problem: their internal code representation does not follow the standardization for C/C++
sources. This is a drawback in learning and generality of the source-to-source transformation
algorithms. Most tools require users to learn the IR and compiler passes. Our perspective of
high-level DSLs relies on simplicity and standardization of the source code representation.
We believe that a generic standardized IR should be provided. In CINCLE we proposed
and implemented an AST that follows the C and C++ standard grammar. Consequently, our
compiler algorithms aim to be generalized (based on the standard) as we expect the growth
of similar tools like/derived from CINCLE.

In Table 2.1, we can observe that none of the tools fulfill all the characteristics imple-
mented in CINCLE to support DSL developers in high-level parallelism design. Unfortunately,
the tools lack support for C++11 mechanisms and AST transformations. While Clang may
recognize custom attributes, ROSE provides a set of libraries to navigate and transform their
IR. In Clang, the user can modify a code by parsing the AST and pretty printing the code
into a new file. This technique is also present in the other tools, but they do not support C++
(Cetus and PIPS). Although GCC-Plugins can be loaded during C++ program compilation,

61

To
ol

s
C

++
11

A
tt

r.
In

te
-

gr
at

ed

A
S

T
Tr

an
sf

or
-

m
at

io
ns

C
++

S
up

po
rt

D
oc

um
en

-
ta

tio
n

S
ou

rc
e-

to
-S

ou
rc

e
R

ec
ov

er
O

ri
gi

na
l

Fi
le

P
ur

po
se

C
et

us
N

o
N

o
N

o
Po

or
Ye

s
Ye

s
C

om
pi

le
ri

nf
ra

st
ru

ct
ur

e
fo

r
au

to
m

at
ic

pa
ra

lle
liz

at
io

n
an

d
an

al
ys

is
P

IP
S

N
o

N
o

N
o

Po
or

Ye
s

Ye
s

C
om

pi
le

rf
ra

m
ew

or
k

an
d

su
pp

or
tt

oo
ls

fo
ra

ut
om

at
ic

pa
ra

lle
liz

at
io

n
an

d
an

al
ys

is
G

C
C

-
P

lu
gi

ns
N

o
N

o
N

o
Po

or
N

o
N

o
G

C
C

-P
lu

gi
ns

fo
r

im
pl

em
en

tin
g

op
tim

iz
at

io
ns

an
d

ex
te

nd
in

g
cu

st
om

pr
ag

m
as

an
d

at
tr

ib
ut

es
C

la
ng

Ye
s

N
o

Ye
s

G
oo

d
Ye

s
Ye

s
C

om
pi

le
rF

ro
nt

-E
nd

fo
r

LL
V

M
an

d
su

pp
or

tt
oo

ls
fo

r
so

ur
ce

-to
-s

ou
rc

e
tra

ns
fo

rm
at

io
ns

an
d

an
al

ys
is

R
O

S
E

N
o

Ye
s

Ye
s

Po
or

Ye
s

Ye
s

C
om

pi
le

rf
ra

m
ew

or
k

an
d

su
pp

or
tt

oo
ls

fo
ra

ut
om

at
ic

pa
ra

lle
liz

at
io

n
an

d
an

al
ys

is
C

IN
C

LE
Ye

s
Ye

s
Ye

s
O

ng
oi

ng
Ye

s
Ye

s
C

om
pi

le
r

in
fr

as
tr

uc
tu

re
fo

r
ge

ne
ra

tin
g

C
/C

++
la

ng
ua

ge
ex

te
ns

io
ns

Ta
bl

e
2.

1
–

R
el

at
ed

w
or

ks
fo

rC
/C

++
D

S
L

de
si

gn
sp

ac
e.

62

there is no support. When the respective passes are accessed now, the internal GCC AST
representation loses C++ grammar precision. Moreover, the C++ attributes are translated to
GNU C attributes.

Another drawback of GCC-Plugins is that users have to generate GIMPLE code
instead of C++ code again. This requires learning a new language which is lower level code.
On the other hand, all others are able to produce the source code from their AST again.
However, this does make them suitable for our purpose, since we already highlighted the
learning curve drawback and in the table. Moreover, their aims are different. Most of them
are designed for static analysis, code optimization, and automatic parallelization by inserting
OpenMP directives. Consequently, they contribute with compile-time techniques, methods,
and algorithms to provide executable code that is faster and more effective. In contrast, our
purpose is to focus on higher abstraction level concerns such as language extension design,
high-level parallelism ideas for productive programming, and aggressive source-to-source
code transformation.

2.3 Parallel Programming Frameworks

In this section, we intend to provide an overview of the parallel programming frame-
works that were built on top of message passing and shared memory programming models.
We split them into three groups (stream-based, annotation-based, and general-purpose frame-
works) to differentiate their primary characteristics. A detailed description and discussion will
be presented in the last section through a comparison. These are the most important for this
dissertation, because the focus is to provide high-level abstraction for parallel programming.

2.3.1 Stream-Based

This section will only discuss stream-based parallel programming solutions that are
related to our approach.

FastFlow

FastFlow is an emergent parallel programming framework created in 2009 by re-
searchers at the University of Pisa and University of Turin in Italy [ADM+09, AMT10, Fas16]. It
provides stream parallel abstractions from an algorithmic skeleton perspective. The implemen-
tation is built on top of efficient fine grain lock-free communication queues [ADK+11, ADK+12].
During the last three years new features were integrated for high-level parallel program-
ming for data parallel patterns (parallel “for”, Macro DataFlow, stencil and pool evolution)

63

[DT14, ADA+12, APD+15]. Also, other architectures have been supported such as clusters
and hardware accelerators (GPU, FPGA and DSPs) [SUPT14].

The FastFlow programming interface provides a C++ template library whose classes
can be viewed as a set of building blocks. Although built for general-purpose parallel
programming, it provides suitable building blocks to exploit stream-oriented parallelism in
streaming applications that other frameworks do not. For instance, it gives more freedom
to the programmer to compose different parallel patterns and build complex communication
topologies in shared memory systems. Also, the runtime support can operate in the blocking
and non-blocking mode and enables the programmer to attach their customized task scheduler
[Fas16, ADKT14, DT15].

The runtime support has been tested in different applications and has been shown
to achieve a good trade-off between time-to-market, portability, efficiency, and performance
portability in various platforms [TDM+14, ATD+13, BGP14, DDST14, Mis14, ADP+14, BDLT13,
DK14]. Due to this, it has been quite a good C++ programming environment that provides
stable runtimes for several research projects and researchers from different countries such
as ParaPhrase, REPARA (both EU FP7), and RePhrase (EU H2020) [Fas16]. More details
about FastFlow will be given later (Section 6.4), since we have adopted it as our runtime for
the proposed DSL for high-level stream parallelism.

StreamIt

StreamIt is a programming language for streaming applications [Str16]. It has
been developed for more than ten years at the Massachusetts Institute of Technology (MIT).
They have implemented different applications, targeting implicit parallelism in cluster and
multi-core systems [TA10]. StreamIt also provides a compiler infrastructure to implement
the programming language and to optimize code generation through the implementation of
DataFlow analysis techniques [Gor10].

The programming language is unique and independent of the target architecture.
The compiler can transform the code automatically for distinct hardware devices [ZLRA08,
SGA+13]. StreamIt has been tested for many years and provided interesting insights in
stream parallelism research as well as excellent performance in streaming applications
[Thi09, Won12]. StreamIt is not considered a robust language, but it is much more productive
for exposing parallelism and communication than traditional C/C++ libraries. It provides a
straightforward and flexible structure that can be composed to create complex graphs without
requiring significant modifications to the source code to change program behavior.

StreamIt applications are typically modeled as a composition of filter modules. Each
filter function must implement an initializer and worker function. Inside the worker function,
the filter can communicate through input and output channels, which are FIFO queues. Also,
users are supported by pop and push routines to obtain and insert stream elements into

64

the channels. StreamIt natively implements stream parallelism without underlying parallel
patterns. However, these applications’ structures are similar those in FastFlow. They mainly
diverge only in name. For instance, StreamIt offers three filter interconnection modes: pipeline,
splitjoin, and feedback loop [TKA02b, Thi09]. In contrast, FastFlow offers pipeline, farm, and
feedback parallel patterns through C++ templates. To the best of our knowledge, activities on
StreamIt stopped in 2013.

2.3.2 Annotation-Based

In this section we present the annotation-based APIs for parallel programming.
OpenMP is considered the “de-facto” standard for parallel programming targeting shared
memory systems. We also present other variants that have extended the OpenMP runtime.
In fact, all of these annotation-based environments use C pragmas as the main mechanism
to express parallelism.

OpenMP

The first version of OpenMP was released by the OpenMP Architecture Review
Board (ARB) in 1997 as a Fortran API. In 1998, they released the open specification for C
and C++ languages. Since 2000, all compilers started to integrate these specifications. The
first proposal was aimed to provide a new way to denote and express loop parallelism. Later,
they also started to introduce task parallelism, which officially happened with the OpenMP
3.0 version (2007)[CJvdP07]. Recently, OpenMP released its 4.5 version, which offers rich
support for heterogeneous systems like GPU, FPGA, DSP, and SIMD constructions [Ope16].
Also, performance for data and task parallelism exploitation has been improved. The newest
feature is the possibility for specific task dependencies, which may be used as “a kind of
DataFlow” specification. Complete documentation and an example of the programming
interface is available at [Ope16].

Although OpenMP has been well accepted in the high-performance community, it
lacks suitable directives to naturally support stream parallelism exploitation. Consequently,
the programmer is obliged to deal with low-level implementation details related to thread
synchronization. In contrast, our work solves this problem by using a different approach and
annotation mechanism. The next section will present the research work that has proposed to
extend OpenMP directives to target different issues. Our goal is to highlight what has been
integrated in the OpenMP runtime, as well as the challenges and limitations.

65

OpenMP Extensions: OpenStream and ompSs

In the scientific community, there are also researches making progress and experi-
ments to extend the standard features of OpenMP. OpenStream is one of these extensions
designed to better exploit DataFlow parallelism. Authors [PC13] add other directives in a
GCC-based compiler targeting dynamically streaming programs that can exploit pipeline, task,
and data parallelism. They support these features along with pragma annotations through a
runtime library which provides two distinct mechanisms: a pure data-flow and FIFO queue
behaviors. Among their experiments, they have shown significant performance improvement
compared to other OpenMP extension (ompSs). However, the limitations are from an older
compiler version prototype and the lack of support for C++ sources. In addition to the fact
that only a limited set of small benchmarks were tested, there has been no software update
or new experiments since 2012 [Pop12].

On the other hand, the ompSs studies are more active, releasing new versions each
year [Omp16]. Most of the proposals are integrated with the standard OpenMP. For example,
the new feature in task parallelism including dependencies was first proposed by ompSs.
They have their own GCC-based compiler infrastructure to perform code transformations and
prototype pragma primitives. The group associated with ompSs has developed different tools
based on DataFlow parallelism for many years in the Barcelona Supercomputer Center (BSC).
Also, they have successfully translated task (only) directives into MPI targeting cluster and
GPU-Cluster [BMD+11, BPD+12] environments as well as supported data and task parallelism
for hardware accelerators [PBAL13]. However, implicit calls regarding the programming model
still has to be given by the user in the code.

2.3.3 General-Purpose Frameworks

This section will present other general-purpose frameworks that target different
programming models and approaches to parallel programming. We provide a brief discussion
to highlight the most salient points.

Cilk

Cilk is the result of research developed at MIT beginning in 1994 [BJK+95]. It
was initially released as a C language extension with the possibility to spawn a function
call/execution as well as a sync with executing thread terminations. Cilk is one of the first
parallel programming runtimes based on work stealing scheduling [Lei09]. Cilk is known for
its simplicity in extending C with only three keywords (cilk_spawn, cilk_sync and cilk_for),
which allows one to exploit recursive parallelism. In addition, to avoid race conditions caused
by global variables, it has implemented the reducer hyperobjects method in a lock-free manner

66

[FHLLB09]. Later, Intel Inc. bought it and made it an open source project. Today, it is already
integrated in the standard grammar of C and C++ as well as in their compilers [Cil16].

During the past few years, Cilk has been tested and proven to be efficient in a
variety of parallel applications for multi-core systems. It has improved the support by including
features to detect race conditions and analyze program scalability. With respect to the
language, there is a new support tool to give the compiler permission for vectorizing loops.
Moreover, new experimental research is being conducted to support users when implementing
pipe-while loops [LLS+13]. However, its interface has not been updated since the publication
appeared. In fact, there is a raw environment using macros to benefit from the compiler
preprocessor. It claims that the runtime is for the parallel pipeline construction of the TBB
library (see Section 2.3.3).

TBB

TBB (Threading Building Blocks) is another Intel tool for parallel programming
[TBB16]. TBB is a library for implementing high-performance applications in standard C++
without requiring a special compiler for shared memory systems. It emphasizes scalable and
data parallel programming. The benefit is to completely abstract the concept of threads by
using tasks. TBB builds on C++ templates to offer common parallel patterns (map, scan,
parallel_for, among others), equipped with a work stealing scheduler similar to that in Cilk,
which dynamically dequeues a stack of tasks implemented in a FIFO-like order [Rei07].

As previously mentioned, TBB and FastFlow are quite similar in many aspects,
but the runtime and programming interface approaches are different regarding the design
patterns and algorithmic skeleton. In fact, the pipeline pattern is supported in both of them
which allows TBB to support stream parallelism exploitation. However, it has presented some
limitations when there is a complex scenario where one needs to compose new patterns
(e.g., introducing back communications by using feedback patterns) [RCJ11]. Although its
scheduler has been proven to achieve good performance in several applications, TBB’s
runtime does not allow one to attach a customized scheduler. Another drawback is that it only
targets multi-core systems.

2.3.4 Comparison

We could have mentioned many other parallel programming solutions, but they do
not provide significant contributions to our discussion. For instance, Charm++ [Cha16] is an
extension of the C++ language that implements parallelism on top of a message passing
programming model. Unlike other frameworks, the language is based on object migration
and programmers interact through asynchronous object invocations. Another example is X10

67

[X1016], it is a completely new language based on Java on top of an APGAS (Asynchronous
Partitioned Global Address Space) programming model. It offers a set of parallel constructions
to deal with a single memory space. These are examples of frameworks that follow completely
different and unrelated approaches to increase productivity in high-performance computing
that are loosely related to our work.

In this section, we aim to compare important characteristics of our DSL with the
state-of-the-art frameworks. Therefore, we will discuss the following topics in detail:

• Programming Interface: It reveals the mechanism used to implement and provide a
programming interface for the users.

• Stream Parallelism: This item reveals if the framework supports stream parallelism
exploitation.

• Code Portability: This is when the programmer needs to recompile the program to
target other architectures.

• Support C++: This is about to support of the standard C++ language.

• Target Architecture: Describes the target architectures considered.

• Programming Model: Describes if the programming model’s shared memory and
message passing is abstract, explicit, or implicit to the users.

• Purpose: Describes the design goal of the framework.

Before comparing the frameworks, it is important to highlight that MPI and OpenMP
are the most well-known and widely used frameworks in parallel programming. MPI provides
a low-level network message communication library in cluster environments. On the other
hand, OpenMP provides higher level abstractions through annotation. The compiler generates
multi-threaded code for either multi-core or accelerators hardware. In our case, because
OpenMP is not suitable for the stream parallelism exploitation, the FastFlow runtime library
provides the appropriate functionality, flexibility, efficiency, and facilities. This is similar to that
offered by MPI in distributed memory architectures.

In Table 2.2, we can observe that none of the frameworks fulfill all of the character-
istics implemented in SPar to provide high-level stream parallelism. Only OpenMP and its
extensions are annotation-based. Also, only TBB, FastFlow, and StreamIt are able to support
stream parallelism. Although it is called OpenStream, it is designed to improve DataFlow
parallelism in task regions. In OpenMP 4.5, this is already supported.

Another important aspect in the table is code portability. Only StreamIt and Spar can
provide such features simply through recompilation. However, StreamIt is a completely new
language while SPar makes it possible to work with standard C++ sources. The drawback of

68

Tools
P

rogram
m

ing
Interface

S
tream
P

aral-
lelism

C
ode

Portability
S

tandard
C

++
Target

A
rchitecture

P
rogram

m
ing

M
odel

P
urpose

FastFlow
C

++
Tem

plates
Yes

N
o

Yes
M

ulti-C
ore,

A
ccelerators

and
C

lusters

E
xplicit

A
lgorithm

ic
skeleton

library
forgeneral-purpose

and
efficientparallelism

exploitation
S

tream
It

N
ew

Language
Yes

Yes
N

o
M

ulti-C
ore

and
C

luster
A

bstract
E

fficientstream
Parallelism

exploitation
O

penM
P

C
P

ragm
a

N
o

N
o

Yes
M

ulti-C
ore

and
A

ccelerators

E
xplicit

E
fficientdata

and
task

parallelism
exploitation

O
penS

tream
C

P
ragm

a
N

o
N

o
N

o
M

ulti-C
ore

E
xplicit

O
penM

P
extension

to
efficientD

ataFlow
parallelism

exploitation
using

FIFO
queues

om
pS

S
C

P
ragm

a
N

o
N

o
Yes

M
ulti-C

ore,
A

ccelerators
and

C
luster

E
xplicit

O
penM

P
-based

research
to

collaborate
w

ith
the

standard
as

w
ellas

w
ith

D
ataFlow

parallelism
C

ilk
C

/C
++

language
extension

N
o

N
o

Yes
M

ulti-C
ore

E
xplicit

E
fficientand

general-purpose
parallelism

exploitation
TB

B
C

++
Tem

plates
Yes

N
o

Yes
M

ulti-C
ore

E
xplicit

D
esign

patterns
library

for
efficientand

general-purpose
parallelism

exploitation
S

P
ar

C
++11

A
ttributes

Yes
Yes

Yes
M

ulti-C
ore

and
C

lusters

A
bstract

A
nnotation-based

and
stream

-oriented
targeting

code
portability

and
productivity

Table
2.2

–
R

elated
parallelprogram

m
ing

fram
ew

orks.

69

using StreamIt is that C++ programmers need to learn a new language and re-implement the
source code.

We have already emphasized the importance of being compliant with standard C++,
where C pragma annotations are actually preprocessing directives. In fact, C++ compilers
now support OpenMP directives, but new ones will require a dedicated infrastructure similar
to what researches from ompSs and OpenStream have used. Because C++ attributes are
part of the C++ grammar, the compiler is able to recognize custom annotations, which makes
this mechanism more suitable to create new embedded DSLs.

Turning to programming model features, we can observe that in most of the frame-
works, the user must explicitly parallelize the application code taking into account the target
architecture. Again, only StreamIt and Spar are able to abstract while taking advantage of the
parallelism in different parallel architectures, mainly in multi-core and clusters that require
very different programming models. We can also note that other frameworks are still strongly
dependent on hardware to achieve high-performance code.

All of these contrasts may be justified by the distinct purpose of our work, which
is the design goals of each solution. We can see that the state-of-the-art frameworks are
still aiming to extract the maximum performance of the parallel architecture while our work is
focusing on raising the abstraction level to provide code portability and productivity. Thus, the
current frameworks are seen as potential runtimes for our purpose.

2.4 Concluding Remarks

In this chapter, we provided a discussion on the state-of-the-art research for high-
level parallelism, C/C++ DSL design space, and parallel programming frameworks. As we
observed, our research is well positioned in the literature. We are adding interesting contribu-
tions to the current high-level parallelism research, and this may open new perspectives to
achieve better code portability and productivity, mainly in streaming applications. We also are
starting with a higher level approach to design DSLs in C++ as well as to perform source-
to-source code transformations. Moreover, our solution to support stream parallelism tries
to naturally integrate it into the standard language to not be dependent on the programming
model or architecture.

70

Part II

Contributions

71

73

3. OVERVIEW OF THE CONTRIBUTIONS

This chapter presents the main thesis contributions in a nutshell.

Contents

3.1 INTRODUCTION . 74

3.2 THE PROGRAMMING FRAMEWORK . 74

3.3 A COMPILER-BASED INFRASTRUCTURE 76

3.4 HIGH-LEVEL AND PRODUCTIVE STREAM PARALLELISM . . 78

3.5 INTRODUCING CODE PORTABILITY FORMULTI-CORE AND

CLUSTERS . 79

74

3.1 Introduction

This chapter is included before the technical section to introduce the scope and
informally explain our contributions. The simplest description of this work is that it is about
supporting the development of many streaming applications such as image, video, audio, and
networking simpler and at the same time taking advantage of different parallel architectures
without worrying about their complexities to achieve performance.

Two tools have also been created. CINCLE was designed to help create abstractions
to make it easier to develop an application in other domains. Using CINCLE, we successfully
created our second tool that is a programming interface (named as SPar) for streaming
applications. Therefore, this chapter presents the programming framework that defines our
scope and the subsequent sections will informally present the contributions.

3.2 The Programming Framework

The programming framework provides the main contributions of this dissertation.
Unlike what have been proposed in the literature, we aim to provide a framework that is fully
compiler-based and domain-oriented to support simple, high-level, productive, portable, and
modular programming interfaces for C/C++ applications. The challenge is to enable high-
performance code through high-level abstractions, as previously discussed in the Preface
and Introduction. This proposal builds on the background acquired over the last four years of
intensive studies in high-level parallel programming and DSLs. Our idea is to shorten the path
providing compiler-based abstractions in different domain levels, where other researchers
can benefit from what we have learned and eventually included in this framework.

Figure 3.1 illustrates how the programming framework is designed. Our research
work can be divided into five domain-specific research fields that are specified on the left
side of the figure. The right side of the figure divides the research fields in two groups to
separate our target challenge and highlight the scope. Our original contributions aim to
empower the Domain-Specific Language Design (DSLD) group. Moreover, the stack of blocks
represents specific elements that are created and reused for a given application domain. The
picture also organizes the elements in the stack from the lowest (bottom) to the highest (top)
level. Starting from the low-level, the following topics will provide more details regarding the
concepts and goals of each one of the fields:

• Computer Architecture: Is the domain of the different parallel architectures available
in different devices. Currently, our targets are multi-cores (server and workstation
machines) and clusters (an agglomeration of machines connected through a network).

75

Figure 3.1 – The programming framework picture.

In the future, we plan to expand the support space to include different types of archi-
tectures such as heterogeneous and hybrid. Note that we do not intend to create new
architectures, but instead to make the software benefit from resources and capabilities
of these different architectures.

• Parallelism Exploitation: Is the domain of current parallel programming frameworks.
Some of them provide higher level abstractions to exploit parallelism (this is the case of
FastFlow) and others are low-level programming models (this is the case of MPI). They
are suitable runtime and performance accelerators for parallel computing. The idea is
to reuse these tools to allow researchers to continuously focus on better programming
interfaces and performance exploitation. Firstly, we aim to support code transformation
targeting FastFlow on top of multi-core and MPI on top of clusters.

• DSL Generation Engine: Is the domain supporting the generation of new compiler-based
C/C++ embedded DSLs. In this dissertation we proposed the CINCLE infrastructure. It
is the layer where we start to differentiate our programming framework from the literature.
Our goal is to generate a high-level parallelism DSL (SPar) as well as an application
level DSL (an example is GMaVis [Led16]) that completely abstracts parallelism aspects
by instantiating SPar attributes. We contributed by designing CINCLE as our engine
to support DSL designers with simple and powerful mechanisms at the host language
level. Moreover, CINCLE was modularly structured so that different consolidated state-
of-the-art tools can be easily integrated to support more complex and generalized code
transformations.

• Parallelism Annotation: Is the domain providing the user with high-level parallelism
abstractions. Current compilers are still not able to automatically parallelize instructions
(that not vectorized) without any user intervention in C++ programs. This is primarily

76

due to the fact that at the compilation time it is not possible to know whether a library
call or a piece of code can run in parallel. Our proposal is to make it easier for compiler
and application developers, using annotations (C++ attributes) to provide an equilibrium
between abstraction for the compiler and user. Therefore, while the annotation proper-
ties can enable efficient parallel code transformations, the annotation language seeks
to support the user with code productivity and portability. As a consequence, we initially
make a contribution in this layer through the C++ embedded DSL implementation for
stream parallelism (SPar). This is an example of how we simply annotate parallelism
rather than exploiting it, where the responsibility for exploitation is withf the DSL compiler
targeting the multi-core and cluster architectures.

• Application: Is the domain that intends to improve abstractions for user applications. We
envision a description language friendly to the domain and designated for a particular
purpose. As the parallelism annotation layer is more general purpose supporting stream
parallelism, we expect that an application’s DSL compiler will generate robust C++
codes along with SPar annotations to enable high-performance. Thus, an example and
a vertical validation of our perspective were created through GMaVis DSL [Led16]. Our
initial goal was to support users in geospatial data visualizations while taking advantage
of the multi-core architectures for fast processing and visualization of information.

With respect to Figure 3.1, this dissertation will make direct contributions to the DSL
generation engine and parallelism annotation domains. However, indirect contributions will
also be made by the use case in the application domain, where GMaVis instantiates SPar to
annotate the generated C++ code to take advantage of multi-core parallelism. It is expected
that new contributions similar to GMaVis can be developed by improving current developed
solutions (SPar and CINCLE) as well as expanding the support and customization space.
The following sections will informally describe our desired contributions.

3.3 A Compiler-Based Infrastructure

First of all, “Why are you providing a new compiler-based infrastructure in C++?”
Simply put, compiler-based tools are not new in the literature. The problem is that they lack
simplicity and do not support the implementation of aggressive source-to-source transforma-
tions.

“And what do you mean by simplicity?” To make it easy to develop new DSLs that
require compiler-based techniques to provide a high-level and productive interface. The
current solutions do not offer a simple infrastructure to enable rapid prototyping and require a
significant learning curve to understand internal compiler implementation. Another difficulty is
that parsing the code is not easy because internal ASTs usually are not standardized.

77

“What do you mean by not supporting aggressive source-to-source transformation?”
Not being able to use state-of-the-art tools to perform transformation directly on the AST. This
feature is crucial when you are designing a tool that aims to perform sophisticated source-
to-source transformations. For example, when using a string based technique (such as in
Clang), you may have to re-parse your code several times to come to the final transformation,
while in AST you may implement it directly in the tree.

“Why did you decide to build CINCLE?” This idea arose when we faced many
difficulties trying to prototype the DSL. During the last five years, we have been intensively
researching to provide high-level and productive parallelism. Our first DSL compiler was
manually implemented because it was simpler and faster to prototype rather than using
standard tools like Flex and Bison. The problem was that it lacked modularity, the ability
to add new functionalities to perform sophisticated analysis and code generations. Later,
we started to look for alternatives to integrate a C++ DSL directly into the GCC compiler.
We found the same problems when we discovered GCC plugins. Also, there was poor
documentation, no support for aggressive code transformations, no standard AST syntax,
and other issues. We then tried to use Clang, but the only advantage with respect to the
GCC plugin was better documentation and support to integrate DSLs. Consequently, we
decided to design CINCLE to create a simpler environment for creating C++ DSLs, provide
more modularity, and support AST to AST transformations.

“How do you describe CINCLE?” We see CINCLE as its abbreviation states: A
Compiler Infrastructure for New C/C++ Language Extensions. Of course, we cannot compare
it with the state-of-the-art compiler tools because it does not go into machine code. Our goal
is to focus on language design and source-to-source transformation. Thus, CINCLE can
be understood as a set of tools that are suitable for building C++ embedded DSLs mainly
because this dissertation is focused on enabling high-level and productive stream parallelism.

“How does CINCLE target modularity and other goals?” Figure 3.2 sketches the
compiler-based infrastructure. We separated it into three domains: Front-End, Middle-End,
and Back-End. Modularity isolates this compiler to let other people collaborate with the
improvement of CINCLE and generate tools to support the implementation of new features.
Also, the programmer does not need to deal with low-level compiler aspects relative to the
design when building an embedded DSL. Therefore, we created a tool for source-to-source
transformation so that the programmer can concentrate only on the aspects that correspond
to their domain. For instance, Front-End generates a sophisticated parser to build an AST,
while Middle-End and Back-End only deal with AST visiting and transforming.

“Is CINCLE ready for robust systems?” Not yet. We recommend CINCLE for
research. It can be used to validate the algorithms for source-to-source transformation as well
as generating an experimental DSL compiler. Unfortunately, we do not have a team/group
working on the code. We still need to test and make complex validations on the Front-End

78

Figure 3.2 – The CINCLE Infrastructure

part that implements the latest standard C and C++ grammars. Currently, CINCLE has been
demonstrated to be sufficient to build a DSL for stream parallelism.

3.4 High-Level and Productive Stream Parallelism

“What is high-level and productive stream parallelism?” High-level is a general term
and has been used for different levels of abstractions. In this dissertation, high-level refers to
parallelism abstractions that are only related to domain terms and prevent users from being
aware of the parallel architecture details. It allows users to avoid rewriting the source code of
the application and reduces the programming effort required to support parallelism.

“What did we use to make it possible?” We believe that parallelism should be
annotated in C++ programs rather than exploited or expressed as has been done during
recent years. Pragma-based annotations have been well accepted in the high-performance
computing community through OpenMP, which is the “de-facto” standard parallel programming
interface for exploring parallelism in shared memory systems. However, when we look at
the level of language design, they are not in the standard grammar because they are
preprocessing directives. In turn, they are strongly compiler-dependent when developing a
DSL. In contrast, we adopted the C++11 attributes mechanism that is part of the language
grammar and more familiar to the C++ community, because the “de-facto” C++ standard.
Also, it provides us more freedom to be compliant with the language syntax since it can
be customized, placed almost anywhere in C++ sentences, and associated with the AST.
Finally, we concentrated on a particular domain to elevate abstraction and cover the lack of
productivity in stream parallelism.

“What is lacking in the literature for stream parallelism?” Many things concerning
high-level abstraction and coding productivity are missing. For instance, current parallel pro-
gramming interfaces that support the parallelization of stream-oriented computations are still
architecture-dependent and lack code productivity (e.g., TBB and FastFlow). Programmers
have to modify their source code to exploit parallelism. On the other hand, general-purpose
programming interfaces like OpenMP are made for implementing low-level parallelism ex-
ploitation. Yet, they are only productive when there is an embarrassingly parallel computation.

79

“How do you address this?” We proposed a DSL that is called SPar for solving this
problem in the stream domain. It seeks to keep maintain the original source code by only
introducing annotations. The DSL also targets code portability through recompilation of the
program.

3.5 Introducing Code Portability for Multi-Core and Clusters

“Why is code portability important?” It allows us to be more productive since you do
not need to rethink or rewrite the SPar code that is running on a particular parallel architecture
to port it to another one.

“What is the problem?” The problem is that state-of-the-art parallel programming
tools are still too low-level and are designed to support high-performance code that is strongly
architecture-dependent. Consequently, code must be rewritten and parallelism strategies
have to be rethought in order to continue providing high-performance code in case the
application needs more performance or vice versa.

“Does code portability make sense in our current scenario?” It does to us. It
may sound a little bit strange as we are proposing this for multi-core and clusters, which
sometimes are associated with dedicated supercomputer centers. However, there are other
parallel architectures and in the future will be more heterogeneous parallel architectures
(more domain-specific) that will certainly demand studies to provide code portability with
high-performance code. Also, it makes sense because many stream applications may need
an elastic performance to address different workloads. If code portability is possible in a
simple way, you may use it to save energy and money when switching between the cluster
and multi-core environments.

“How do we intend to introduce parallel code portability?” Now we need to be
realistic. We lack portability because it is a very complex goal. Therefore, we introduce
the challenge through generalized transformation rules along with a stream-oriented and
annotation-based interface. The decoupling “de-facto” implementing the portability is mainly
the level of the patterns. Our contributions to the state-of-the-art are the transformation rules
translating SPar annotations to parallel patterns. We have made them independent of the
target architecture so that the same code can be compiled again to produce another code for
another architecture.

80

81

4. CINCLE: A COMPILER INFRASTRUCTURE FOR NEW C/C++
LANGUAGE EXTENSIONS

This chapter presents a compiler infrastructure for generating new C/C++ embedded
DSLs. It is not a compiler, but a support tool that provides basic features and a simple interface
to enable AST transformations, semantic analysis and source-to-source code generation.
The main goal is to simplify the processes of creating high-level parallelism abstractions by
using the standard C++11 attribute mechanism.

Contents

4.1 INTRODUCTION . 82

4.2 ORIGINAL CONTRIBUTION . 83

4.3 IMPLEMENTATION DESIGN GOALS . 83

4.4 THE CINCLE INFRASTRUCTURE . 85

4.5 CINCLE FRONT-END . 86

4.6 CINCLE MIDDLE-END. 88

4.7 CINCLE BACK-END . 89

4.8 SUPPORTING NEW LANGUAGE EXTENSIONS 90

4.9 REAL USE CASES . 93

4.10 SUMMARY . 95

82

4.1 Introduction

C++ language extensions and DSL design and implementation are a challenge
for a single person or a typical research group due to the amount of work and knowledge
necessary to prototype compiler-based abstractions with the current alternatives. From our
experience in the last five years as well as the opinion of other scientists (as presented in the
related work), the implementation of DSLs in compiler-based tools is difficult, complicated
and usually requires a significant learning curve, which is even more difficult for those who
are not familiar with this area.

The motivation is therefore to simplify this path for other researchers (experts in
their domain) to implement high-level and productive interfaces with powerful and aggressive
source-to-source transformations. Our idea is that they can use their expertise without having
to enter low-level code and still provide an abstraction to their domain, mainly for the parallel
computing area. Despite the fact that the activities needed for efficient parallelism exploitation
also require significant expertise and represent a notable challenge for people from other
areas of computer science, our infrastructure is an initiative to support experts in parallel
programming while providing high-level parallelism. Moreover, from the perspective of the
programming framework, current parallel programming environments are still on the level of
parallelism exploitation, which are good runtimes for high-level abstractions.

In order to move towards a mechanism to provide parallelism abstractions, the
C++11 attributes already present in the standard grammar have been proven to be suitable for
supporting powerful code transformations [ISO11b, ISO14]. Attribute recognition along with
the other sentences in an AST (Abstract Syntax Tree) are one of the central motivations for
their usage. Moreover, the syntax is also integrated into the language, unlike other annotation
alternatives such as C pragmas that are rather than preprocessing directives. Thus, to benefit
from C pragma features for implementing parallelism abstractions, the runtimes have been
integrated directly into the compiler system. As a consequence, to create new features and
conduct experiments, one has to fully understand the compiler internals.

For instance, the implementation of new pragmas in GCC is done by using GCC
plugins. Although this approach abstracts many compiler complexities, it still requires users
to go into compiler source code. The same difficulty arises when using GCC plugins for
registering C++ attributes. In addition, C++ attributes are placed on GCC AST as C attributes
and transformations on the AST are not allowed during the plugin call back. Another problem
of GCC is that the provided AST is modified during the callback, which loses parts of the
original semantics of the C and C++ grammar1. Such limitations make it even harder to
benefit from C++ annotations to provide a higher level programming interface directly on the
GCC, reinforcing the need for a tool such as CINCLE.

1GCC makes such modifications more friendly with the intermediate language which is known as GIMPLE.

83

Although Clang, Cetus, and ROSE share common characteristics with CINCLE,
they were built for different purposes and do not support particular features necessary for
the programming framework developed within this thesis. In particular, we need AST to AST
transformations, C++11 attributes in the AST as specified in the ISO standard as well as the
possibility for generating new language extension to support embedded DSLs. This chapter
will present our original contributions, implementation design goals, CINCLE infrastructure
and simple algorithms as well as examples to start a new project. Lastly, we will present
some performance results and use cases.

4.2 Original Contribution

One of our contributions with respect to the state-of-the-art compiler-based tools
consists in a parser of C++ standard grammar (ISO/IEC 14882:2014 and 9899:2011) [ISO11b,
ISO14]. Although in principle there is no scientific innovation when using standard tools like
Bison and Flex, it nonetheless provides a simple interface for supporting the implementation
of new embedded C++ DSLs.

The parser implementation was particularly designed to support us in the process
of creating AST from actual C++ code. While building a full C++ parser is not a trivial
task, the standard compliance and the simple and handy AST representation we produced,
explicitly aimed at supporting AST transformations. Therefore, enabling source-to-source
transformations eventually results in an useful and practical support for the development of
different kind of language extensions, such as the one based on the standard attributes we
designed in this thesis.

In contrast to the state-of-the-art C++ tools, our infrastructure is created to provide
full access to AST. It gives more power to the user for transforming and visiting ASTs. The
advantage is that there is no need to go inside the source code to make string transformations
that can require re-parsing source code several times and a huge amount of programming.
CINCLE also provides several useful methods that make it easier to many different activities
such as: generating a new AST from a string; check AST transformations; tree operations
(insert, delete and replace) and visualization.

Finally, CINCLE can generate again C++ code from the AST. This contribution is
fundamental because it proves to be effective for source-to-source translation.

4.3 Implementation Design Goals

There are various important non functional concerns when creating a new solution for
the scientific community such as performance, efficiency and portability. For the first version

84

of our compiler infrastructure, they are not considered first class requirements to simplify
tests and validations. However, this does not mean that during CINCLE’s implementation
necessary attention was not given to these concerns or that some internal design choices
cannot be improved in the future. The main design goals considered are the following (and
they will clarify some of these aspects):

• Modularity: Is an important issue for continuing to research and develop more sophisti-
cated capabilities and it is necessary to be compliant with domain-oriented concerns
of the thesis framework. Therefore, CINCLE is divided in three modules: Front-End,
Middle-End and Back-End. Also, each one has its own submodules (see Figure 3.1).
For example, this structure allows domain experts on a low-level compiler (language
recognition and parser algorithms) to work on the Front-End and scientist experts of fast
prototype algorithms for source-to-source transformations can concentrate their efforts
on the Back-End. On the other hand, the Middle-End is a conversation bridge between
the front and Back-End modules as well as a research space for testing semantic
and tree optimization techniques. Since the idea is to support new embedded DSLs,
this modularity lets software designers concentrate only on the semantic analysis and
transformations while the Front-End provides the necessary features such as full AST
access needed to implement new C++ DSLs.

• Extensibility: CINCLE offers a basic infrastructure for creating new compiler-based tools.
For example, in addition to extending DSLs, it enables the creation of pattern matching,
code auto-tuning, code analysis, tracing, and other tools that can be a solution for
C/C++ language. To achieve such extensibility, CINCLE provides full access to AST
and all modules of the infrastructure. The environment must also be modular so that the
extension of new capabilities on a given designed tool will not affect the performance
and system operation on the rest of the system. Moreover, compliance with the standard
language grammar prevents misunderstanding and supports contributions from other
research to continue empowering and extending the tool’s capabilities.

• Standard Grammar Compliance: Is an important aspect because it affects other design
goals. It impacts simplicity because people may have to deal with non-standard terms
and concepts, which requires learning new terminology. It increases the system extensi-
bility by covering a wider community that can contribute to improvements for the tool.
One may have difficulties in the fast prototyping of some code transformation rules if
the AST does not address the standard grammar. Similar to previous drawbacks, the
lack of standard compliance makes it difficult for other researchers to reuse algorithms
and parts of their software experiments. As a consequence, CINCLE’s infrastructure is
designed to preserve the representation of the standard grammar in the AST as much
as possible and changes are only made when there are conflicts between C and C++
grammars.

85

• Simplicity: CINCLE aims to make the creation of annotation-based DSLs easier. Achiev-
ing other main design goals will provide a simpler programming environment for the
infrastructure. However, CINCLE simplifies aims by supporting direct AST transforma-
tions, the storage of relevant code information on AST nodes, easy recursive top-down
and bottom-up tree navigation, and a set of API functions for recurrent actions in the
AST. Thus, the rapid prototyping design goal can benefit from simplicity because it
reduces the amount of code needed.

• Reusability: Is more than providing reusable features such as API and the infrastructure
code for generating new language extensions. The idea is to reuse other consolidated
software to simplify CINCLE’s implementation. For example, reusing the GCC compiler
for performing source code syntax and semantic analysis. CINCLE avoids complex
semantic and syntax analysis implementations. Moreover, consolidated libraries and
tools are integrated to provide more suitable features, e.g., AST visualization, which
helps users to learn more about the AST.

• Rapid Prototyping Support: Is very difficult to achieve in other related tools. This was
an important goal when we began initial and experimental research on language design
and source-to-source code transformation. The central point is to be simple enough to
test new algorithms before starting to actually implement the final solution. CINCLE’s
infrastructure intends to automatically integrate custom C++11 attributes, placing them
along with other C++ sentences on the AST. Since one is creating a new DSL, they
will be aware of the semantics of its annotations. Thus, for the fast prototyping of the
transformation rules, one only needs to concentrate on implementing the transformation
rules by parsing the AST, instead of doing other pre-implementations or adaptations
which must be done when using other tools.

4.4 The CINCLE Infrastructure

CINCLE attempts to provide the most modular environment for creating new lan-
guage extensions as possible. Figure 4.1 demonstrates how the infrastructure is organized,
where the Front-End is split in two separate modules. The engine Front-End is where CINCLE
implements language recognition and parsing, and creates a representation of the source on
the AST. On the other hand, the Front-End interface provides a set of capabilities for the DSL
creator to perform transformations on the AST and customize additional features.

Middle-end and Back-End are merged in a single group as they are provided to
the DSL creators, supported through a set of template modules. Each one has a CINCLE
internal routine that will be called during the compilation according to the sequence illustrated

86

in Figure 3.2. The engine subsequently loads the interface Front-End, Middle-End and
eventually the Back-End modules.

Figure 4.1 – The environment of CINCLE infrastructure.

As it can be noted, CINCLE provides an entire infrastructure dedicated for creating
embedded C++ annotation-based DSLs. The only parts that have to be implemented by
the DSL creator are the modules inside the Middle-End and Back-End group. The following
sections will describe how the system was designed, demonstrating how to deal with AST
and code transformations through basic examples.

4.5 CINCLE Front-End

The frond-end engine was implemented using Flex and Bison tools [Lev09]. They
were used to generate the parser and build the CINCLE AST. To deal with the grammar
ambiguities of the C++ language, the Generalized Left Righ (GLR) algorithm was implemented
by Bison. The tokens were recognized in the Flex runtime and integrated with Bison. CINCLE
also stores preprocessing directives on the AST as a single token and comments are simply
ignored.

On the other hand, the Front-End interface provides already implemented modules
to deal with node representation, internals AST operations, code interpretation, preprocessing
and AST visualization. These modules are instantiated by the engine modules and can also
be used when developing Middle-End and Back-End modules. The interface simplifies AST
manipulation and the implementation of source-to-source code transformation.

The AST plays an important role in source-to-source transformations. It is created
by the parser at compile time, representing all tokens according to the standard grammar

87

specifications [ISO11b, ISO14]. In CINCLE, a node is fulfilled with the information illustrated
in Figure 4.2. Therefore, each node of the tree will have its type identified through a constant,
which is also the name used in the standard grammar. When the token is a literal or identifier,
its content will be stored on the AST node. Information about the token location are also
stored, such as the coordinates of its position in the source code. Finally, there is a pointer
to its father (node_up) and to a list of child nodes (node_down), also storing the number of
children (childs_n).

Figure 4.2 – CINCLE AST node.

Figure 4.3 illustrates how tree nodes are connected on the AST. Each node can visit
its father and child nodes through the dedicated pointer, simplifying the tree navigation and
access to information. Also, the tree is created from left to right and there is no limit to the
number of child nodes.

Figure 4.3 – CINCLE AST representation.

88

4.6 CINCLE Middle-End

To implement a new language extension, users may have to implement the CINCLE
Middle-End modules. Semantic analysis and AST optimizations are not necessary to perform
source-to-source transformations, therefore this is an optional implementation. The top-
down tree navigation can be implemented using recursive functions (see Algorithm 4.1)
based on how the AST is built in the CINCLE environment. Searching for a node type is a
recurrent operation on all Middle-End and Back-End modules when creating a DSL on the
infrastructure’s environment (Figure 4.1). All algorithms presented in this section are used to
demonstrate how to manipulate the AST.

In principle, the top-down search algorithm should not be difficult to implement
through a recursive function. One way to implement it is an Algorithm 4.1, where it first checks
if the node is the type that intends to be searched. Second, it uses a loop for navigating into
the node child list, making a recursive call to each one of the children and testing whether the
returned node is the type that intends to be searched. Finally, if the node was unsearchable,
the function will return an empty value.

Function TopDownSearch (node,type)
if node is type then

return node;
end
for all node child i do

nodex ← TopDownSearch(node child i ,type);
if nodex is type then

return nodex ;
end

end
return empty ;

Algorithm 4.1 – Recursive top-down navigation to search for a node type.

Another way to navigate on the tree is bottom-up. Again, it is possible to implement
this using a recursive function such as presented in Algorithm 4.2. Such an algorithm needs
to first check if it is an empty node because it could be the case the root node has no father.
Second, we can test if it is the node type that intends to be found. Finally, we return the
function call passing as an argument to the current node’s father, since the node has a pointer
to its father.

When semantic analysis is needed, one has to traverse the whole AST. Algorithm
4.3 provides an example for traversing the CINCLE AST recursively to perform an analysis.
Assuming that a function will receive the tree root node as an argument, the algorithm can
implement a top-down navigation. Thus, inside the function, first we have to check if the node
is one of those intended to be analyzed. Then, if it is the node type, we can apply another

89

Function BottomUpSearch (node,type)
if node is empty then

return empty ;
end
else if node is type then

return node;
end
return BottomUpSearch(node father,type);

Algorithm 4.2 – Recursive bottom-up navigation to search for a node type.

recursive function, using bottom-up and top-down navigation. Second, we have to call the
function for each one of the child nodes and test whether it is a semantic error. Finally, if no
error was found during this process, the function will return true.

Function TraverseSemantic (root,type)
if root is type then

if analyze(root) is false then
return false;

end
end
for i ← 0 to number of root child do

if TraverseSemantic(root child i,type) is false then
return false;

end
end
return true;

Algorithm 4.3 – Traversing recursively for performing semantic analysis.

4.7 CINCLE Back-End

In the CINCLE Back-End, there are two modules: transformation and assemble. By
default, the assemble module calls the GCC compiler to generate source-to-binary. However,
one can simply integrate their favorite compiler or manually assemble transformed source-
to-source code. To illustrate how the transformation can be done directly on CINCLE’s AST,
a basic example of pattern matching is given in Algorithm 4.4 and its corresponding real
implementation for the transformation module in Listing 4.1.

This function follows the same recursive logical implementation to traverse the entire
AST. In the example, the goal is to transform all integer tokens into character tokens. The
implementation is also very simple for the real code implementation. We only need a recursive
call, node type checking and a token replacement.

1 void t rans fo rm_ in t_ token (c i n c l e : : node * root_node , i n t token) {
2 i f (root_node−>type == NODE_TYPE_int_token) {

90

Function ConvertInteger (root,type)
if root is integer then

root ← type;
end
for i ← 0 to number of root child do

ConvertInteger(root child i ,type);
end

Algorithm 4.4 – A simple example for pattern matching transformation.

3 root_node−>type = token ;
4 }
5 for (i n t i = 0 ; i < root_node−>ch i lds_n ; ++ i) {
6 t rans fo rm_ in t_ token (root_node−>node_down [i] , token) ;
7 }
8 }

Listing 4.1 – The real C++ code implemented form Algorithm 4.4 on CINCLE.

Another alternative for generating source-to-source code on CINCLE’s AST is to use
a pretty printer. One way for implementing in the transformation module is to use a recursive
traverse function such as that presented in Algorithm 4.5. The printable nodes are tokens,
identifiers and literals, which are terminal nodes. Then, during the recursive operation a check
has to be done before printing the node content. Finally, as in the previous algorithms, it is
simple for one to perform AST or pretty print transformations using the CINCLE infrastructure.

Function TraversePrettyPrint (node)
if node is token or identifier or literal then

print node content;
end
for i ← 0 to number of node child do

TraversePrettyPrint(node child i ,type);
end

Algorithm 4.5 – Generating code recursively from AST.

4.8 Supporting New Language Extensions

In addition to the infrastructure available to build new language extensions, CINCLE
also offers important features such as a set of APIs to manipulate the AST and generate tree
visualizations. Basic and useful routines are described in Table 4.1. These routines were
developed based on the previous algorithm examples.

The generate_visualization routine can be applied to specific AST nodes, since
it is called inside Middle-End and Back-End modules. It is used to quickly identify how to

91

Routines Description
insert_node_before(...) inserts a given node before another one
insert_node_after(...) inserts a given node after another one
replace_node(...) replaces a given node by another one
return_node_string(...) returns as a string the content of nodes like tokens,

identifier and literals
return_tree(...) returns a AST from a given piece of C/C++ code
delete_tree(...) erases a given tree node
verify_tree_structure(...) checks if the tree is correct accordingly the C/C++ gram-

mar
generate_visualization(...) generates a visualization to a given tree node
return_decl_identifier(...) return the pointer of the declaration node relative to a

given identifier node
return_tree_statement(...) return a tree statement type from a string
return_tree_expression(...) return a tree expression type from a string

Table 4.1 – Basic API functions.

navigate on the AST for specific sentences as well as where the transformations should
be performed. Also, it can be used to debug AST user transformations because after load
Front-End modules no more analysis is performed on the tree and the users must manage
their actions. The CINCLE APIs avoid incorrect transformations because they check the node
types before making an operation. Although AST provides much more power to the DSL
creator, one must be very careful when manipulating the tree because these operations are
dangerous and may affect the correctness of the produced source code.

Two code examples (Listing 4.2 and 4.3) are used to illustrate how CINCLE produces
an AST and the minimal changes performed on the grammar allowing for C and C++ attributes.
There are preprocessing directives in the grammar, headers, defines, and pragmas . However,
CINCLE was designed to recognize them because when generating source-to-source code
they are important to maintain the correctness of the original code. Also, another important
modification to the original grammar was to separate what is a C++ and a C attribute. As
mentioned in Section 4.1, in the GCC compiler they are treated as the same thing, which
makes no sense because C attributes are grammatically and syntactically different.

1 #include < s t d i o . h>
2 i n t main () {
3

4 }

Listing 4.2 – Code example for
AST visualization.

1 #include < s t d i o . h>
2 [[t e s t]] i n t main () {
3

4 }

Listing 4.3 – Code example using
C++ attribute.

When generating the AST visualization from Listing 4.2 and 4.3, we get represen-
tations as demonstrated in Figure 4.4(a) and 4.4(b), respectively. These examples were

92

(a) Tree visualization of Listing 4.2. (b) Tree visualization of Listing 4.3.

Figure 4.4 – AST visualizations.

intentional in order to observe and highlight the pictures. These highlights are in red, whereas
terminator nodes are represented in orange and intermediate nodes in blue. Also, each node
has a number that identifies its creation order and their names are the same as the standard
grammar describes.

This visualization generation uses protovis library2 and produces a JSON file. The
user can simply “open/close” (expand/collapse) nodes and there is an identification of the
visualization tree that is given as an argument in the routine (not present in the pictures),
enabling one to navigate between different tree visualizations.

2http://mbostock.github.io/protovis/

93

4.9 Real Use Cases

In order to give an idea of the infrastructure’s efficiency, we generated an “empty”
compiler to perform tests and provide results. Consequently, this compiler only stresses
the five compilation phases, which are check C++, code interpretation, AST verification,
code generation and code assemble. First, it will call the GNU GCC compiler to check
C++ code semantics and syntax (invoke the compiler so that it stops before assembling the
code). Second, the source code is parsed and an AST is built (it invokes the Front-End
implementation that uses Flex and Bison tools). Third, the compiler verifies if the AST was
created correctly (calling a function that tests the correctness of the child nodes). Fourth, we
generate from the AST C++ code (it is a simple pretty-printer function). Finally, we call the
GNU GCC compiler again to assemble the code.

Figure 4.5 presents a performance comparison among GNU GCC, CINCLE and
Clang compilers. We benchmarked a set of simple applications that can test distinct C++
constructions and grammar ambiguities 3. The graph presents the completion time on the Y
axis, the standard deviation of 10 executions through error bars, and the application names
along with the size in bytes in the X axis. As expected, Clang performed the best, while Clang
and GCC achieved a significant completion time differently with respect to CINCLE. The
reason is that CINCLE calls the GCC compiler twice. Figure 4.6 explains this more clearly.

 0

 200

 400

 600

 800

 1000

 1200

Am
biguity.cpp(399Bytes)

ArrayD
em

o.cpp(1157Bytes)

AutoPtr.cpp(2234Bytes)

BuggyIntC
ell.cpp(801Bytes)

D
eepIntC

ell.cpp(1282Bytes)

D
isjSets.cpp(1722Bytes)

D
uplicate.cpp(1085Bytes)

FuncTem
plates.cpp(1278Bytes)

G
etInts.cpp(1334Bytes)

getline.cpp(750Bytes)

InsSort.cpp(1225Bytes)

IntC
ell.cpp(311Bytes)

Iterator1.cpp(1489Bytes)

Iterator2.cpp(1663Bytes)

Iterator3.cpp(1834Bytes)

M
ath.cpp(4442Bytes)

M
axSum

.cpp(6577Bytes)

M
kC

hnge.cpp(2106Bytes)

O
bserver.cpp(2296Bytes)

PointerH
opping.cpp(871Bytes)

PrintInt.cpp(1125Bytes)

R
andTest.cpp(1048Bytes)

R
ational.cpp(8305Bytes)

R
ecSum

.cpp(578Bytes)

R
ectangle.cpp(2229Bytes)

Shape.cpp(4236Bytes)

Sim
pleR

N
G
.cpp(16527Bytes)

StaticBinding.cpp(1060Bytes)

string.cpp(3599Bytes)

TestAATree.cpp(1106Bytes)

TestBinaryH
eap.cpp(726Bytes)

TestD
isjSets.cpp(2439Bytes)

TestEventList.cpp(1551Bytes)

TestFunctional.cpp(483Bytes)

TestLinkedList.cpp(1497Bytes)

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Comparison among CINCLE, G++ and Clang++

Clang++
G++
CINCLE

Figure 4.5 – Performance comparison (machine with SSD hard drive).

The graph in Figure 4.6 presents the total percentage relative to the completion time
for each one of the CINCLE compilation phases. In general, results of check C++ and code
assemble phases are expected since both call the GNU GCC compiler. Among the actual
CINCLE phases, the check of AST correctness requires the greatest amount of time as well

3Almost all the source code are taken from http://users.cis.fiu.edu/ weiss/adspc++2/code/, except the
SimpleRNG from http://www.johndcook.com/blog/cpp_random_number_generation/

94

Am
biguity.cpp(399Bytes)

ArrayD
em

o.cpp(1157Bytes)

AutoPtr.cpp(2234Bytes)

BuggyIntC
ell.cpp(801Bytes)

D
eepIntC

ell.cpp(1282Bytes)

D
isjSets.cpp(1722Bytes)

D
uplicate.cpp(1085Bytes)

FuncTem
plates.cpp(1278Bytes)

G
etInts.cpp(1334Bytes)

getline.cpp(750Bytes)

InsSort.cpp(1225Bytes)

IntC
ell.cpp(311Bytes)

Iterator1.cpp(1489Bytes)

Iterator2.cpp(1663Bytes)

Iterator3.cpp(1834Bytes)

M
ath.cpp(4442Bytes)

M
axSum

.cpp(6577Bytes)

M
kC

hnge.cpp(2106Bytes)

O
bserver.cpp(2296Bytes)

PointerH
opping.cpp(871Bytes)

PrintInt.cpp(1125Bytes)

R
andTest.cpp(1048Bytes)

R
ational.cpp(8305Bytes)

R
ecSum

.cpp(578Bytes)

R
ectangle.cpp(2229Bytes)

Shape.cpp(4236Bytes)

Sim
pleR

N
G
.cpp(16527Bytes)

StaticBinding.cpp(1060Bytes)

string.cpp(3599Bytes)

TestAATree.cpp(1106Bytes)

TestBinaryH
eap.cpp(726Bytes)

TestD
isjSets.cpp(2439Bytes)

TestEventList.cpp(1551Bytes)

TestFunctional.cpp(483Bytes)

TestLinkedList.cpp(1497Bytes)

%
 o

f
to

ta
l

CINCLE Phases

Check C++(GNU GCC)
Code Interpretation
AST Verification
Code Generation
Code Assemble(GNU GCC)

Figure 4.6 – Only SPar compiler performance (machine with SSD hard drive).

as the code generation. Finally, little time is needed for interpreting the code during the AST
creation. Therefore, we can conclude that CINCLE does not add significant overhead to the
program compilation.

Other tests were made by compiling a set of applications that will be used later for
the SPar DSL evaluation, which was built on top of CINCLE infrastructure. We summarized
the amount of AST nodes necessary to represent the source code versions on Table 4.2. It
is important to highlight that the OpenMP version needs fewer nodes than SPar because
pragma annotations are placed on the tree as a single node (they are similarly placed as a
header declaration node highlighted in Figure 4.4(a)). Consequently, this is one clear example
showing the difference of preprocessing directive compared to attributes that are placed along
with the standard C++ grammar. While pragmas are seen as a single string, attributes are
represented as a tree.

App. Seq. SPar OpenMP FastFlow TBB
Filter Sobel (pipe) 21933 22244 (22533) 21957 (21965) 23417 (24768) 24113 (25511)

Video OpenCV 4808 5151 n.a. 6354 6910
Mandelbrot Set 4890 5376 5037 8563 7702

Prime Number (loop) 5391 5676 5394 6782 (5772) 7463 (5868)
K-Means 9901 10073 9910 10100 10045

Table 4.2 – Statistics of CINCLE (number of nodes on the AST).

95

4.10 Summary

In this chapter, we introduced CINCLE, a new compiler-based infrastructure for
generating a C++ internal DSL. We demonstrated its contributions to the state-of-the-art tools
such as AST to AST transformations and AST compliance with the standard C++ grammar.
Also, through small algorithm examples, it was possible to illustrate the simplicity and other
essential features of modularity, extensibility and rapid prototyping.

Moreover, we presented a set of features to support DSL designers performing AST
transformations by using API functions and AST visualization. During the presentation of
CINCLE, we discussed several algorithms for navigation and transformation, where simple
pattern matching requires just a few lines of code. Real use cases were also provided to
demonstrate the efficiency and representativity of CINCLE. Its robustness will be seen in the
next chapters through the implementation of the SPar compiler, which makes a source-to-
source transformation to support high-performance code.

96

97

5. SPAR: AN EMBEDDED C++ DSL FOR STREAM PARALLELISM

This chapter presents an embedded C++ DSL for stream parallelism. SPar was
built using the standard C++ annotation mechanism and CINCLE infrastructure. The goal
is to provide high-level parallelism abstraction aiming for coding productivity in streaming
applications. A secondary goal is to be architecture-independent, using the same interface to
provide code portability.

Contents

5.1 INTRODUCTION . 98

5.2 ORIGINAL CONTRIBUTIONS . 99

5.3 DESIGN GOALS . 99

5.4 SPAR DSL: SYNTAX AND SEMANTICS . 101

5.4.1 TOSTREAM . 101

5.4.2 STAGE . 103

5.4.3 INPUT . 104

5.4.4 OUTPUT . 104

5.4.5 REPLICATE . 105

5.5 METHODOLOGY SCHEMA: HOW TO ANNOTATE 106

5.6 EXAMPLES AND GOOD PRACTICES . 107

5.7 SPAR COMPILER . 113

5.8 SPAR INTERNALS . 114

5.9 ANNOTATION STATISTICS ON REAL USE CASES 114

5.10 SUMMARY . 115

98

5.1 Introduction

Stream-based applications represent several programs including video, network-
ing, audio, graphics processing, etc. Such programs may run on different kind of parallel
architectures (desktop, servers, cell phones, and supercomputers) and represent significant
workloads on our current computing systems. However, most of them are still not parallelized,
and when a new one has to be developed, programmers have to face a trade-off between
coding productivity, coding portability, and performance. Unfortunately, the only suitable
solutions to achieve efficient programs increase programming effort, mainly source code
rewriting and porting an application across different architectures without modifying it (for
example, a new compilation is needed to take advantage of parallelism). In fact, parallel
programming is still too low level and complex, reserved just for experts in high-performance
computing.

To solve this trade-off, we are providing a new DSL for stream parallelism aimed
to naturally/on-the-fly represent parallelism in stream-based applications that are prevalent
on our computing systems. The idea is to offer a set of attributes in an annotation manner
that preserves the source code of the program. In general, such applications compute a
sequence of distinct activities (stages) over the stream, where each activity consumes (input)
a stream element, computes, and produces another one (output). This structure can be
viewed as a graph of independent activities with explicit communications and contiguous
flow. Representing the computation in such a way enables one to identify situations where
it is possible to duplicate (replicate) stateless operations since they can process different
stream elements [TA10, ADKT14]. As a consequence, stream programs may fit on coarse-
and fine-grained parallelism, which is suitable for multi-core and cluster architectures. Thus,
the stream properties motivated us to present parallelism abstractions in a straightforward
manner as well as in generalized terms to achieve code portability and coding productivity
through annotations.

In this chapter, we will first describe our original contribution in respect to the state-of-
the-art. Second, our design goals and fundamental implementation choices will be presented.
Third, we will formally describe the attributes of the DSL along with standard C++ grammar.
Then, we create a methodology for guiding the developers during the code annotation. After
this, how to annotate using our method as well as good practices for achieving efficient
programs will be taught through examples. Next we describe the compiler implementation in
a nutshell. Then, the internal representation of the attributes to be used for source-to-source
code transformation is given. Finally, a statistic of the attributes in real use cases highlights
the simplicity of this DSL.

99

5.2 Original Contributions

One of the original contributions of this thesis is the design of standard attributes
that can eventually be adopted in the standard language for annotating stream parallelism.
Even though C++11 attributes have been available in the grammar since 2011, to the best of
our knowledge, we are the first to introduce stream parallelism by using this mechanism as a
DSL1.

Our second contribution is to provide a methodology to help users to easily find and
annotate parallelism. This plays an important role as it gives a set of steps (questions) to
guide the programmer. Consequently, supported by such a methodology, developers may
simply concentrate on application specific features to annotate the most efficient parallel
solution.

Another contribution is that we provide a compiler able to parse these attributes and
perform the relative semantic analysis. This allows the user to simply compile the program to
produce a parallel code for multi-core or cluster, which is another contribution of this thesis,
described in Chapter 6. Moreover, the compiler implementation is also a contribution to prove
CINCLE’s robustness and efficiency.

Finally, to the best of our knowledge, we are the first in providing a high-level
interface for stream parallelism that preserves the sequential source code. We also contribute
to provide these attributes without being dependent on actual target architecture features,
which is not usually the case when using state-of-the-art tools.

5.3 Design Goals

SPar’s design goals are described in these sections to justify the design choices
and principles of the present research. In general, they are greater than those possibly
achieved by the thesis as they also include plans for the future of the proposed framework
and programming interface. Accordingly, the main design goals are:

• High-Level Parallelism: SPar targets abstractions that prevent users from dealing with
low-level programming models, hardware-level performance optimizations, scheduling
policies implementation, load balancing, data and task level problem decomposition, and
parallelism strategies. Our goal is to support high-level parallelism to work at the code
annotation level rather than at the actual exploitation level. When using annotations to
exploit parallelism, the user is simply indicating where there is a potential parallelism.

1REPARA uses this kind of mechanism in a slightly different way that is not characterized as a DSL, but as
an internal processing of parallelism.

100

To express parallelism, the users are required to provide the appropriate parallelism
strategy, learn different programming models, study efficient ways to optimize perfor-
mance, and determine scheduling and load balancing implementations. This design
goal is a starting point motivation to achieve code portability and coding productivity
design goal.

• Code Portability: It is still a big challenge in parallel computing because the architectures
require the use of different programming models in order to efficiently use hardware
resources. Thus, a software that was implemented for exploiting parallelism on multi-
core can not be simply used in a cluster architecture (and vice versa) without using a
different programming interface or rewriting the code in some way. In order to support
code portability in SPar, we propose the creation of a unified stream-oriented interface,
believing that it provides properties that are generic enough to perform automatic
parallel code transformations for both multi-core and clusters architectures. Thus, once
the code has been annotated, no more modifications need to be made for running an
application on different parallel architectures, they must only be recompiled.

• Coding Productivity: Is related to programming effort, code rewriting/restructuring and
amount of code that a given application needs take advantage of the architecture
parallelism. We benefit from the standard interface and code portability design goals to
provide better coding productivity. For instance, code portability will avoid code rewriting
when running a given software on different parallel architectures. However, the main
aim here is to provide a small annotation vocabulary, preserving the original sequential
source code and supporting on-the-fly stream parallelism.

• Standard Interface: Does not require users to learn a new language syntax. Being
standard compliant with the host language syntax is the main motivation for using
the C++ annotation mechanism (also called C++11 attributes) to build SPar as an
internal DSL. At the implementation level, it is compliant with the standard and provides
suitable advantages with respect to other mechanism such as pragmas (classified
as a preprocessing language) for source-to-source code transformations, which were
previously discussed in Chapter 4. Also, the C++ standardization allows the proposed
research to target a wider community, since C++ has been used for decades to create
robust software infrastructures, high-performance and critical applications.

• Flexibility: Is an important aspect for SPar. The idea is to allow different ways for
annotating stream parallelism as well as alternatives to orchestrate parallel executions
of C++ statements. By default, C++11 attributes are flexible and we will use them in
such a way this flexibility is fully preserved. Consequently, flexibility is in conformity with
other goals such as high-level parallelism, coding productivity and code portability.

101

• Performance: Is our last priority in the design goal list as we intend to reuse runtime
libraries designed to exploit parallelism that has already been proven efficient. How-
ever, performance is no less important than other properties listed above and the main
concern is to avoid significant performance degradation while adding high-level abstrac-
tions. Therefore, good performance of the DSL will depend on the transformation rules,
runtime library, and the appropriate usage of SPar annotation for a given application.

5.4 SPar DSL: Syntax and Semantics

C++ attributes originated from GNU C attributes (__attribute__((<name>))). Since
C++11 up to the most recent version, a new way to provide annotation was included in the
standard C++ language, namely the [[attr-list]] style syntax [MW08, ISO11a]. The
syntax of the attributes was improved as well as the interface to support C++ features. A
great advantage over the pragma-based annotation is the possibility to introduce annotations
almost anywhere in a program. However, each attribute implementation will determine where
the different attributes may be actually used (e.g., to annotate types, classes, code blocks,
etc.).

This section introduces the domain-specific language syntax used to meet our
design goals. SPar maintains the standard C++ attributes’ syntax [MW08] to introduce code
annotations. However, limitations are imposed to ensure correct parallel code transformation.
Also, SPar classifies the attribute in identifiers (ID) and auxiliary (AUX). Such a distinction
was made to provide the appropriate meaning when annotating the code. In the following,
ToStream and Stage are ID, while the others will be AUX.

5.4.1 ToStream

The ToStream attribute is intended to be used to denote that a given C++ program
region is going to provide stream parallelism. The DSL grammar for this attribute uses and
extends the same syntax used to describe the grammar in the International Standard [ISO14].
When possible, standard names are used. To distinguish from the terms defined and used in
the standard, our specific terms will be written in blue from now on.

A tostream_specifier is only used to annotate in front of a compound statement or
iteration statement. Due to the fact that SPar requires that inside an annotated region must
be at least one stage, compound statements and iteration statement grammar productions
are re-defined as follows:

tostream_specifier:
tostream_attr tostream_compound_statement

102

tostream_attr tostream_iteration_statement
tostream_compound_statement:

{ tostream_statement }
tostream_iteration_statement:

while (condition) tostream_statement
do tostream_statement while (expression) ;
for (for_init_statement ;) tostream_statement
for (for_init_statement ; expression) tostream_statement
for (for_init_statement condition ;) tostream_statement
for (for_init_statement condition ; expression) tostream_statement
for (for_range_declaration : for_range_initializer) tostream_statement

Another modification needed was to characterize tostream_statement in such a way
it is possible to define which are the legal syntax entities in a ToStream clause.

tostream_statement:
statement_seq stage_specifier_seq
stage_specifier_seq

Finally, the clauses relative to tostream_attr may be defined as follows:

tostream_attr:
[[tostream_token]]
[[tostream_token aux_attr_list]]

aux_attr_list:
, input_specifier
, output_specifier
, replicate_specifier
, input_specifier , output_specifier
, output_specifier , input_specifier
, input_specifier , replicate_specifier
, output_specifier , replicate_specifier
, replicate_specifier , input_specifier
, replicate_specifier , output_specifier
, replicate_specifier , input_specifier , output_specifier
, replicate_specifier , output_specifier , input_specifier
, input_specifier , output_specifier , replicate_specifier
, output_specifier , input_specifier , replicate_specifier
, input_specifier , replicate_specifier , output_specifier
, output_specifier , replicate_specifier , input_specifier

tostream_token:

103

tostream_scoped_token
tostream_scoped_token:

attribute_namespace :: ToStream
attribute_namespace:

spar

NOTE: as in the standard grammar, the auxiliary attributes (aux_attr_list) are not
necessary ordered. Restrictions are only made for ID attributes to identify a region in the
stream parallelism.

5.4.2 Stage

As the name indicates, Stage is used to annotate a phase where operations are
computed over the stream items. If we imagine that we are in an assembly line, Stage is a
workstation in the production line. Inside a ToStream region, SPar supports any number of
Stage. The relative grammar clauses are represented as follows:

stage_specifier_seq:
stage_specifier
stage_specifier stage_specifier_seq

stage_specifier:
stage_attr compound_statement
stage_attr iteration_statement

stage_attr:
[[stage_token]]
[[stage_token aux_attr_list]]

stage_token:
stage_scoped_token

stage_scoped_token:
attribute_namespace :: Stage

attribute_namespace:
spar

NOTE: by default ToStream and Stage attributes may have arguments, which are
not supported in current version of SPar.

104

5.4.3 Input

The Input attribute represents an important property of stream parallelism. In SPar,
the programmer should use this keyword to express the input data format of the stream for
both ID attribute annotations. Its arguments will be parsed to build the stream of tasks (data
items) that will flow inside the ToStream region. Using the assembly line example, input
denotes the items “consumed” by each workstation. The relative grammar may be described
as follows:

input_specifier:
input_attr attribute_argument_clause

input_attr:
input_token

input_token:
input_scoped_token

input_scoped_token:
attribute_namespace :: Input

attribute_namespace:
spar

NOTE: Semantically, when using Input attribute at least one argument should be
given. This argument could also be a variable derived from a data type. Literals are not
accepted.

5.4.4 Output

The Output attribute also represents another important property of stream paral-
lelism: the programmer should use it to express the output data format of the stream for both
ID attribute annotations. Its arguments will be used to build the stream that will flow inside the
ToStream region. Using the assembly line example, output is what ID attribute will produce
for the next workstation. The Output grammar clause are therefore described as follows:

output_specifier:
output_attr attribute_argument_clause

output_attr:
output_token

output_token:
output_scoped_token

output_scoped_token:

105

attribute_namespace :: Output
attribute_namespace:

spar

NOTE: Semantically, when using Output attribute at least one argument should
be given. This argument could also be a variable derived from a data type. Literals are not
accepted.

5.4.5 Replicate

The Replicate attribute is used to model another important propriety of stream
parallelism. Again, drawing from the assembly line example, it is important to balance the
load in a single workstation and accelerate the production line by implementing several
replicas of the workstation in place of a single one. When adding replicas to a stage, one is
replicating the relative region as many times as denoted by the number of worker’s parameter.

replicate_specifier:
replicate_attr attribute_argument_clause

replicate_attr:
replicate_token

replicate_token:
replicate_scoped_token

replicate_scoped_token:
attribute_namespace :: Replicate

attribute_namespace:
spar

NOTE: Semantically, no more than one argument is accepted to represent the num-
ber of workers in a given stage. This argument can be an integer literal or an integer variable.
If no argument is passed, SPar gets the number of workers from the SPAR_NUM_WORKERS

environment variable.

NOTE: Syntactically, Replicate can be part of the ToStream attribute list, but
currently SPar simply ignores it when associated to the ToStream attribute list.

106

5.5 Methodology Schema: How to Annotate

This section introduces a methodology to annotate stream parallelism using SPar
attributes. Figure 5.1 presents five questions that one should ask themselves to annotate
source code. The methodology intends to instruct the programmer on how to annotate by
answering these questions. Following the order, the first thing to do is to discover where the
stream region is. Usually, a stream region can be associated with the assembly line. In a
program, we can identify and visualize the stream region as the most time consuming piece
of code.

In most cases, the stream computation will be inside a loop, which generates a
new stream element per iteration. In all other cases, the stream will come from an external
source and the developer should pay attention to identify the relevant code section gathering
the stream items and computing results out of them. Once the stream region has been
identified and properly annotated, we have to look inside the region searching for what the
region consumes and produces. The idea behind this is to fill, when necessary, the Input
and Output auxiliary attributes for the stream region.

Figure 5.1 – Annotation methodology schema.

The third question helps to identify the assembly line’s workstations. In the program,
they are inside the stream region already annotated in the previous steps of our methodology.
To answer the question, the suggestion is to look for the operation sequence and annotate
as many stage regions as necessary, respecting the SPar syntax and semantics. Then, it is
important to specify what will be consumed and produced by each one of the stages by using
Input and Output attributes, answering the fourth question.

107

In the assembly line, we can only assign more workers in a given workstation when
the computations relative to different task are independent. The same rule applies to SPar
when answering the fifth question. In the program it means that each worker can get a new
stream element and compute independently from other stream elements. To be sure this
property holds, the developer may use the Replicate attribute to improve the performance
of the stream region. The next section will demonstrate some code examples and our best
practices for speeding up the performance.

5.6 Examples and Good Practices

This section discusses simple examples that can be used in range of real appli-
cations. The goal is to demonstrate through real code the usage of SPar attributes guided
by the methodology presented previously. First, Figure 5.2 illustrates four activity graphs
to represent stream parallelism abstractly. The idea is to highlight one of the graphs when
discussing an example. As the methodology implicitly recommends, a good practice is to start
with simple and move towards more complex graphs (from left to right in Figure 5.2). In terms
of performance, we can not make any assumptions because it depends on the application
features (e.g.,throughput, latency, memory usage and parallelism degree).

Figure 5.2 – Activity graphs on SPar.

Listings 5.1, 5.2, 5.3 and 5.4 are relative to the same application achieving different
activity graphs through SPar annotations. The code is an example of typical and recurrent
situations in stream parallelism. In this application, we clearly characterized the stream
format, which is a string. The stream region is the loop block and stream comes from an
external source that is a file. For each iteration a new stream element is read and a sequence
of operations is performed. A similar code may be used if the stream comes from the network
or any other external source and the programmer may not know the length of the stream.
Consequently, the programmer has to check or decide whether the program should stop or

108

not. This stream operation can be seen on line 4, which is actually checking the end-of-stream
condition (the end of the file, in this case). When stream comes from the network there is no
end, making it necessary to filter the stream content to create a stop condition.

With these issues in mind, we can start to put the annotations in the code. Following
the methodology recommendation, we should start with Listing 5.1. We add a ToStream
annotation in front of the while loop because it is the stream region. No input is needed
since the stream comes from an external source and produces each stream item inside the
stream region. Also, no output specification is required because nothing is produced inside
the stream region that will be used outside. Now, we have to find the stream operations and
annotate them by using the stage attribute. We identify them as: 1) read stream element (line
3), 2)check end of the stream (line 4), 3) compute the stream element (line 6) and 4) write
the result in an output source (line 8).

Note that semantically we cannot annotate the end of a stream checker operation
as a stage, because ToStream performs the initial computation. The problem is that the
ToStream region will never know when to stop because SPar performs on-the-fly (there are
no back communications, it always is forward). Therefore, we leave the checker and reader
operations for the ToStream and annotate the compute and write operations as stages. As a
consequence, SPar will produce the A1 activity graph from Figure 5.2.

1 [[spar : : ToStream]] while (1) {
2 s td : : s t r i n g stream_element ;
3 read_in (stream_element) ;
4 i f (stream_in . eof ()) break ;
5 [[spar : : Stage , spar : : Input (stream_element) , spar : : Output (stream_element)]]
6 { compute (stream_element) ; }
7 [[spar : : Stage , spar : : Input (stream_element)]]
8 { w r i t e_ou t (stream_element) ; }
9 }

Listing 5.1 – Stream computations in SPar producing A1.

The last step recommended in the methodology schema is to find the stages that
can be replicated. Before adding the Replicate attribute, the programmer must be sure that
operations can operate independently in different stream elements. Listing 5.2 exemplifies
such an implementation for the A2 activity graph of Figure 5.2. Note that no significant
changes to the source code were made with respect to the Listing 5.1 to introduce a different
version of stream parallelism.

1 [[spar : : ToStream]] while (1) {
2 s td : : s t r i n g stream_element ;
3 read_in (stream_element) ;
4 i f (stream_in . eof ()) break ;
5 [[spar : : Stage , spar : : Input (stream_element) , spar : : Output (stream_element) , spar : :

Replicate (4)]]
6 { compute (stream_element) ; }

109

7 [[spar : : Stage , spar : : Input (stream_element)]]
8 { w r i t e_ou t (stream_element) ; }
9 }

Listing 5.2 – Stream computations in SPar producing A2.

Listing 5.3 demonstrates how to produce the A3 activity graph from Figure 5.2.
However, in this application such annotation will produce incorrect results because we can
not put it inside a stateful stage. Consequently, another SPar lesson which demonstrates
that it is up to the user identify whether replication can be done without side effects. The
advantage in SPar is that one can test different combinations without significant effort.

1 [[spar : : ToStream]] while (1) {
2 s td : : s t r i n g stream_element ;
3 read_in (stream_element) ;
4 i f (stream_in . eof ()) break ;
5 [[spar : : Stage , spar : : Input (stream_element) , spar : : Output (stream_element) , spar : :

Replicate (2)]]
6 { compute (stream_element) ; }
7 [[spar : : Stage , spar : : Input (stream_element) , spar : : Replicate (2)]]
8 { w r i t e_ou t (stream_element) ; }
9 }

Listing 5.3 – Stream computations in SPar producing A3.

Since we discussed in Listing 5.3 that the write operation can not be done indepen-
dently, Listing 5.4 will also produce incorrect results. Thus, it only illustrates how to achieve
A4 activity graph from Figure 5.2.

1 [[spar : : ToStream]] while (1) {
2 s td : : s t r i n g stream_element ;
3 read_in (stream_element) ;
4 i f (stream_in . eof ()) break ;
5 [[spar : : Stage , spar : : Input (stream_element) , spar : : Replicate (4)]]
6 { compute (stream_element) ;
7 wr i t e_ou t (stream_element) ; }
8 }

Listing 5.4 – Stream computations in SPar producing A4.

In principle, stream parallelism can be used to express other kinds of parallelism. For
example, Listing 5.5 lists code relative to a simple reactive computation. The stream comes
from the user command line arguments asking to compute the multipliers of a given digit up
to 10. SPar is generic enough to support suitable annotation modeling the parallel structure
of the code. The stream region is the while loop block and the operation in each stream
element (which are integers) are made by reading from terminal (line 4) and calculating the
multipliers of the stream element (between line 5 and 7). We do not need to specify Output
and Input for the ToStream attribute by the same reason of the previous examples. Listing

110

5.5 is typical way to annotate stream region, where we put one Stage annotation in front the
for loop leveraging the possibility provided by the SPar grammar to reuse constructions of
the loop statements.

1 [[spar : : ToStream]] while (1) {
2 i n t stream_source ;
3 s td : : cout << " Enter a d i g i t : " ;
4 s td : : c in >> stream_source ;
5 [[spar : : Stage , spar : : Input (stream_source)]] for (i n t i = 1 ; i < 11; i ++) {
6 s td : : cout << stream_source * i << std : : endl ;
7 }
8 }

Listing 5.5 – Reactive computations in SPar producing A1.

As in previous examples, the stream comes from an external source, but in this case,
there is no stop criteria implemented. This means that the stream may never end since the
code filters each stream element and does not implement any protocol for finalizing the stream.
Also, unlike the previous application, reactive computation has different objectives, namely
latency instead of throughput. Thus, it is important to find the most appropriate annotation
schema to target latency, which could be difficult without testing different alternatives. SPar
makes this process easier, because it supports alternative structure evaluations without
requiring the user to modify the sequential code.

In addition to Listing 5.5 and 5.6, we could have annotated the same sequential code
in at least five different ways. With respect to Listing 5.5, we could have used the Replicate
attribute (line 5), included a stage for getting the stream elements (line 4) and combined
this solution including, or not, the Replicate attribute on the multiplier stage (line 5). From
a part of Listing 5.6, we could have omitted the Replicate attribute. This demonstrates the
flexibility and capability of SPar also for annotating parallelism in other domains derived from
the stream paradigm.

To conclude the discussion of Listing 5.5, we can easily translate this pattern into
a real world application. As an example, consider a social network service for counting the
number of subscriptions. Instead of reading from the user command line, the application
reads requests from the network and instead of making multipliers, the operation will be
the sum of the subscriptions. Also, we can follow the methodology suggestion of putting a
Replicate attribute because it is possible to compute each stream element independently.
Adding the Replicate attribute may represent a significant performance improvement in the
social network service to guarantee latency and throughput when there are many client
requests. Finally, Listing 5.5 produces A1 activity graph, but adding the Replicate attribute it
will produce A4 from Figure 5.2.

1 [[spar : : ToStream]] while (1) {
2 i n t stream_source ;
3 s td : : cout << " Enter a d i g i t : " ;

111

4 s td : : c in >> stream_source ;
5 for (i n t i = 1 ; i < 11; i ++) {
6 [[spar : : Stage , spar : : Input (i , stream_source) , spar : : Replicate (10)]]
7 { s td : : cout << stream_source * i << std : : endl ; }
8 }
9 }

Listing 5.6 – Reactive computations in SPar producing A4.

Another way to annotate this particular application is to reduce the granularity by
putting the stage inside for loop (line 6) such as in Listing 5.6. Also in this case, we can add
a Replicate attribute leveraging on the fact that for each stream element the multiplier can be
computed independently. Moreover, by specifying the number of replicas, we can precisely
assign a worker to each one of the multiplier operations. Therefore, this stream region will
behave like the A4 activity graph from Figure 5.2.

1 [[spar : : ToStream]] for (i n t i = 0 ; i < NREGION; ++ i) {
2 i n t * persons = new i n t [NPERSON] ;
3 load (persons) ;
4 [[spar : : Stage , spar : : Input (i , persons)]]
5 { regions_min [i] = min (persons) ; }
6 [[spar : : Stage , spar : : Input (i , persons)]]
7 { regions_max [i] = max(persons) ; }
8 }

Listing 5.7 – DataFlow computations in SPar producing A1.

DataFlow is also a stream-based paradigm, but it represent a different approach with
respect to SPar. However, we can use SPar attributes to implement DataFlow computations
as well (see Listing 5.7, 5.8, and 5.9). The program in Listing 5.7 calculates the minimum and
maximum age for a set of people in a given number of regions. From the SPar point of view,
the stream region starts on the “for” loop that iterates for each one of people region’s vector,
loading the people and finding the minimum and maximum age. Also, the stream source are
the people vector and the for index because it will be used for navigating on the vectors that
will eventually store the age results.

Listing 5.7 shows one of the alternative ways we have to annotate the code, pro-
ducing the activity graph A1 from Figure 5.2. Since the stream source is internally produced
in the stream region, no input was specified. Also, no output is specified because nothing
will be produced to be used outside. We annotated each one of the search operations (min
and max) to be a stage, and only the data they will consume is annotated using the Input
attribute. Both operations will process as input the same people’s ages vector and the result
vector index.

In SPar, we can observe that DataFlow-like parallelism can be annotated, but not
exploited due to the fact that the present version only focuses on stream parallelism. By
extending the previous example and responding the last question of the methodology, we

112

can add Replicate attributes on the stages due to the fact the stream operations can act
independently. Then, the annotation code will be 5.8, producing A3 from Figure 5.2.

1 [[spar : : ToStream]] for (i n t i = 0 ; i < NREGION; ++ i) {
2 i n t * persons = new i n t [NPERSON] ;
3 load (persons) ;
4 [[spar : : Stage , spar : : Input (i , persons) , spar : : Replicate (2)]]
5 { regions_min [i] = min (persons) ; }
6 [[spar : : Stage , spar : : Input (i , persons) , spar : : Replicate (2)]]
7 { regions_max [i] = max(persons) ; }
8 }

Listing 5.8 – DataFlow computations in SPar producing A3.

Listing 5.9 presents another annotation schema for this DataFlow computation. In
this case, we merge both stream operations at a single stage so that another activity graph is
produced, which is A4 from Figure 5.2.

1 [[spar : : ToStream]] for (i n t i = 0 ; i < NREGION; ++ i) {
2 i n t * persons = new i n t [NPERSON] ;
3 load (persons) ;
4 [[spar : : Stage , spar : : Input (i , persons) , spar : : Replicate (4)]]
5 { regions_min [i] = min (persons) ;
6 regions_max [i] = max(persons) ; }
7 }

Listing 5.9 – DataFlow computations in SPar Producing A4 .

Finally, to illustrate the applicability of SPar for data parallel computations, Listing
5.10 sketches matrix multiplication algorithm. In SPar, we can model a stream out of the first
for loop index that ranges over the matrix lines. Since inside the second for loop (line 4)
the multiplication of lines by columns is performed, we can annotate it as a stage operation.
Also, due to the fact that all the multiplications can be performed independently, we can add
Replicate attribute and produce an activity graph such as A4 on Figure 5.2,

1 [[spar : : ToStream]]
2 for (long i n t i =0; i <MX; i ++) {
3 [[spar : : Stage , spar : : Input (i) , spar : : Replicate (4)]]
4 for (long i n t j =0; j <MX; j ++) {
5 for (long i n t k =0; k<MX; k++) {
6 mat r i x [i] [j] += (matr ix1 [i] [k] * mat r ix2 [k] [j]) ;
7 }
8 }
9 }

Listing 5.10 – Data parallel computations in SPar

These examples demonstrated SPar’s usage in stream and other domain appli-
cations. Different applications will be discussed in Chapter 7, presenting their respective

113

performance results. Moreover, it is worth pointing out that in all of the examples shown, the
number of replicated stages may be simply changed varying the replica parameter. As a
consequence, the programmer may easily experiment with different degrees of parallelism to
find the one that is most suitable for the computation (code and input task) at the hand.

5.7 SPar Compiler

The compiler we designed to handle SPar DSL uses the CINCLE infrastructure
previously described in Chapter 4. In order to highlight what was implemented to generate
the DSL compiler and what CINCLE already offered, in Figure 5.3 the boxes in orange show
the CINCLE related modules and the SPar implementations are in cyan. The picture clearly
outlines that by using CINCLE’s infrastructure it becomes much more simple to build SPar,
since the only missing parts (w.r.t. CINCLE) are actually the semantic analysis and the AST
transformations.

Figure 5.3 – SPar Compiler.

When compiling a program using the SPar compiler, the system calls the GCC
compiler before invoking the scanner to perform the semantic and syntax analysis of the C++
code. Next, the scanner gets the tokens produced from the original code and delivers them
to the parser to create the AST that will be the interface for implementing the middle-end
and back-end. Only then, the semantic analysis of SPar annotations can rely on annotation
correctness so that AST transformations can be actually implemented to enable stream
parallelism. The final step of the compiler is relative to the generation of the parallel code,
directly represented in the AST. Subsequently, the GCC compiler is called again to produce
the binary code.

Even though many work has been avoided by using CINCLE, the internal implemen-
tation of semantics requires a good understanding of the C++ grammar. Similar knowledge
is required to perform AST transformations, because expertise in parallel programming and
runtime interface are required. Therefore, SPar was also a case study for CINCLE that
demonstrated the simplicity and usability of the designed infrastructure. Also, the CINCLE
infrastructure enabled the DSL creator to only concentrate on the parallelism related aspects.
The automatic parallel code transformations will be detailed in the following Chapters.

114

5.8 SPar Internals

After the semantic analysis, we traversed the whole CINCLE AST and built the
SPar AST that includes the representation of the annotations in the code. It is used to
implement the source-to-source code transformation needed to target multi-core and clusters
architectures. Figure 5.4 exemplifies how the attributes are represented in the SPar tree.
Each attribute is interpreted as a node of the tree that stores information about the arguments
and a pointer to its attribute_specifier_seq node. In addition to that, ToStream (T) have
a function definition node (FD) as father, list of auxiliary attributes (AUX) that can be Input (I),
Output (O) and Replicate (R) as child nodes and identifier node (ID) of stages. The Stage
node (S) has only one child node that is a list of auxiliary attributes. For this version, we do
not allow for explicit nesting so that new constructions of ToStream are not enabled inside
stage regions.

Figure 5.4 – SPar AST.

The SPar AST was designed to simplify the applicability of the transformation
rules as well as to support the internal CINCLE AST transformation by storing relevant
information. Therefore, when prototyping the rules, the system can look separately at the two
representations (CINCLE and SPar ASTs) and precisely perform the changes in the CINCLE
AST to allow the runtime to exploit the parallelism of the target architecture.

5.9 Annotation Statistics on Real Use Cases

In order to demonstrate the applicability of SPar in real use cases, Table 5.1 provides
the annotation statistics relative to the set of applications that will be used later in the result
section. These applications were used to investigate code portability, performance and
productivity. Therefore, the amount of attributes needed to annotate the parallelism was

115

accounted for in each. Observing the data, we can see that it is possible to solve different
problems with a few attributes. Also, auxiliary attributes are always present even if they are
not syntactically necessary. Moreover, Input attribute is the most frequently used attribute in
our applications.

Attribute Filter
Sobel

Filter Sobel
(pipe)

Video
OpenCV

Mandelbrot
Set

Prime Num-
ber

K-Means

ToStream 1 1 1 1 1 2
Stage 1 2 2 2 2 2 (1/1)
Input 2 3 3 3 3 4 (2/2)

Output 1 2 1 1 2 2 (1/1)
Replicate 1 1 1 1 1 2 (1/1)

Table 5.1 – Statistics of SPar annotations on the experiment.

This table demonstrates that our simple examples and good practices mentioned/used
in the previous sections actually reflect what will eventually happen when dealing with real
use cases. For instance, the Replicate attribute is needed to increase performance. Thus, it
is supposed to be present on all application that aims for high performance. As semantically
expected, note that there will be also at least one Stage per ToStream and Replicate should
not be necessary present in each one of the stages, but it was at least in one of them.

5.10 Summary

This chapter has provided an overall illustration of SPar and it usage for enabling
productive stream parallelism in C++ programs. We can highlight that it demonstrated SPar
is a straightforward and high-level interface as well as friendly to the domain and capable
of annotating other kinds of parallelism (e.g.,data parallelism). Also, through a small set
of attributes, it was able to achieve the necessary flexibility when implementing different
versions of the applications at hand without requiring any source code rewriting. Such benefit
should be evident since the DSL has actually no dependence/relationship with the target
architecture features. In the following chapters more evidence will be provided concerning
these contributions.

116

117

6. INTRODUCING CODE PORTABILITY FOR MULTI-CORE AND
CLUSTER

This section will present how code portability is achieved and source-to-source
transformations are made for multi-core and cluster.

Contents

6.1 INTRODUCTION . 118

6.2 ORIGINAL CONTRIBUTION . 118

6.3 PARALLEL PATTERNS IN A NUTSHELL 118

6.4 MULTI-CORE RUNTIME (FASTFLOW) . 120

6.5 CLUSTER RUNTIME (MPI BOOST) . 123

6.5.1 FARM . 123

6.5.2 PIPELINE . 124

6.5.3 PATTERN COMPOSITIONS . 125

6.6 GENERALIZED TRANSFORMATION RULES 125

6.7 SOURCE-TO-SOURCE TRANSFORMATIONS USE CASES 129

6.7.1 TRANSFORMATIONS FOR MULTI-CORE . 129

6.7.2 TRANSFORMATIONS FOR CLUSTER . 131

6.8 SUMMARY . 133

118

6.1 Introduction

Code portability with high-performance code is a challenge in parallel programming.
The state-of-the-art frameworks are still too low-level and closely tied to the architecture pro-
gramming model. Unfortunately, this drawback may result in several different implementations
of the same software to meet different application constraints such as scalability, energy,
memory, latency, etc. Consequently, code portability significantly impacts productivity as
well. To solve this problem, our goal is to create generalized transformation rules from SPar’s
annotations as a step towards achieving automatic parallel code generation for multi-core
and cluster systems. Our scope is transformations targeting parallel patterns that support the
stream-oriented paradigm.

In this chapter, we first introduce our original contributions. Second, a brief intro-
duction to parallel patterns, FastFlow and MPI runtime will be given. Next, we present our
transformation rules along with their formalization. Lastly, we demonstrate through a real
case how the same annotation sentences are transformed automatically by the compiler into
FastFlow (targeting multi-cores) and manually generated by using MPI runtime (targeting
clusters).

6.2 Original Contribution

Our original contributions are the generalized transformation rules for SPar sen-
tences. These rules can be applied when targeting different parallel architectures as well as
different pattern-based runtimes.

In addition, we demonstrate how code portability is achieved by SPar at the anno-
tation level. This is made possible by using the generalized transformation rules and the
high-level interface provided by SPar in Chapter 5. Therefore, it is only a matter of compiling
again for the program to execute on another parallel architecture.

Since in MPI we have to implement everything including pattern-based constructions,
synchronization and scheduling, we also contribute by creating an intermediate interface to
allow MPI to exploit stream parallelism with the round robin scheduler.

6.3 Parallel Patterns in a Nutshell

Parallel patterns have a long history from two distinct research communities. After
the original definition of the Algorithmic Skeletons as proposed by Murray Cole [Col89], they
were proposed as high-order functions modeling common parallelism exploitation patterns

119

and providing parallel building blocks for parallel application programmers. Since then, several
researchers from the parallel computing community [Col04, AD07, GVL10] started to create
parallel programming frameworks providing skeletons, investigating and designing new ones.
Later, design patterns for parallel programming [MSM05] were designed by the software
engineering community inspired by design patterns [GHJV02]. Unlike skeletons, they were
proposed as a methodology for recurrent patterns to exploit parallelism in applications. Also,
the methodology seeks to be more general in targeting different programming models, since
each pattern includes a description of its name, problem, solution, context, forces and
examples, which are all independent of the target programming model.

In conclusion, both approaches have produced similar results, differing only in the
name used to represent the pattern. For instance, the farm can produce a Master/Slave or
Master/Worker while MapReduce results from the combination of map and reduce skeletons.
Currently, both approaches converge into a single term for structured parallel programming
[MRR12]. As an example, TBB is a framework that comes from design patterns and FastFlow
from algorithmic skeletons. At the present moment both frameworks use parallel patterns to
represent their parallelism strategies and library constructions. As we are only interested in
the strategy aspects, during the thesis they will be called parallel patterns.

Theoretically, a pattern either exploits task or data parallelism. Task and data parallel
patterns can be composed to produce other more complex patterns or skeletons. A set of
well-known patterns are presented in Figure 6.1 to give an overall idea of the amount and
diversity of parallel patterns. Almost all of these structures can be used to explore data
parallelism which makes these strategies not appropriate for our domain. Most of them
are implemented in standard frameworks like TBB (pipeline, map, reduce, scan). Although
FastFlow originated from the task-based and stream-oriented perspective through classical
stream parallel patterns (pipeline and farms), it also implements data parallel patterns (map,
reduce and stencil).

Figure 6.2 presents a set of task-based parallel patterns that are suitable for exploit-
ing stream parallelism. They can also be composed and produce new more complex stream
parallel patterns. Essentially, Master/Worker is structured by a master activity with N number
of worker activities. Communication with the worker can be synchronous and asynchronous,
where the initiative may be from both activity entities of the pattern. A feedback pattern may
be applied to any stream parallel pattern. A condition node decides whether to route back
a result to the pattern input or to deliver it to the output stream. The pipeline consists of a
sequence of stage activities that communicates synchronously and each stage computes
the results that were computed by predecessor stage. Finally, the farm includes an emitter
activity, N worker activities and possibly a collector activity. Semantically, the farm computes
a given function in all items of the input stream.

In stream parallelism, each one of the activities processes distinct stream elements
sequentially (this can also be seen as tasks). For instance, each stage of the pipeline

120

Figure 6.1 – Overview of different parallel patterns. Extracted from [MRR12].

Figure 6.2 – A set of task-based parallel patterns for stream parallelism.

processes a task and sends it to the next one until all tasks are completed. In the farm pattern,
the emitter is the entity that generates the stream items and sends it to the workers while the
collector gathers all results from the workers. Moreover, people in the algorithmic skeleton
community have provided a formalism to represent stream parallelism along with farm and
pipeline patterns [AD07], modeling,composition, and nesting.

6.4 Multi-Core Runtime (FastFlow)

FastFlow is an open source parallel programming framework that originated from
algorithmic skeleton and structured programming approaches. It is a research project that
has been developed at the University of Pisa and Torino since 2008 and has been used in
several research projects. The main goal is to provide an efficient and portable runtime library
targeting different kinds of heterogeneous parallel architectures [ADKT14, DT15]. FastFlow

121

builds on top of Pthreads1, providing a suitable parallel programming abstraction algorithmic
skeleton for streaming applications, it can exploit fine-grain parallelism in cache-coherent
shared memory platforms and heterogeneous systems.

Conceptually, FastFlow is designed as a stack of layers that looks like those in
Figure 6.3. There is a clear access separation of the layers with respect to the application
level. The lowest programming levels are the building blocks, supporting different queue
implementations, extensible and configurable schedulers, and thread and processes C++-like
containers. Internally, the shared memory support implements the runtime using a lock-free
mechanism [ADK+11, ADK+12]. The distributed runtime is zero-copy message [SUPT14].
Finally, the GPGPU exploits asynchronous parallelism [ADKT12].

Figure 6.3 – FastFlow Architecture. Adapted from [DT15].

At the low-level of FastFlow the queues are the fundamentals for creating new
skeleton topologies and compositions in shared memory environments. A representation of
the runtime implementation of typical parallel structures and behavior can be found in Figure
6.4. There is a clear view of the node connections that are made using Single Producer
and Single Consumer (SPSC) lock-free queues. For each new node a new queue will be
created. When communication patterns such as Multiple Producer and Single Consumer
(MPSC) or Single Producer and Multiple Consumer (SPMC) are needed, in FastFlow they are
implemented by using SPSC channels and an extra thread to enforce the correct serialization
for consumers and producers.

FastFlow’s intermediate programming level is called the core patterns layer. In this
layer, the programmer has access to the other patterns like pipeline and farm that can be
possible extended with feedback channels. These patterns are the core used to build and
compose other skeletons. Unlike the traditional frameworks, the FastFlow runtime is lock-free,
which is important for implementing efficient fine grain streaming applications. Thus, from
the implementation’ point of view, computations are modeled inside nodes (C++ classes)

1Although any other thread library may be used.

122

Figure 6.4 – FastFlow Queues. Adapted from [Fas16].

that will become a process/thread. Also, communications are performed using channels
that represent stream data dependency between nodes. The nodes behave as infinite loops
to get a task from the input channel (actually a pointer), perform the computation of an
internal method provided by the end user, and put the computed results in the output channel
[ADKT14, DT15].

Figure 6.5 – FastFlow skeletons from the core pattern layer.

In FastFlow, the farm skeleton is made up of an emitter, one or more workers, and a
collector node. The emitter is implemented by the farm scheduler, the workers implement
the stream element operations and the collector gathers the stream elements to be delivered
to the output stream. On the other hand, the pipeline skeleton only includes stage nodes.
Figures 6.5 illustrate some possible skeleton compositions of pipeline and farm.

At the high-level patterns’ layer, FastFlow implements data parallel skeletons such
as parallel “for” loops with and without reduce operations [DT14], macro DataFlow [ADA+12],
stencil [APD+15] and pool evolution [ACD+15]. These patterns can be used by themselves or
together (e.g., as stages of a pipeline or workers in a farm).

Source-to-source code transformation in SPar will benefit from farm and pipeline core
patterns. Their level of abstraction provides the flexibility and capabilities necessary to support
automatic exploitation of parallelism in multi-cores from SPar annotations. Moreover, FastFlow
provides suitable interfaces to tune and optimize performance by supporting customized
scheduling implementation, queue access at the building block level, and the possibility of

123

choosing between blocking and non-blocking implementation of communication primitives 2.
More information about FastFlow usage and parallel programming can be found on the web
page tutorial3, which is well documented.

6.5 Cluster Runtime (MPI Boost)

We chose MPI Boost instead of FastFlow as our runtime to target clusters because
MPI is the “de-facto” standard for message passing in parallel programming systems and
FastFlow didn’t work as well on cluster as on multi-core at that time. However, when using
MPI to target the cluster environment, we need to implement the farm and pipeline patterns
representing the output of our SPar transformation rules.

Boost is a set of libraries based on the C++ standard aimed to increase productivity
[Sch14, Kar05]. We used a subset of Boost to support MPI data serialization. In terms of
implementation, it provides us better abstractions and suitable mechanisms to design parallel
patterns. In the following sections, we describe how were implemented the pipeline and
farm patterns on top of MPI in such a way that they may be used as the output of the SPar
transformation rules.

6.5.1 Farm

Here we discuss how we implemented the farm pattern in MPI. Initially, we imple-
mented the farm conceptually similar to that in FastFlow so that the transformation rules
target cluster can be mostly left unchanged in respect to those target multi-cores. However,
instead of working with threads and shared memory message queues, we used processes
running in distributed machines communicating through message passing.

Figure 6.6 illustrates two typical activity graphs implemented using MPI. As in
FastFlow, there will be three kinds of nodes in our MPI farm, which are the Emitter (E), Worker
(W), and Collector (C). The emitter is the stream element scheduler that will distribute each
element to the workers. Before sending, it serializes each stream item. Then the serialized
items are sent in a round robin fashion to workers. When the stream ends, the emitter will
broadcast the special end of the stream message used to implement termination.

The worker only receives stream elements and performs sequential operations over
them. The results are then sent to the collector, if necessary. Therefore, after receiving a
message, the worker will deserialize it and will perform data serialization before sending
results to the collector.

2The blocking mode implement communication channels as non-blocking mode.
3http://calvados.di.unipi.it/storage/tutorial/html/tutorial.html

124

The collector is able to gather stream elements from all workers. Consequently,
it needs to deserialize stream elements after receiving them in such a way that sequential
operations can be computed in the stream items.

Figure 6.6 – MPI farm implementation (circle represents process and arrows represent
communications).

Each pattern implementation works with at least one process that is chosen as
the root process. To guarantee this occurs, we must control the number of processes from
the MPI launcher argument and implement an algorithm to assign the process to different
pattern nodes. Therefore, each node will have three “pids” vectors (its, before and after)
for implementing the node’s connections and control the number of process per node. This
is also a general approach for the pipeline and the composition of patterns that we will be
referred to later in the text.

6.5.2 Pipeline

In the pipeline, the first stage is responsible for streaming elements to the other
stages. The last stage simply receives results of the pipeline computation and the middle
stages receive items from previous stages and send intermediate results to the next stages.
Therefore, the first stage only marshals the stream items while the last only deserializes, and
middle stages have to both deserialize and serialize items and results.

Figure 6.7 – MPI pipeline implementation (circle represents process and arrows represent
communications).

Unlike farm, in pipeline there will be only one node type, which will be classified
as first, middle and last stage. Also, each node can only have a single processes that will
communicate with the next one, except in the last stage.

125

6.5.3 Pattern Compositions

The possibility to compose new parallel patterns is very important in stream paral-
lelism and for the Spar transformations. In FastFlow, the composition is simpler and integrated
in the library as previously described in Section 6.4. The option to include feedback channels
in a pattern that further improves the possibility to implement more complex patterns. For the
current version of SPar, such features are not necessary and will be taken into account in
future work. Figure 6.8 illustrates possible parallel patterns obtained by composing pipelines
and farms.

Figure 6.8 – MPI skeleton compositions.

The persistent nesting of patterns allows us to build more complex topologies [BC05].
For instance, those on top of Figure 6.8 (pipe(farm(E , W , C), farm(E , W , C))) implement the
combination of a pipeline with two farm stages. Internally, the arrows (representing the
communication in the figure) are implemented through our runtime support based on the
“pids” vector described previously. Two other examples are at the bottom of Figures 6.8. The
example of pipe(S, farm(E , W)) is a pipeline with one sequential stage and a farm stage.
pipe(farm(E , W , C), S) is a pipeline where the first stage is a farm and last is a sequential
stage. As can be observed, we initially focused mostly on creating pattern variants in such a
way that the pipeline is combined with farms. This is a consequence of transformation rules
demands that will be discussed on the next section.

6.6 Generalized Transformation Rules

First of all, we introduce some notations that are useful to express SPar semantics:

• Tid : is a ToStream annotation region associated with an integer variable identifier (id).

• Sid : is a Stage annotation region associated with an integer variable identifier (id).

126

• 2id : is a block containing one or more statements, where each block is associated with
an integer identifier (id).

• Ii : denotes Input auxiliary attribute, where i is an argument list that represents one or
more variables with the same or different data types.

• Oi : denotes Output auxiliary attribute, where i is an argument list that represents one
or more variables with the same or different data types.

• Rn: denotes Replicate auxiliary attribute, where n represents the number of replicas
that correspond to an integer variable.

• [[...]]: denotes an annotation that may have a list of attributes.

• {}: denotes the scope of the sentence.

The transformation rules use farm and pipeline parallel patterns to introduce paral-
lelism as presented in Section 6.3. We can represent these patterns by using a functional
style as follows:

farm(): accepts one to three arguments. One argument is the emitter (E), which is
the task scheduler. There is also a worker (W) that performs replicas of a given 2. Then, it is
possible the collector (C), which is a representation of the gather implementation. Each one
of the three elements only accepts a single 2id as an argument and only W can be used as a
single farm.

pipe(): accepts from two or more arguments, where each argument is 2id or farm()
and represents a stage of the pipeline.

The transformation rules from SPar to parallel patterns are based on the following
definitions:

Definition-0: when the last 2 is annotated with S that contains in its attribute list Rn

and Oi , an extra 2 is necessary to gather the results. To differentiate from the typical ones,
we denoted it as ψ.

Definition-1: when the 2 is annotated with S that does not contain in the attribute
list Rn, or 2 appears alone, the 2 can be the argument of pipe, E , or C.

Definition-2: when 2 is annotated with S that contains in the attribute list Rn, the
2 can only be translated to an argument of W . Then, if possible with Definition-1, the
predecessor is E and successor is C so that they are arguments of the farm with W .

Definition-3: T is only transformed directly into a farm when the first S annotation
in the SPar sentence is the only one of a maximum two S annotations that contains Rn in the
attribute list.

Definition-4: T is only transformed directly into a pipe when in a sentence of SPar
the first S in its attribute list does not have Rn of maximum two S, or when there are more
than two Ss.

127

Definition-5: farm is a stage inside a pipe when Definition-3 cannot be applied
and 2 is annotated with S that contains in the attribute list Rn.

A rule must respect all of the previous definitions. In ascending order of the defini-
tions, transformation rules will be created to translate SPar annotation to parallel patterns.
The rules’ syntax presents the annotation schema with corresponding transformations.

First, we perform three transformation rules where a T region will be transformed
directly into a farm (rules 6.1, 6.2, 6.3). Rule 6.1 is for the [[T0]]{20, [[S0, Rn]]{21}} sentence.
We can transform into a farm that has an emitter (which receives 20) with worker replicas of
21 because we induce through definitions 1, 2 and 3. Rule 6.1 can therefore be represented
as follows:

[[T0]]{20, [[S0, Rn]]{21}}
⇓

farm(E(20), W (21));

(6.1)

Rule 6.2 handles an annotation sentence with [[T0]]{20, [[S0, Oi , Rn]]{21}}. The
relative transformation produces first C that receives ψ (by Definition-0), E have 20 (inductively
by Definition-1), and 21 assigned to W (inductively by Definition-2). Therefore induced by
Definition-3, our transformation can be made a farm as follows:

[[T0]]{20, [[S0, Oi , Rn]]{21}}
⇓

farm(E(20), W (21), C(ψ));

(6.2)

Another possible sentence of SPar is [[T0]]{20, [[S0, Rn]]{21}, [[S1]]{22}}. Rule 6.3
states that we can transform it into a farm (inductively by Definition-3) where the E receives
20 (inductively by Definition-1), W is 21 (inductively by Definition-2) and C is the 22 (inductive
by Definition-1). The rule can therefore be written as:

[[T0]]{20, [[S0, Rn]]{21}, [[S1]]{22}}
⇓

farm(E(20), W (21), C(22));

(6.3)

A sentence like [[T0]]{20, [[S0]]{21}} will be directly transform in a pipe inductively
by Definition-4 if the first S from the T region does not include any Rn. Rule 6.4 is therefore
represented as follows:

[[T0]]{20, [[S0]]{21}}
⇓

pipe(20,21);

(6.4)

128

The next rules are more complex sentences that we can induce through Definition-4
to become a pipe and Definition-5 a farm to become a stage in the pipeline. For example,
in Rule 6.5 we know that it will be a pipeline because of S0 and a farm will become a stage
by Definition-5, as S1 is followed by Rn. As we can induce E by Definition-1 and W by
Definition-2, our rule for the [[T0]]{20, [[S0]]{21}, [[S1, Rn]]{22}} SPar sentence is therefore
represented as:

[[T0]]{20, [[S0]]{21}, [[S1, Rn]]{22}}
⇓

pipe(20, farm(E(21), W (22)));

(6.5)

For the [[T0]]{20, [[S0]]{21}, [[S1, Oi , Rn]]{22}} sentence we will use the same defi-
nition of Rule 6.5 due to the S0 and S1. Yet, we have to generate ψ to make it an argument of
C because there is Oi along with Rn in the last S (induction from Definition-0). The resulting
transformation is therefore Rule 6.6.

[[T0]]{20, [[S0]]{21}, [[S1, Oi , Rn]]{22}}
⇓

pipe(20, farm(E(21), W (22), C(ψ)));

(6.6)

Rule 6.7 presents another common sentence in SPar for stream parallelism. The
transformation is induced by Definition-4 to become a pipe and Definition-5 to make a farm
as an argument of pipe. Thus, farm is derived from Definition-1 and Definition-2.

[[T0]]{20, [[S0]]{21}, [[S1, Rn]]{22}, [[S2]]{23}}
⇓

pipe(20, farm(E(21), W (22), C(23)));

(6.7)

Sentence [[T0]]{20, [[S0, Rn]]{21}, [[S1]]{22}, [[S2, Oi , Rn]]{23}} is another complex
situation. We have more than two Ss that can be induced by Definition-4 to become a pipe.
Also, we have to generate ψ due to Definition-0. Consequently, two equivalent rules may be
produced by the induction of Definition-5 (Rule 6.8 and 6.9). In Rule 6.8, the farm stages
are built from the first Rn looking for the predecessor and successor since it is inductively by
Definition-2 and then the second ones such as follows:

[[T0]]{20, [[S0, Rn]]{21}, [[S1]]{22}, [[S2, Oi , Rn]]{23}}
⇓

pipe(farm(E(20), W (21), C(22)), farm(W (23), C(ψ)));

(6.8)

On the other hand, if we start from the last Rn looking for the predecessor and
successor as states in Definition-2, we represent our equivalent transformation rule (Rule
6.9) as follows:

129

[[T0]]{20, [[S0, Rn]]{21}, [[S1]]{22}, [[S2, Oi , Rn]]{23}}
⇓

pipe(farm(E(20), W (21)), farm(E(22), W (23), C(ψ)));

(6.9)

Because SPar semantics impose few restrictions, its sentences may be eventually
combined in many ways. Even though not all of the possibilities are illustrated, our definitions
allow one to implement new and different transformation rules. In this section, we have
shown how transformation rules are built from SPar sentences to parallel patterns according
to the respective definitions and functional semantics. Therefore, an algorithm that intends
to perform new transformation rules must meet our definitions and decide between two
equivalents to be applied in the system. In case, the SPar compiler implements such an
algorithm to meet all possible transformation rules.

To prototype these rules one must take into account the following notes:

1. We are assuming that the parallel patterns details like communication and synchroniza-
tion are already dealt with in the target runtime.

2. A stream element is derived from Oi and Ii arguments.

3. Optimizations must be implemented at the level of the runtime such as load balancing
and scheduling.

6.7 Source-to-Source Transformations Use Cases

In order to illustrate how source-to-source code is generated and code portability is
achieved, this section will present and discuss the aspects related to multi-core and cluster
targeting through our transformation rules. The idea is to present a real code example where
rules are used to map the SPar code into the parallel code.

6.7.1 Transformations for Multi-Core

During the implementation of the SPar compiler, in addition to the transformation
rules, we also have the support of the SPar AST previously described in Section 5.8. Figure
6.9 uses the prime number application to illustrate the transformations in six steps and map
where original code is after the code is generated by the SPar compiler. On top of the figure
we put the annotated code using SPar attributes with blocks labeled as SPar steps.

First of all, the compiler algorithm starts analyzing the SPar AST, looking for the input
and output dependencies so that the data structure inside of the 1 step block can be built.

130

We process the input and output specifications to represent each stream element in a generic
way. Then, pieces of the source code and annotation blocks are transformed according to
the transformation rule 6.3. Therefore, we produced the first stage and subsequently the
second stage. Note that inside blocks 2 and 3 we must manage data, during this kind
of transformation it is necessary to look for the input and output dependencies. Then, we
build the block 4 for the stream region that will be used as the emitter. In addition, we must
manage when to send the stream elements and control the end-of-stream. Lastly, right after
the function definition, the whole structure of the farm is initialized (block 5). Also, as a
result of the transformation in place of the original ToStream annotation block, we produced
block 6 and update input and output values. We also call the FastFlow runtime actually
executing the farm skeleton.

Figure 6.9 – Mapping the transformations to FastFlow generated code.

The transformation flow detailed above is the same as other applications, though
the transformation rule used may vary. FastFlow supports us with an interface suitable
to make stream parallelism possible in SPar, but it does not prevent us from dealing with
data management and other C++ low-level aspects such as pointers. On the other hand,
it prevents us from creating several different algorithms to allow for different scheduler and
stream ordering. For instance, when one sets the spar_ondemand optimization flag, we only
need to add at the end of the block 5 , a routine that sets the on-demand scheduler without
changing the rest of the structure. Similarly, the spar_ordered does not require changes
since the only thing to do is to use a different method to initialize the farm. The implementation
of the spar_blocking optimization is even simpler, because it is achieved by adding an extra

131

flag when assembling the code with GCC. The meanings of these optimization flags are as
follows:

• spar_ondemand: used to generate the on-demand scheduler.

• spar_blocking: used to activate the FastFlow blocking mode.

• spar_ordered: used to say that output stream elements must be delivered respecting
the input order.

We implemented these optimization flags along with the default transformations to
speed up different kinds of applications. In the future, we expect to have more possibilities to
optimize the code during compilation. Later in Chapter 7, we evaluate the impact of these
optimization flags on the performance, when used alone or in conjunction with each other.

6.7.2 Transformations for Cluster

Some technical reasons did not allow us to use FastFlow for the runtime in the
cluster environment: no stable version, few documentation, and no available launcher. We
also had a greater motivation for using a different runtime to target clusters which was an
evaluation of the generality of the proposed transformation rules including possible challenges
that we would face with a runtime which does not primitively support stream parallelism.
Consequently, the first challenge given was to prepare an intermediate interface for the farm
and pipeline patterns, implement the scheduler and data serialization.

Unlike the multi-core transformations, we are still in the process of completing the
implementation of the cluster support (we plan to enable it simply by using spar_cluster

compilation flag). The code shown has been hand generated from the rules presented in
Section 6.6, as we still have not completed the tools to generate it automatically.

To demonstrate the differences between cluster and multi-core code generation as
well as how we eventually achieved code portability, Figure 6.10 uses the same prime number
application. The annotated code can be found at the top of the figure and we organized the
generated code in blocks labeling the step sequence. Because we wanted to concentrate
only on the essential parts, some blocks of code are hidden and represented through white
boxes.

Similar to the compiler algorithm for multi-core generation, the first step was to
build the stream structure by looking for the data dependencies through the SPar AST. We
produced the first block understanding the input and output specification of the stages. Also,
since it is necessary to send data through the network, we used the Boost library to implement
data serialization. Therefore, only standard C++ types are easily handled by Boost, while

132

Figure 6.10 – Mapping the transformations to MPI generated code.

pointer and other complex structures require manual implementation of the serializations.
This type of verification must be done internally when analyzing the data types of the input
and output on the AST.

The next step is to apply the corresponding transformation rule (Rule 6.3). As a
consequence, we transform the first stage (step 2) and then the subsequent stage (step

3). The first stage will be replicated so that it becomes a worker. The last one must
generate a gather function and implement a generalized protocol to read from all replicas
each one of the stream elements, becoming a collector. In contrast, the first stage must only
manage the data like in multi-core and generate the intermediate interface with the support of
the MPI Boost library.

The fourth step produced the emitter that originates from the stream region. This
generation requires two special tasks: sending the stream elements in a round robin fashion
and controlling the end-of-the-stream. The difference with respect to FastFlow runtime is

133

the generation of the scheduler. The last step is to transform the compound statement of
the function definition that was annotated by SPar. It will generate all the MPI code, an
algorithm to fill the “pids” vector and call all generated methods. This vector is necessary for
indicating which process will run in a given region as well as for implementing the relevant
communication protocol.

During the presentation of this illustrative example we can highlight that it requires
significant effort to prepare a compatible interface using the MPI library runtime for imple-
menting stream parallelism in cluster environments. However, we were able to generate
code based on the transformation rules. In the experiments, we give performance insights
addressing functionality and performance. The most important factor is that code portability
is possible through recompilation of the program. No modification or additional attributes are
needed in the source code.

6.8 Summary

This chapter introduced essential features of the used (FastFlow) and developed
runtime (created on top of MPI) as well as parallel patterns. We provided a new contribution
with the generalized transformation rules aiming at code portability. They were formulated
in such a way we can translate the code by hand, integrating the rules into the compiler
algorithm. We demonstrated through the real use cases that the whole process not only works,
but it is also straightforward. Moreover, due to the higher abstraction FastFlow presents for
developers and the fact that it already provides farm and pipeline patterns, targeting FastFlow
has been demonstrated to be much easier than targeting MPI.

134

Part III

Experiments

135

137

7. RESULTS

This chapter present the results of the experiments for evaluating and comparing
performance and coding productivity.

Contents

7.1 INTRODUCTION . 138

7.2 EXPERIMENTAL METHODOLOGY . 138

7.2.1 BENCHMARKING SETUP . 138

7.2.2 TESTS ENVIRONMENT . 139

7.2.3 PERFORMANCE EVALUATION . 140

7.2.4 CODING PRODUCTIVITY INSTRUMENTATION . 141

7.3 MULTI-CORE ENVIRONMENT . 141

7.3.1 SOBEL FILTER . 142

7.3.2 VIDEO OPENCV . 157

7.3.3 MANDELBROT SET . 163

7.3.4 PRIME NUMBERS . 170

7.3.5 K-MEANS . 178

7.4 CLUSTER ENVIRONMENT . 186

7.4.1 SOBEL FILTER . 186

7.4.2 PRIME NUMBER . 187

7.5 SUMMARY . 189

138

7.1 Introduction

This chapter will introduce a set of experiments relative to five carefully chosen
applications (described in Section 7.2.1) aimed at evaluating and comparing productivity,
performance and code portability. Firstly, we will describe our methodology for the experi-
ments. Then, performance and productivity are tested in the multi-core environment. We also
perform a comparison with state-of-the-art parallel programming frameworks (OpenMP, TBB,
FastFlow and eventually Pthreads). Subsequently, we present the results of two applications
(already tested on Multi-core) derived from the same annotated source code and targeting
MPI runtime.

7.2 Experimental Methodology

This section presents the methodology used to conduct the experiments.

7.2.1 Benchmarking Setup

Our criteria for choosing the applications were diversity and real world applicability.
Consequently, the suite of applications we picked are as follows:

• Sobel Filter: Applying filters over a set of images is a recurrent operation in image
processing applications. It can be used as a representative example of real world
applications for evaluating expressiveness, parallelism exploitation and performance.
Also, due to its well defined structure, it allows us to reproduce different versions
of implementation to test the programming frameworks’ flexibility as well as different
workload performances.

• Video OpenCV: We intentionally implemented this application using OpenCV library
because it is widely used in video streaming processing while demonstrates that
SPar may be used in conjunction with standard libraries. The program structure is
representative of other real world stream applications such as those commonly found
in the networking domain. The very same schema used to implement video operation
applications, may be used to implement network package analysis.

• Mandelbrot Set: This provides an interesting problem to be solved using stream
parallelism, because it is originally designed to be a data parallel computation. In fact,
it is an scientific application, where iterative screen visualization is used to support

139

the scientist to follow the results. A similar pattern is present in medicine and biology
applications, where in case, the scientists could be interested in following the DNA
results on the screen while computing more samples.

• Prime Numbers: This is a mathematical algorithm used in the scientific community
and real world cryptography applications. It is also a well know problem in the parallel
programing field for testing the performance of the programming framework, especially
as far as load balancing is concerned. Although it is not a stream application, it allows
us to evaluate SPar’s expressiveness and performance compared to the state-of-the-art
tools.

• K-Means: One motivation for using K-Means is justified by the significant current
research effort spent to achieve quick insights from big data. K-Means algorithm is
recurrently applied in data analysis to classify data. Secondly, it is a challenge because
it requires SPar to implement stream and data parallelism at the same time.

7.2.2 Tests Environment

In order to evaluate the performance of the applications, we used two different
machine architectures. Table 7.1 describes the characteristics of the Pianosau machine
environment, used to run the multi-core experiments. On the other hand, Table 7.2 presents
Dodge cluster machines’ configurations, composed of four identical nodes that has been
used to run our “cluster” experiments.

Characteristic Description
Processor model Intel(R) Xeon(R) CPU E5-2650.

Processor performance Two CPU sockets, each one with 8 cores and 16
threads with frequency base of 2.00GHz.

Memory settings NUMA DDR3 32GB and smart cache of 20MB.
Disk capacity local hard driver 385GB

Network Two Intel Corporation I350 Gigabit Network Con-
nection

Operating System CentOS release 6.3 (64 bits).
Compiler GCC 5.3.0 with -O3 optimization flag.
Runtime FastFlow library (version 2.1.0)

Table 7.1 – The Pianosau machine configurations.

140

Characteristic Description
Processor model Intel(R) Xeon(R) CPU X5560.

Processor performance one CPU with 4 cores and 8 threads with fre-
quency base of 2.80GHz.

Memory settings DDR3 24GB and smart cache of 8MB.
Disk capacity local hard driver 657GB and more 657G in the

NFS
Network Two Intel Corporation 82574L Gigabit Network

Connection.
Operating System Ubuntu 14.04.3 LTS (64 bits).

Compiler GCC 5.3.0 with -O3 optimization flag.
Runtime Boost library (version 1.6.0).

Table 7.2 – The Dodge cluster machines’ configuration (total of 4 nodes).

7.2.3 Performance Evaluation

The experiments in performance evaluation take into account different metrics that
are listed below:

• Completion time: Is the time that an application takes to start and finish its computa-
tions. It will be used to calculate subsequent metrics. We obtain the time before starting
the stream region and after it ends, then we subtract the end by start time to get the
completion time.

• Latency: Is the response time in milliseconds to process each stream element [Gre14].

• Throughput: Is relative to the amount of stream elements that the application is able to
process in a given time, which is also called the rate of work [Gre14]. The throughput is
the inverse of service time that is based on Little’s Law, dividing the completion by the
number of elements processed in this period [Gus11].

• Speedup: This metric is based on Amdhal’s law to represent the scalability of the
application [MRR12]. In this case, we measured the throughput speedup relative to the
number of replicas (parallelism degree).

• Efficiency: This is also based on the Amdhal’s law to represent how efficiently the
application uses machine resources. In this case, we provide this metric as it is usually
presented in HPC, by first calculating the speedup relative to the completion time and
then dividing the resultingt speedup by the amount of replicas used.

• Energy consumption: This is the energy used by the application in a specific interval
of time. It is expressed in Joules and given through the integral of power over time. In

141

this case, we used the Intel RAPL (Running Average Power Limit)1 driver which read
from Linux hardware counters.

• Memory usage: This is the amount of memory that an application used during its
execution. This metric is collected by reading the process event files (for example, the
metric can be extracted from /proc/pid/status).

• Cache misses: These occur when thread or processes try to read on cache and do
not find data, which then requires them to go to the main memory. The amount of times
this happens during the program execution is called the cache miss rate [HP11]. They
are collected through the Linux performance library 2.

Each application is executed 10 times for each number of replicas (parallelism
degree) tested in order to calculate the arithmetic mean of these values. Also, the standard
deviation was calculated based on 10 executions.

7.2.4 Coding Productivity Instrumentation

The applications used to test productivity are the same ones used for performance
evaluation. There are many measurements we could have used for evaluate productivity
[SS96], but we evaluated coding productivity by measuring the physical source lines of code,
which in its simplicity already provide an indirect measurement of the amount of time needed
to develop the code. Therefore, the applications were carefully implemented, modifying only
the parts of the code that had to be parallelized. To ignore comments and count only the real
code line, we used SLOCCount tool3.

Because the number of lines is only a quantitative metric, we also analyzed the
source code implementation and parallelism modeling. This evaluation is a comparative
way looking for the programming model and associating if there is low-level programming
and code rewriting. The idea is to demonstrate the drawbacks and advantages of SPar with
respect to the state-of-the-art parallel programming tools.

7.3 Multi-Core Environment

This section performs the experiments in the multi-core environment to evaluate and
compare of SPar’s performance and coding productivity.

1https://01.org/rapl-power-meter
2http://man7.org/linux/man-pages/man2/perf_event_open.2.html
3http://www.dwheeler.com/sloccount/

142

7.3.1 Sobel Filter

Applying a filter over images is a recurring task in the image processing field. To
represent these types of applications, we benchmark the Sobel filter. Listing 7.1 presents
a pseudo-code application. It is possible to observe that the program is reading all files
from a given directory and applying the Sobel filter over bitmap images only. Using SPar’s
methodology, the recommendation is to first identify the stream region. Therefore, we start
from the “while loop”, obtaining a new file descriptor iteration by iteration until the directory is
empty. After this, we can simply identify what will be consumed and produced by this region,
specifying input and output attributes with the respective variables as annotated in line 5.

Inside the ToStream region, there are three stream operations that are read, filter
and write, which configures three stages. Before starting the stream operations, each file is
preprocessed to get its name and extension. Then, files that are not bitmap extensions are
ignored so that it is possible to count how many images were read. When reading a bitmap
file, the program stores image information (e.g., image size, height, and width) and loads all
image bytes in the memory. Next it applies the Sobel filter and writes the results on the disk.

Even though SPar allows us to annotate this application in different ways, we
demonstrate the two most efficient alternatives in Listing 7.1 and 7.2. In the first we annotate
the filter and write operation regions as stages and let the stream region to read and produce
for the other stages. Consequently, our stream will be different from what ToStream was
consuming because it is producing another stream inside that are image information and the
buffer containing all image bytes. Therefore, we can easily identify and annotate the input
and output. Moreover, as the most time-consuming part is to apply the Sobel filter and it
can operate independently for each new stream element (image), the Replicate attribute
can be assigned to speedup performance. Note that we could also put the replicate attribute
in the last stage because it could operate independently, but this second version may add
extra overhead because the application is also reading from the disk. In contrast, when there
is a sophisticated storage architecture, adding the replicate at the last stage may improve
performance. Thus, this is one example that we can use to illustrate the importance of SPar’s
flexibility for taking advantage of the hardware resources.

1 i n t main (i n t argc , char * argv []) {
2 / / open d i r e c t o r y . . .
3 DIR * dp t r = opendi r (. . .) ;
4 struct d i r e n t * d f p t r ;
5 [[spar : : ToStream , spar : : Input (dpt r , d f p t r , tot_ img , t o t _ n o t) , spar : : Output (tot_ img

, t o t _ n o t)]] while ((d f p t r = readd i r (dp t r)) != NULL) {
6 / / preprocessing
7 i f (f i l e _ e x t e n s i o n == "bmp") {
8 / / Reads the image . . .
9 to t_ img ++;

143

10 image = read (name, height , width) ;
11 [[spar : : Stage , spar : : Input (he ight , width , image) , spar : : Output (new_image) ,

spar : : Replicate (workers)]] {
12 / / App l ies the Sobel
13 new_image=sobel (image , height , width) ;
14 }
15 [[spar : : Stage , spar : : Input (newname, height , width , new_image)]] {
16 / / Wr i tes the image . . .
17 w r i t e (newname, new_image , height , width) ;
18 } / / end stage
19 } else {
20 t o t _ n o t ++;
21 }
22 } / / end of stream computing
23 / / end processing
24 return 0;
25 }

Listing 7.1 – Sobel Filter using SPar (pipe-like).

Listing 7.2 represents a slightly different version of Listing 7.1. It demonstrates
SPar’s flexibility ad expressiveness which allows to perform minimal changes in the sequential
code to produce different annotation schemes and activity graphs (see on Section 5.6 on
Figure 5.2). The only changes consist in commenting out lines 14 and 16 of Listing 7.1 and
putting the stage annotation before the read operations. Also, we updated the input and
output attributes because ToStream now produces only the “name” (original file name) and
“newname” (result file name) during the preprocessing. Finally, since nothing needs to be
produced inside the stage to survive the stream region, the output attribute is not necessary
any more.

In the next sections we will first present the performance experiment results rela-
tive to the original application and applications obtained annotating the original code with
SPar attributes. Subsequently, producing parallel code targeting multi-cores through our
transformation rules described in Chapter 6.6, which were implemented in the SPar compiler.
After, we evaluate coding productivity as well as compare performance with state-of-the-art
frameworks, where SPar is actually generating FastFlow code. Therefore, plain FastFlow
implementations may benefit from the very same optimizations implemented by SPar flags,
which are stressed in Section 7.3.1.

1 i n t main (i n t argc , char * argv []) {
2 / / open d i r e c t o r y . . .
3 DIR * dp t r = opendi r (. . .) ;
4 struct d i r e n t * d f p t r ;
5 [[spar : : ToStream , spar : : Input (dpt r , d f p t r , tot_ img , t o t _ n o t) , spar : : Output (tot_ img

, t o t _ n o t)]] while ((d f p t r = readd i r (dp t r)) != NULL) {
6 / / preprocessing

144

7 i f (f i l e _ e x t e n s i o n == "bmp") {
8 to t_ img ++; / / counts the number o f images
9 [[spar : : Stage , spar : : Input (name, newname) , spar : : Replicate (workers)]] {

10 / / Reads the image . . .
11 image = read (name, height , width) ;
12 / / App l ies the Sobel
13 new_image=sobel (image , height , width) ;
14 / / Wr i tes the image . . .
15 w r i t e (newname, new_image , height , width) ;
16 } / / end stage
17 } else {
18 t o t _ n o t ++; / / count the number o f images not read
19 }
20 } / / end of stream computing
21 / / end processing
22 return 0;
23 }

Listing 7.2 – Sobel Filter using SPar (farm-like).

SPar Performance

We differentiate the previous versions of the Sobel filter application by using the
word “pipe” when referring to Listing 7.1 and not using “pipe” term when referring to Listing
7.2. We put in the graphs an abbreviation of the compilation flags used to differentiate from
generated source-to-source code such as follows:

• spar_blocking (blk): used to activate the FastFlow blocking mode.

• spar_ondemand (ond): used to generate the on-demand scheduler.

Therefore, the syntax of the legend in the graphs is spar-[version]-[compiler flag].
Moreover, the Y axis always is relative to the performance metric and X axis is relative to the
number of replicas instantiated for testing the application behavior. Replica 0 represents the
source code (sequential). All metrics are exclusively related to the stream region from its start
to its end. The machine used for these experiments was Pianosau, which was previously
described in Section 7.2.2.

We setup two kinds of workloads to stress the application. For the balanced workload
320 images with 3000x2250 resolution were used. On the other hand, the unbalanced work-
load was composed of 1280 images and four different resolutions were selected (800x600,
1024x768, 1600x1200 and 3000x2250).

Figure 7.1 and 7.2 shows the performance results concerning the metric completion
time (a) and latency per image (b). Considering completion time, it is not possible to

145

significantly distinguish the best optimization flag used in the both versions due the standard
deviation illustrated in the graphs (using error bars), which are overlapping.

When comparing both versions, we can see that adding more stages significantly
impacts latency when more replicates are instantiated in this application. This occurs
specifically from 16 replicas that coincide with the start of the hyper threading facilities of
this machine. However, we can observe that the application performs better if it uses more
stages when there are enough resources available. Due to the pipeline, even performing a
single replica can significantly reduce latency and completion time with respect to Listing
7.2’s version.

 8

 16

 32

 64

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Sobel (Time)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(a) Sobel Filter execution times.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Sobel (Stream Performance)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(b) Sobel Filter latency.

Figure 7.1 – Time performance using balanced workload (Listing 7.1)

 4

 8

 16

 32

 64

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Sobel (Time)

spar spar−ond spar−blk spar−blk−ond

(a) Sobel Filter execution times.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Sobel (Stream Performance)

spar spar−ond spar−blk spar−blk−ond

(b) Sobel Filter latency.

Figure 7.2 – Time performance using balanced workload (Listing 7.2)

Another important metric in stream parallelism is the throughput that is presented in
Figure 7.3 and 7.4. Graph (a) illustrates the throughput and graph (b) the throughput speedup.
These results demonstrate how many images the application is able to process at a given
time that can be associated with Figure 7.1 and 7.2. Unlike the time and latency metrics,
throughput shows a significant difference among the versions implemented using SPar. For
instance, picking up the highest throughput rate of both versions, Listing 7.2’s version is able

146

to process 10 more images (with 32 replicas). However, Listing 7.1’s version requires less
replicas to achieve its highest throughput rate (with 11 replicas).

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
3

2
0

Number of Replicas

Sobel (Stream Performance)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(a) Sobel Filter throughput.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Sobel (Speedup Throughput)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(b) Sobel Filter throughput speed-up.

Figure 7.3 – Stream performance using balanced workload (Listing 7.1)

 5

 10

 15

 20

 25

 30

 35

 40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
3

2
0

Number of Replicas

Sobel (Stream Performance)

spar spar−ond spar−blk spar−blk−ond

(a) Sobel Filter throughput.

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Sobel (Speedup Throughput)

spar spar−ond spar−blk spar−blk−ond

(b) Sobel Filter throughput speed-up.

Figure 7.4 – Stream performance using balanced workload (Listing 7.2)

High-Performance Computing (HPC) performance concerns more on CPU efficiency
and energy consumption of the application. In both versions in Figure 7.5 and 7.6, (a)
represents efficiency and (b) demonstrates the energy consumption only concerning the
CPU cores 4. We can observe that this application does not present an efficient usage of the
CPU starting from 5 replicas up to 32. In fact, it decreases to 20 percent for the Listing 7.2’s
version and even more for Listing 7.1’s version. These results are due to the fact that the disk
is a bottleneck for this application, since two of the three stream operations are performed
primarily on the disk (read and write).

When analyzing the energy spent to achieve efficiency, it is again evident that the
second version provides the best balance between effectiveness and power consumption.
On the other hand, when looking at the optimization flags, the results show that when an

4This metric was collected by using hardware counters.

147

spar_ondemand flag is added, the application consumes more energy than in case we use
standard or different kinds of flags.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Sobel (HPC Performance)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(a) Sobel Filter HPC efficiency.

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−cores)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(b) Sobel Filter CPU cores energy consumption.

Figure 7.5 – HPC performance using balanced workload (Listing 7.1)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Sobel (HPC Performance)

spar spar−ond spar−blk spar−blk−ond

(a) Sobel Filter HPC efficiency.

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−cores)

spar spar−ond spar−blk spar−blk−ond

(b) Sobel Filter CPU cores energy consumption.

Figure 7.6 – HPC performance using balanced workload (Listing 7.2)

Figures 7.7 and 7.8 shows the HPC metrics: cache misses (graph a) and the energy
consumption from the entire CPU socket (graph b), which includes the cache memory. When
comparing the versions, Listing 7.2 had less cache misses, but the energy consumption of
the CPU socket was higher because it provides better efficiency (Figure 7.6(a)).

Analyzing the optimization flags, we can observe that cache misses were not
significantly different. Also, energy consumption does not present significant differences as
before (Figure 7.6(b) and 7.5(b)) when we were only looking at the CPU core consumption.
The spar_ondemand optimization flag result is a consequence of generating code that stresses
the CPU more than other resources from the energy consumption perspective, yet efficiency
and cache miss are not significantly affected.

The last resource that we analyzed was memory. Memory efficiency is essential
for avoiding unnecessary traffic due to the memory swaps that will eventually lead to perfor-
mance losses. Increasing memory usage is normal since we add replicas to a code region

148

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (cache−miss)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(a) Sobel Filter cache misses.

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−pkg)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(b) Sobel Filter socket energy consumption
(cache and CPUs).

Figure 7.7 – CPU Socket performance using balanced workload (Listing 7.1)

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (cache−miss)

spar spar−ond spar−blk spar−blk−ond

(a) Sobel Filter cache misses.

 128

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−pkg)

spar spar−ond spar−blk spar−blk−ond

(b) Sobel Filter socket energy consumption
(cache and CPUs).

Figure 7.8 – CPU Socket performance using balanced workload (Listing 7.2)

during parallelization. Figure 7.9 and 7.10 illustrate memory usage (graph a) and energy
consumption (graph b).

There are significant differences in memory usage when the results of the application
versions are compared. While Listing 7.2 version increases linearly and uses less memory
to exploit parallelism, Listing 7.1 version starts with much memory and increases until it
becomes stable, using more memory to exploit parallelism. This is a consequence of adding
one more stage contributing to pipeline parallelization in the application. However, the results
of energy consumption do not reflect such results as memory usage does not seem to affect
power consumption in this case.

Next we compare the effect of using different optimization flags. Only Figure 7.9(a)
the spar_blocking flag revealed a significant impact. In this case, from beginning up to
14 replicas much more memory is used. This result is a consequence of the round robin
scheduler that combined with the blocking mode that requires the use of much more memory
for the FastFlow queues.

149

 32768

 65536

 131072

 262144

 524288

 1.04858e+06

 2.09715e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (Memory)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(a) Sobel Filter memory usage.

 64

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−ram)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(b) Sobel Filter memory energy consumption.

Figure 7.9 – Memory performance using balanced workload (Listing 7.1)

 32768

 65536

 131072

 262144

 524288

 1.04858e+06

 2.09715e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (Memory)

spar spar−ond spar−blk spar−blk−ond

(a) Sobel Filter memory usage.

 64

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−ram)

spar spar−ond spar−blk spar−blk−ond

(b) Sobel Filter memory energy consumption.

Figure 7.10 – Memory performance using balanced workload (Listing 7.2)

The results regarding unbalanced workloads can be found in the Appendix chapter
in Section A.1.1. In general, they do not present many contrasts when comparing all of
the metrics of the previously balanced workload to an unbalanced workload. Latency and
throughput were expected to be lower and higher respectively because smaller image sizes
were used. However, the throughput speedup was lower for Listing 7.2 (compare Figure
7.4(b) than the A.13(b)) version as well as the HPC efficiency due to scheduling and disk
overhead. With respect to the optimization flags, the spar_ondemand demonstrated better
speedup and efficiency in the most cases. This result was also expected because on demand
scheduling performs better with unbalanced workloads.

Productivity Comparison

In this section, we will compare code productivity with other alternatives for parallel
programming. One way to look for productivity is to evaluate the physical Source Line of
Code (SLOC) that was necessary to support parallelism in the application. Figure 7.11
plots the percentage difference with respect to the sequential version (considering the whole

150

application’s code). The implemented versions using SPar (spar), OpenMP (omp), TBB
(tbb), and FastFlow (ff). We can observe that programming frameworks designated to
stream parallelism (TBB and FastFlow) require much more code intrusion. Even though
OpenMP is not particularly suitable to support stream parallelism, this application provides
specific characteristics that enable implementation by using task parallelism. Consequently,
it produces more code intrusion than when parallelizing data parallel computations. As
SPar builds on the standard grammar, it allows us to reuse C++ iteration statements when
annotating a stream region or stage. In turn, this enables us to achieve better productivity
than OpenMP.

0%

5%

10%

15%

20%

25%

seq spar
spar-pipe

omp
omp-pipe

ff ff-pipe
tbb tbb-pipe

P
e

rc
e

n
ta

g
e

 D
iff

e
re

n
c
e

Source Line of Code (Filter Sobel)

0.00 0.30 0.61

2.74
3.65

12.77

19.45

15.70

21.88

Figure 7.11 – Source line of code for filter Sobel application.

In addition to SLOCs, it is important to analyze the conceptual productivity concern-
ing implementation details and particular characteristics from the programming framework
that need to be understood. For instance, OpenMP is not designed to implement stream
parallelism. Therefore, it is necessary to understand more about its API and low-level pro-
gramming model. Listing A.1 implements a comparable pseudo code version of Listing
7.2, where OpenMP uses terms like single, parallel, and task that are considered low-level
parallelism exploitation directives and not stream domain friendly terms. It will influence
code productivity because developers have to learn terms and programming models that are
not friendly to their domain. Moreover, OpenMP was able to produce a kind of pipeline-like
implementation because stages can operate in a DataFlow graph mode. The resulting pseudo
code version is presented in Listing A.2, which in principle can be compared with Listing 7.1.
Thus, users must again deal with low-level terms and explicitly define data dependency.

The comparison between SPar, FastFlow and TBB implementations (Listings A.3,
A.4, A.5, and A.6), reveals that two (FastFlow and TBB) provide less productivity because
the original code must be restructured and more code is needed. However, unlike OpenMP,
FastFlow and TBB terms are more friendly to the domain user as well as their interface.

151

Performance Comparison

A performance comparison is a way to identify if the rules for source-to-source
transformation are efficient with respect to the state-of-the-art tools. Therefore, all other
compared versions are implemented in an optimal way, while in SPar we plot the default
version without any optimization flag. Experiments used a balanced workload as discussed in
the previous section (Section 7.3.1). Figures 7.12 and 7.13 present the two implementation
versions, comparing the completion time (graph a) and the latency (graph b). In summary, the
results of Figure 7.12 demonstrate that SPar achieved similar completion time and latency
with respect to state-of-the-art stream parallelism tools (FastFlow and TBB). However, SPar
outperforms OpenMP up to the point we start using the hyper threading resources of the
machine. After that point, it loses against OpenMP (out against TBB and FastFlow too).
Note that the OpenMP error bars present a higher standard deviation when running on hyper
threading facilities.

 4

 8

 16

 32

 64

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Sobel (Time)

spar−pipe ff−pipe tbb−pipe omp−pipe

(a) Sobel Filter execution times.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Sobel (Stream Performance)

spar−pipe ff−pipe tbb−pipe omp−pipe

(b) Sobel Filter latency.

Figure 7.12 – Time performance comparison using balanced workload (Listing 7.1)

In the second version (Figure 7.13), there is an equilibrium among the programming
frameworks in completion time and latency. Note that OpenMP has the same results in Figure
7.12 even when different annotations are used. Consequently, OpenMP would not benefit
from a pipeline parallelism such as SPar when there are enough machine resources (2 up to
15 replicas). The disadvantage of OpenMP in this application is that expressiveness is not
reflected in performance, because it requires more replicas to achieve better performance
than SPar in the pipeline-like implementation version.

When we look for the stream throughput metric, the difference is more evident in
Figure 7.14 and 7.15. We can conclude that DataFlow parallelism (OpenMP) has higher
throughput rates compared to stream parallelism in Figure 7.14’s version. This is primarily
due to the fact that the first and last stages are not able to process fast enough to maintain
the pipeline full. One way to address this performance behavior would be replicate the last
stage, such as OpenMP dues with DataFlow. Hence, with a lower number of replicas the
application can not perform better than when using OpenMP, while SPar allows the users to

152

 4

 8

 16

 32

 64

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Sobel (Time)

spar ff tbb omp

(a) Sobel Filter execution times.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Sobel (Stream Performance)

spar ff tbb omp

(b) Sobel Filter latency.

Figure 7.13 – Time performance comparison using balanced workload (Listing 7.2)

 5

 10

 15

 20

 25

 30

 35

 40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
3

2
0

Number of Replicas

Sobel (Stream Performance)

spar−pipe ff−pipe tbb−pipe omp−pipe

(a) Sobel Filter throughput.

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Sobel (Speedup Throughput)

spar−pipe ff−pipe tbb−pipe omp−pipe

(b) Sobel Filter throughput speed-up.

Figure 7.14 – Stream performance comparison using balanced workload (Listing 7.1)

 5

 10

 15

 20

 25

 30

 35

 40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
3

2
0

Number of Replicas

Sobel (Stream Performance)

spar ff tbb omp

(a) Sobel Filter throughput.

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Sobel (Speedup Throughput)

spar ff tbb omp

(b) Sobel Filter throughput speed-up.

Figure 7.15 – Stream performance comparison using balanced workload (Listing 7.2)

choose the version that fits their design goals regarding performance. For instance, in the
version presented in Figure 7.15, SPar achieved the highest speedup and throughput rate as
well as similar performance to the highest OpenMP in Figure 7.14.

153

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Sobel (HPC Performance)

spar−pipe ff−pipe tbb−pipe omp−pipe

(a) Sobel Filter HPC efficiency.

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−cores)

spar−pipe ff−pipe tbb−pipe omp−pipe

(b) Sobel Filter CPU cores energy consumption.

Figure 7.16 – HPC performance comparison using balanced workload (Listing 7.1)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Sobel (HPC Performance)

spar ff tbb omp

(a) Sobel Filter HPC efficiency.

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−cores)

spar ff tbb omp

(b) Sobel Filter CPU cores energy consumption.

Figure 7.17 – HPC performance comparison using balanced workload (Listing 7.2)

Figure 7.16 shows the results of completion time on the efficiency for this version,
where stream-based parallelism interfaces perform better up to the point hyper threading facili-
ties are used. However, this difference was not that significant if compared with the throughput
graph, estimating better efficiency to SPar concerning the number of replicas needed. On
the other hand, it consumes much more energy than OpenMP. As presented in Figure 7.5(b),
SPar allows users to achieve less energy consumption by adding the spar_blocking opti-
mization flag, being competitive with the other frameworks. Regarding Figure 7.17, we can
observe that efficiency was not significantly different among the programming framework
while energy consumption was worst in FastFlow and SPar. This result could be improved in
SPar by adding the spar_blocking optimization flag during the compilation of the program.

Another analysis of HPC is relative to the cache misses, which were significantly
better in SPar and hand written FastFlow in both implementation versions (see Figures 7.18
and 7.19). Also, even though SPar demonstrates more energy consumption considering the
whole CPU socket, it can be competitive if an optimization flag is used.

154

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

 1.67772e+07

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (cache−miss)

spar−pipe ff−pipe tbb−pipe omp−pipe

(a) Sobel Filter cache misses.

 128

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−pkg)

spar−pipe ff−pipe tbb−pipe omp−pipe

(b) Sobel Filter socket energy consumption
(cache and CPUs).

Figure 7.18 – CPU Socket performance comparison using balanced workload (Listing 7.1)

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (cache−miss)

spar ff tbb omp

(a) Sobel Filter cache misses.

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−pkg)

spar ff tbb omp

(b) Sobel Filter socket energy consumption
(cache and CPUs).

Figure 7.19 – CPU Socket performance comparison using balanced workload (Listing 7.2)

Finally, SPar only uses much more memory when compared to TBB in Figure 7.20.
This is because SPar builds on top of FastFlow, which uses queues to communicate and by
default it uses round robin scheduling. However, SPar is flexible enough to allow the user to
improve memory usage by adding a spar_ondemand optimization flag (which was presented
in Figure 7.9(a)), with a version of the code competitive with TBB.

The results using unbalanced workloads presented only significant differences
compared to experiments with balanced workloads in the pipeline-like version. This can be
view in the Appendix, specifically in Section A.1.2. Starting from the execution time and
latency, they were even better up to and after using hyper threading facilities. The highest
rates of SPar and OpenMP throughput were close to each other, as can be seen in Figure
A.13. Consequently, the efficiency of the application was also more competitive with the
OpenMP results (Figure A.15). However, energy consumption and other metrics do not
present significant changes when compared to unbalanced and balanced workload results.
Therefore, we can conclude that fine grained and high-frequency streams significantly affect

155

 32768

 65536

 131072

 262144

 524288

 1.04858e+06

 2.09715e+06

 4.1943e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (Memory)

spar−pipe ff−pipe tbb−pipe omp−pipe

(a) Sobel Filter memory usage.

 64

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−ram)

spar−pipe ff−pipe tbb−pipe omp−pipe

(b) Sobel Filter memory energy consumption.

Figure 7.20 – Memory performance comparison using balanced workload (Listing 7.1)

 32768

 65536

 131072

 262144

 524288

 1.04858e+06

 2.09715e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (Memory)

spar ff tbb omp

(a) Sobel Filter memory usage.

 64

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−ram)

spar ff tbb omp

(b) Sobel Filter memory energy consumption.

Figure 7.21 – Memory performance comparison using balanced workload (Listing 7.2)

the performance of the OpenMP in the pipeline-like computation, while stream-oriented
runtime and SPar maintain the same performance.

Summary

In the Sobel filter application, we can highlight that flexibility does not affect SPar’s
productivity and provides more opportunities for improving machine resource usage and
accomplishing the application constraints. Also, we demonstrated that optimization flag allows
us to fine tune performance and provide more options to the user for energy consumption
and memory usage constraints.

For this application, code productivity was not significantly affected by using SPar
annotations, representing less than one percent on physical SLOCs. Also, SPar keywords
proved to be more suitable for the domain than the primitives provided by OpenMP. On the
other hand, when compared to TBB and FastFlow, the productivity was significantly better.

156

In general, SPar does not add significant performance degradation and in some cases it
outperforms the state-of-the-art tools.

157

7.3.2 Video OpenCV

Video applications represent a classic example of stream parallelism. Video streams
can come from different sources (network, local and camera) and it is hard to determine
the end of the stream. Real world video streaming operations have body or face tracking
and filtering. One of the most commonly used C++ libraries in this area is OpenCV [KB16].
Therefore, we decided to use it as a benchmark. Listing 7.3 presents only the stream region
of the application, which was taken from OpenCV examples. Instead of reading from the
camera, we had it read from a video file, applying common video computations on each
ovideo frame.

Hence, it aims to extract a specific RGB channel, apply a Gaussian filter, make a
Weighted screen operation (commonly used in film production [Wri10]) and apply the Sobel
filter on each video frame. Before entering into the stream region, the application opens
the input and output video files. Inside the infinite loop, the application reads frame by
frame (line 4 in the listing below), tests if it is empty (line 5), performs a sequence of video
operations (between line 7 and 17) and writes the results in the output file (line 20). Following
SPar’s methodology, we can clearly identify the stream region and what it will consume
from preprocessing the source code. Also different ways to annotate stages may be used.
For example, one can introduce more stages to fragment the stream operations. However,
Listing 7.3 provides an annotation schema that will be evaluated later in performance and
productivity.

1 [[spar : : ToStream , spar : : Input (res , channel , src ,S)]] for (; ;) {
2 t o ta l_ f rames ++;
3 inputV ideo >> src ;
4 i f (s rc . empty ()) break ;
5 [[spar : : Stage , spar : : Input (res , channel , src ,S) , spar : : Output (res) , spar : :

Replicate ()]] {
6 vector <Mat> sp l ;
7 s p l i t (src , sp l) ;
8 for (i n t i =0; i < 3 ; ++ i) {
9 i f (i != channel) {

10 sp l [i] = Mat : : zeros (S, sp l [0] . type ()) ;
11 }
12 }
13 merge (spl , res) ;
14 cv : : GaussianBlur (res , res , cv : : Size (0 , 0) , 3) ;
15 cv : : addWeighted (res , 1 .5 , res , −0.5 , 0 , res) ;
16 Sobel (res , res ,−1 ,1 ,0 ,3) ;
17 }
18 [[spar : : Stage , spar : : Input (res)]]
19 { outputVideo << res ; }
20 }

158

Listing 7.3 – Video OpenCV using SPar.

SPar Performance

The experiments for evaluating the performance of this application were conducted
on a Pianosau machine, using an AVI video file with a duration of 1.53 minutes, 640x480
resolution and containing 2626 frames. This section will evaluate only SPar’s performance
when using the optimization flags. Figure 7.22 demonstrates the completion time results
(left) and latency (right). We can observe that adding the spar_ondemand flag significantly
affects the completion time as well as the latency of the application from 7 up to 15 replicas.
In Figure 7.23 we can see how much this difference will represent in throughput, were this
flag allows the application to process about fifty frames less per replica time.

 4

 8

 16

 32

 64

 128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Video_OpenCV (Time)

spar spar−ond spar−blk spar−blk−ond

(a) Video OpenCV execution times.

 0

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Video_OpenCV (Stream Performance)

spar spar−ond spar−blk spar−blk−ond

(b) Video OpenCV latency.

Figure 7.22 – Time performance (Video OpenCV)

Figure 7.23 shows that the application scalability is at max 9.5 replicas. This result is
due to the same reason we already verified in the Sobel filter application: the disk becomes a
bottleneck. In contrast, this application achieved the highest speedup rates because there are
more stream operations not banded by the disk performance. Also, this application cannot
work in a farm-like composition because write operations cannot operate independently
and require the use of the spar_ordered flag to guarantee that elements are processed in
order. Thus, although the video and image application share similar characteristics, they also
present different constraints. Yet, the flexibility of SPar can address them both and provide
good performance.

The previous results also reflect more CPU efficiency if the optimization flags are
not used and less energy consumption, as presented in Figure 7.24. However, the FastFlow
runtime is able to avoid different cache misses as can be seen in Figure 7.25(a). Since the
spar_ondemand compiler flag creates more energy consumption on CPU cores, the energy
consumption will be different when measuring the entire CPU socket (Figure 7.24(b)).

159

 0

 50

 100

 150

 200

 250

 300

 350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
2

6
2

6

Number of Replicas

Video_OpenCV (Stream Performance)

spar spar−ond spar−blk spar−blk−ond

(a) Video OpenCV throughput.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Video_OpenCV (Speedup Throughput)

spar spar−ond spar−blk spar−blk−ond

(b) Video OpenCV throughput speed-up.

Figure 7.23 – Stream performance (Video OpenCV)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Video_OpenCV (HPC Performance)

spar spar−ond spar−blk spar−blk−ond

(a) Video OpenCV HPC efficiency.

 128

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Video_OpenCV (energy−cores)

spar spar−ond spar−blk spar−blk−ond

(b) Video OpenCV CPU cores energy consump-
tion.

Figure 7.24 – HPC performance (Video OpenCV)

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

 1.67772e+07

 6.71089e+07

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Video_OpenCV (cache−miss)

spar spar−ond spar−blk spar−blk−ond

(a) Video OpenCV cache misses.

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Video_OpenCV (energy−pkg)

spar spar−ond spar−blk spar−blk−ond

(b) Video OpenCV socket energy consumption
(cache and CPUs).

Figure 7.25 – CPU Socket performance (Video OpenCV)

The last metric is memory usage, which is plotted in Figure 7.26. This reveals
energy consumption. Once more the usage of the optimization flag makes the difference. It

160

requires less memory because on-demand scheduling stores only one element per FastFlow
queue, while round robin by default stores 512 stream elements, which explains these results.

 65536

 131072

 262144

 524288

 1.04858e+06

 2.09715e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Video_OpenCV (Memory)

spar spar−ond spar−blk spar−blk−ond

(a) Video OpenCV memory usage.

 64

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Video_OpenCV (energy−ram)

spar spar−ond spar−blk spar−blk−ond

(b) Video OpenCV memory energy consumption.

Figure 7.26 – Memory performance (Video OpenCV)

During the discussion of the results of this section, we can highlight that SPar’s
optimization flag can affect the performance of the application in some cases. The advantage
is that the user can easily switch the optimizations on or off without source code intervention.

Productivity Comparison

0%

10%

20%

30%

40%

50%

60%

70%

seq spar
ff tbb

P
e

rc
e

n
ta

g
e

 D
iff

e
re

n
c
e

Source Line of Code (Video OpenCV)

0.00
3.19

53.19

69.15

Figure 7.27 – Source line of code for Video OpenCV application.

Before discussing coding productivity, it is important to highlight that OpenMP is not
able to naturally parallelize this application. Since code refactoring is needed to parallelize in
the application with OpenMP as it does not provide suitable annotations to stream parallelism
and therefore we do not have a comparison with it. Figure 7.27 provides a statistic of the
physical SLOC needed by the programming frameworks. We observe that SPar is significantly
more productive in comparison with state-of-the-art tools, fifty percent more than FastFlow
and about sixty-five percent better than TBB.

We can also observe better productivity not only with respect to SLOC, but also
regarding source code maintainability. While in SPar only code annotations are needed,

161

FastFlow and TBB require the developer to restructure the application such as demonstrated
in their respective pseudo codes in the Appendix Listings A.7 and A.8. In FastFlow, it is
necessary to program the emitter, worker, and collector classes by implementing the svc

method as well as the stream through a data structure 5. Similarly, the TBB version was
implemented to allow parallelism in this application.

Performance Comparison

In this section, a performance comparison is made to evaluate if SPar transforma-
tions are efficient according to hand-written state-of-the-art tools TBB and FastFlow. We used
the same video to stress the application and compare the results for all metrics. Figure 7.28
plots the graphic results of the execution time and latency. We can see that SPar presents
the same latency and completion time as FastFlow and better results than TBB.

 4

 8

 16

 32

 64

 128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Video_OpenCV (Time)

spar ff tbb

(a) Video OpenCV execution times.

 0

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Video_OpenCV (Stream Performance)

spar ff tbb

(b) Video OpenCV latency.

Figure 7.28 – Time performance comparison (Video OpenCV)

In Figure 7.29, we can see how SPar’s throughput rate is better than TBB’s, enabling
about fifty frames more per replica to a given completion time. A similar difference was found
in Figure 7.23 when comparing SPar’s optimization flag. Consequently, we can judge that
TBB’s work stealing scheduler adds extra overhead to this application. Thus, for each frame
a thread will communicate with the scheduler, asking for another job. Since this is how TBB
behaves, there is no alternative to improve TBB’s throughput rate.

To confirm the previous assumptions and results, Figure 7.30 demonstrates the
application’s efficiency and energy consumption. SPar and FastFlow are more efficient than
TBB. As SPar uses/stresses more the CPU to achieving this level of performance, it is natural
that it consumes more energy on the CPU cores (as shown in the graph).

A subtle difference between SPar and FastFlow regarding cache misses can be
observed in Figure 7.31(a). Yet, this is not considered significant because of the standard

5The most recent version of FastFlow actually requires less SLOCs leveraging the new features provided by
C++11(14). As an example, pipeline stages may be provided as closures, rather than svn methods in a ff-node

object.

162

 0

 50

 100

 150

 200

 250

 300

 350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
2

6
2

6

Number of Replicas

Video_OpenCV (Stream Performance)

spar ff tbb

(a) Video OpenCV throughput.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Video_OpenCV (Speedup Throughput)

spar ff tbb

(b) Video OpenCV throughput speed-up.

Figure 7.29 – Stream performance comparison (Video OpenCV)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Video_OpenCV (HPC Performance)

spar ff tbb

(a) Video OpenCV HPC efficiency.

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Video_OpenCV (energy−cores)

spar ff tbb

(b) Video OpenCV CPU cores energy consump-
tion.

Figure 7.30 – HPC performance comparison (Video OpenCV)

deviation. However, it does indicate that SPar code generation can impact cache misses.
Again, SPar and FastFlow significantly outperform TBB.

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

 1.67772e+07

 6.71089e+07

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Video_OpenCV (cache−miss)

spar ff tbb

(a) Video OpenCV cache misses.

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Video_OpenCV (energy−pkg)

spar ff tbb

(b) Video OpenCV socket energy consumption
(cache and CPUs).

Figure 7.31 – CPU Socket performance comparison (Video OpenCV)

163

Unfortunately, SPar and FastFlow use much more memory than TBB due to the
queue communication. However, in case the user has memory constraints, the use of
optimization flags enables SPar to achieve a version that is competitive with TBB in memory
usage. For example, specifying the spar_ondemand flag.

 65536

 131072

 262144

 524288

 1.04858e+06

 2.09715e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Video_OpenCV (Memory)

spar ff tbb

(a) Video OpenCV memory usage.

 64

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
J
o

u
le

s
Number of Replicas

Video_OpenCV (energy−ram)

spar ff tbb

(b) Video OpenCV memory energy consumption.

Figure 7.32 – Memory performance comparison (Video OpenCV)

Summary

After experimenting with our video OpenCV application, we concluded that SPar’s
annotations were simple, high-level and suitable to provide efficient parallelization. We
can highlight that SPar significantly improved productivity on Video OpenCV applications
when compared to the state-of-the-art tools. Also, SPar does not add extra overhead when
compared to hand-written FastFlow and performed better than TBB. However, the optimization
flags were not synonymous with speeding up the application’s performance. Moreover,
this experiment revealed the benefit of the stream-oriented runtime (FastFlow) in cache
efficiency, where TBB cannot achieve good performance due to the work stealing scheduling
implementation that adds extra overhead in streaming and fine grained applications.

7.3.3 Mandelbrot Set

The Mandelbrot set is a mathematical application that aims to create a fractal image
from a set of complex numbers [DM06]. It is very well known in the mathematical field, and
different algorithms are available in the literature. Our application was taken from FastFlow
examples repository6. This is not a stream application, but can be implemented as such.
Listing 7.4 presents the stream region of the application. For a given dimension, the program

6https://sourceforge.net/p/mc-fastflow/code/HEAD/tree/examples/simple_mandelbrot/

164

computes the value of each one of the pixels until a line of the image is completed (between
lines 7 and 20) so that it can be printed on an interactive screen (between lines 23 and 24).

1 / / preprocesing
2 [[spar : : ToStream , spar : : Input (dim , i n i t _ b , step , i n i t _ a , n i t e r)]]
3 for (i n t i =0; i <dim ; i ++) {
4 unsigned char *M = (unsigned char *) mal loc (dim) ;
5 double im= i n i t _ b +(step * i) ;
6 [[spar : : Stage , spar : : Input (M, i , im , n i t e r , i n i t _ a , step , dim) , spar : : Output (M, i) ,

spar : : Replicate ()]] {
7 double a , b , a2 , b2 , cr , k ;
8 for (i n t j =0; j <dim ; j ++) {
9 a=cr= i n i t _ a +step * j ;

10 b=im ;
11 k =0;
12 for (k =0;k< n i t e r ; k++) {
13 a2=a*a ;
14 b2=b*b ;
15 i f ((a2+b2) >4.0) break ;
16 b=2*a*b+im ;
17 a=a2−b2+cr ;
18 }
19 M[j]= (unsigned char) 255−((k *255/ n i t e r)) ;
20 }
21 }
22 [[spar : : Stage , spar : : Input (i , dim ,M)]] {
23 ShowLine (M, dim , i) ;
24 f r ee (M) ;
25 }
26 }
27 / / pos−processing

Listing 7.4 – Mandelbrot using SPar.

Since we intend to evaluate the performance later, just the most efficient annotation
schema is demonstrated in Listing 7.4. When interpreting this application in a stream
parallelism fashion, we have to look what the stream region is consuming from outside the
region to annotate the input variables. The same attention must be paid when annotating the
stage regions. Hence, we define the computation part and print as stages. Because each line
of the resultant image can operate independently, we can replicate the computing stage (line
6). Note that last stage can not be replicated because printing lines in parallel will produce an
incorrect image in the Mandelbrot set (it is a state-full stage).

165

SPar Performance

To evaluate SPar’s compiler optimization flags performance, we configured the
Mandelbrot set application to compute (-2.125+-1.5) to (0.875+1.5), iterate 1,024 times and
produce an image of 400,000,000 pixels. The experiments were run on the Pianosau machine
and standard deviations were plotted on the graphs through error bars.

 4

 8

 16

 32

 64

 128

 256

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Mandelbrot (Time)

spar spar−ond spar−blk spar−blk−ond

(a) Mandelbrot execution times.

 0

 5e−05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Mandelbrot (Stream Performance)

spar spar−ond spar−blk spar−blk−ond

(b) Mandelbrot latency.

Figure 7.33 – Time performance (Mandelbrot)

The completion times and latency for this application are in Figure 7.33. As can
be observed, all options achieved similar results up to 16 replicas. We also had significant
completion time reduction as well as low latency per pixel computed. The differences can
be better understood in Figure 7.34 through the throughput rates. Note that performance
degradation starts from where the replicas start to use hyper threading facilities. There is only
significant degradation when spar_ondemand flag is not present when going up to 16 replicas.
Also, scheduling influences the throughput speedup. In the worst case (using 17 replicas),
the program can process about 6,372,000 pixels more when using this flag.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
4

0
0

0
0

0
0

0
0

Number of Replicas

Mandelbrot (Stream Performance)

spar spar−ond spar−blk spar−blk−ond

(a) Mandelbrot throughput.

 0

 5

 10

 15

 20

 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Mandelbrot (Speedup Throughput)

spar spar−ond spar−blk spar−blk−ond

(b) Mandelbrot throughput speed-up.

Figure 7.34 – Stream performance (Mandelbrot)

166

Concerning the HPC result in Figure 7.35, it becomes clear that in terms of efficiency
and energy consumption, the best choice is to use spar_ondemand and spar_blocking flags
together for this application along with the annotation schema.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Mandelbrot (HPC Performance)

spar spar−ond spar−blk spar−blk−ond

(a) Mandelbrot HPC efficiency.

 128

 256

 512

 1024

 2048

 4096

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Mandelbrot (energy−cores)

spar spar−ond spar−blk spar−blk−ond

(b) Mandelbrot CPU cores energy consumption.

Figure 7.35 – HPC performance (Mandelbrot)

 2048

 4096

 8192

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

K
B

Number of Replicas

Mandelbrot (cache−miss)

spar spar−ond spar−blk spar−blk−ond

(a) Mandelbrot cache misses.

 256

 512

 1024

 2048

 4096

 8192

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Mandelbrot (energy−pkg)

spar spar−ond spar−blk spar−blk−ond

(b) Mandelbrot socket energy consumption
(cache and CPUs).

Figure 7.36 – CPU Socket performance (Mandelbrot)

The high standard deviation of cache misses presented in Figure 7.36 does not allow
us to assume that one alternative was better than another. On the other hand, results of CPU
socket energy consumption reflected the results of the power consumption considering only
the CPU cores. Finally, Figure 7.37 demonstrated no significant differences in memory usage,
while the power consumption difference impacted the whole application’s performance.

Productivity Comparison

To compare the SLOC productivity, we experimented all implementation version
that were used to compare performance, including OpenMP (omp), TBB (tbb), FastFlow
(ff), and Pthreads (pt). The FastFlow and Pthreads versions were taken from the repository

167

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 262144

 524288

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

K
B

Number of Replicas

Mandelbrot (Memory)

spar spar−ond spar−blk spar−blk−ond

(a) Mandelbrot memory usage.

 32

 64

 128

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Mandelbrot (energy−ram)

spar spar−ond spar−blk spar−blk−ond

(b) Mandelbrot memory energy consumption.

Figure 7.37 – Memory performance (Mandelbrot)

while we implemented the others. Figure 7.38 gives an idea of code productivity differences
(in percentage). SPar is much more productive with respect to the state-of-the-art tools for
stream parallelism (FastFlow and TBB) as well as Pthreads. Moreover, even though OpenMP
should be suitable for this kind of parallelization, it requires more code than SPar because
OpenMP annotations can not be made along with C++ statements, they appear on a separate
line.

0%

20%

40%

60%

80%

100%

120%

140%

160%

seq spar
omp

ff tbb pt

P
e

rc
e

n
ta

g
e

 D
iff

e
re

n
c
e

Source Line of Code (Mandelbrot)

0.00 3.13
9.38

94.78

65.63

144.79

Figure 7.38 – Source line of code for Mandelbrot application.

For analyzing the implementation, we discuss only the most productive versions.
Therefore, their pseudo source code is presented in Section A.3.3. We can observe in Listing
A.9 that OpenMP parallelization uses an explicit approach and terms that are particular to the
programming model. In contrast, SPar annotations are high-level stream properties and the
parallelism is implicit by the specification of stage replicas. On the other hand, programmers
have to restructure the source code in a pipeline fashion using TBB (Listing A.11) while in
Listing A.9, FastFlow restructures the program like a farm computation with the collector. In
both libraries, one must implement classes and methods offered through a C++ template
interface. Consequently, more code is necessary to structure and manage the data such as
pointers.

168

Performance Comparison

In this section, we aim to provide a performance comparison for evaluating the SPar
and other state-of-the-art tools. Figure 7.39 compares execution times and latency for a set
number of tested replicas. Among the SPar versions, we plot only the default without an
optimization flag. We can observe that this SPar version has identical execution times with
respect to hand-written FastFlow and Pthreads up to 16 replicas. To provide an identical
result with more replicas, the spar_ondemand flag is used when compiling the program (as
was observed in Figure 7.33(a)). In respect to OpenMP and TBB, SPar reduces the latency
and execution time significantly. OpenMP performs the worst because the parallel region can
not be entirely parallelized. Since the OpenMP runtime is not able to behave in a pipeline
fashion, there is an implicit barrier after single and parallel for (see Listing A.9), where
all system threads cross together.

 4

 8

 16

 32

 64

 128

 256

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Mandelbrot (Time)

spar ff tbb omp pt

(a) Mandelbrot execution times.

 0

 5e−05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Mandelbrot (Stream Performance)

spar ff tbb omp pt

(b) Mandelbrot latency.

Figure 7.39 – Time performance comparison (Mandelbrot)

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
4

0
0

0
0

0
0

0
0

Number of Replicas

Mandelbrot (Stream Performance)

spar ff tbb omp pt

(a) Mandelbrot throughput.

 0

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Mandelbrot (Speedup Throughput)

spar ff tbb omp pt

(b) Mandelbrot throughput speed-up.

Figure 7.40 – Stream performance comparison (Mandelbrot)

This difference is better represented in Figure 7.40. The best SPar option is plotted
in Figure A.26 to better visualize and compare with the other tools. We can see that

169

SPar flexibility by using optimization flags allows for speedup performance while TBB does
not provide such an opportunity. Although more competitive with FastFlow and Pthreads
when using the optimization, SPar was not able to achieve identical high throughput rates.
Consequently, there is an opportunity for SPar to improve code generation.

The parallel programming frameworks’ efficiency and energy consumption of the
CPU cores can be seen in 7.41. With the exception of OpenMP, all of the interfaces achieved
a good balance of energy and efficiency. FastFlow, Pthreads and SPar also had a low number
of cache misses as we can see in Figure 7.42. Yet, energy consumption is a consequence of
the cores’ energy consumption, which preserves a relative difference.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Mandelbrot (HPC Performance)

spar ff tbb omp pt

(a) Mandelbrot HPC efficiency.

 128

 256

 512

 1024

 2048

 4096

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Mandelbrot (energy−cores)

spar ff tbb omp pt

(b) Mandelbrot CPU cores energy consumption.

Figure 7.41 – HPC performance comparison (Mandelbrot)

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 262144

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

K
B

Number of Replicas

Mandelbrot (cache−miss)

spar ff tbb omp pt

(a) Mandelbrot cache misses.

 256

 512

 1024

 2048

 4096

 8192

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Mandelbrot (energy−pkg)

spar ff tbb omp pt

(b) Mandelbrot socket energy consumption
(cache and CPUs).

Figure 7.42 – CPU Socket performance comparison (Mandelbrot)

Figure 7.43 presents memory performance. Even using a different optimization
flag, this result could not be improved in SPar. Therefore, we found another important result
that permits the improvement of code generation, because manually developed FastFlow
achieved better memory usage than SPar.

170

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 262144

 524288

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

K
B

Number of Replicas

Mandelbrot (Memory)

spar ff tbb omp pt

(a) Mandelbrot memory usage.

 32

 64

 128

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Mandelbrot (energy−ram)

spar ff tbb omp pt

(b) Mandelbrot memory energy consumption.

Figure 7.43 – Memory performance comparison (Mandelbrot)

Summary

During the discussion of the Mandelbrot set application, we demonstrated that SPar
was able to again provide high-level, suitable and straightforward annotation along with the
possibility to maintain the source code. In this application, optimization flags significantly
improved the performance after a certain number of replicas.

When comparing productivity, SPar is significantly better than TBB and FastFlow,
and slightly better on SLOCs and much more high-level than OpenMP. Moreover, OpenMP’s
poor performance is a consequence of its programming model that is not suitable for stream-
like computations. SPar achieved similar performance in almost all the replicas tested with
respect to FastFlow and TBB, which makes it competitive. Also, it is relevant to highlight
that this application is not an original stream application. Therefore, some performance
degradations should be expected. In general, the results were good, and the experiments
were enough to find opportunities to increase SPar’s performance, mainly for memory usage
and when using a higher number of replicas.

7.3.4 Prime Numbers

This application is the naïve algorithm for finding prime numbers. Our implementation
receives a number as an input and checks it by simply dividing it, and adding up every prime
that is found. Listing 7.5 demonstrates an efficient way for introducing stream parallelism for
this application by using our DSL. This algorithm is a classic example from the mathematical
field used for many cryptographic applications and scientific programs.

Even though it is not part of the stream parallelism domain, we chose this application
to illustrate how it is possible to implement a non-stream-oriented application in SPar. Listing
7.5 presents only the function of the application that calculates a prime number of a given

171

number and returns the total of primes. Therefore, the first loop will iterate for generating
the numbers so that the nested loop can find all its primes. If case there is not a prime, the
variable used to sum the total number of primes receives zero to not be counted.

Based on the SPar’s methodology, the answer for the first question is to annotate the
first loop (line 3) and reuse the iteration statement to characterize it as a stream region. Then,
the region only consumes the n variable as input. The total is not our input, because it will be
produced inside a stream operation that will be annotated as a stage. Consequently, we can
reuse the iteration statement (line 5) again to annotate the first stage, which checks primes
for a given number. The other stage will be the sum of primers (line 12). As the ToStream

region is producing the number, SPar’s methodology sees it as a stream element as well
as the prime variable used for adding. Therefore, these variables are consumed by the first
stage and only the prime is produced in the next stage. Finally, the last stage consumes the
prime and will produce the total number of primes outside the stream region when the stream
ends for the function returning the data (line 14).

1 i n t prime_number (i n t n) {
2 i n t t o t a l = 0 ;
3 [[spar : : ToStream , spar : : Input (n)]] for (i n t i = 2 ; i <= n ; i ++) {
4 i n t prime = 1;
5 [[spar : : Stage , spar : : Input (i , prime) , spar : : Output (prime) , spar : : Replicate (

workers)]] for (i n t j = 2 ; j < i ; j ++) {
6 i f (i % j == 0) {
7 prime = 0;
8 break ;
9 }

10 }
11 [[spar : : Stage , spar : : Input (prime) , spar : : Output (t o t a l)]]
12 { t o t a l = t o t a l + prime ; }
13 }
14 return t o t a l ;
15 }

Listing 7.5 – Prime Numbers using SPar.

We can only add replicate in the first stage, since it is possible to check whether a
number is prime or not independently and sum the number of primes is a stateful operation.
On the other hand, the last stage can not be replicated because at the end of the region the
total sum is expected, instead of single replica sum. The next section will evaluate SPar’s
performance using different compiler optimization flags.

172

SPar Performance

Figure 7.44 presents the completion time and latency of the prime number appli-
cation with all possible optimization flags. We tested the performance using the Pianosau
machine setting up 1,200,000 as the size of the workload to find the primes. The results
indicate that not using a spar_ondemand flag will significantly impact the completion time and
latency of the application. This means that the scheduler plays an important control role
for achieving good performance in this application. For example, Figure 7.45 presents the
throughput rates, where it is possible to visualize that the difference represents two times
more throughput in some cases (16 and 17 replicas) with the optimization flag.

 16

 32

 64

 128

 256

 512

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Prime Numbers (Time)

spar spar−ond spar−blk spar−blk−ond

(a) Prime Numbers execution times.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Prime Numbers (Stream Performance)

spar spar−ond spar−blk spar−blk−ond

(b) Prime Numbers latency.

Figure 7.44 – Time performance (Prime Numbers)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
1

2
0

0
0

0
0

Number of Replicas

Prime Numbers (Stream Performance)

spar spar−ond spar−blk spar−blk−ond

(a) Prime Numbers throughput.

 0

 2

 4

 6

 8

 10

 12

 14

 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Prime Numbers (Speedup Throughput)

spar spar−ond spar−blk spar−blk−ond

(b) Prime Numbers throughput speed-up.

Figure 7.45 – Stream performance (Prime Numbers)

When looking at efficiency in Figure 7.46, we can see that adding the spar_blocking

flag provides slight degradations. This occurs because the blocking mode adds extra overhead
on thread synchronizations in fine-grained stream computations. The CPU cores’ energy
consumption was as good as the efficiency of spar_ondemand. Because there are intensive
mathematical operations, the application cannot scale more replicas than the number of

173

physical cores. Consequently, we can conclude that SPar was good enough to achieve
expected speedup and efficiency with the help of the optimization flags.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Prime Numbers (HPC Performance)

spar spar−ond spar−blk spar−blk−ond

(a) Prime Numbers HPC efficiency.

 512

 1024

 2048

 4096

 8192

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Prime Numbers (energy−cores)

spar spar−ond spar−blk spar−blk−ond

(b) Prime Numbers CPU cores energy consump-
tion.

Figure 7.46 – HPC performance (Prime Numbers)

 1024

 2048

 4096

 8192

 16384

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

K
B

Number of Replicas

Prime Numbers (cache−miss)

spar spar−ond spar−blk spar−blk−ond

(a) Prime Numbers cache misses.

 1024

 2048

 4096

 8192

 16384

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Prime Numbers (energy−pkg)

spar spar−ond spar−blk spar−blk−ond

(b) Prime Numbers socket energy consumption
(cache and CPUs).

Figure 7.47 – CPU Socket performance (Prime Numbers)

We can also note that using optimization flags will impact cache misses (Figure
7.47) and memory usage (Figure 7.48). Once again, SPar provides performance flexibility to
better fit the application’s design goals.

Productivity Comparison

To discuss and compare productivity, we considered the simple and legwork imple-
mentation of the prime number on FastFlow and TBB. The results concerning the SLOCs
are presented in Figure 7.49. Even the simplest version of these tools require more code
than SPar and OpenMP required the same amount of code. OpenMP achieved good coding
productivity because it is a simple case and it was designed for simplifying parallelism for this

174

 1024

 2048

 4096

 8192

 16384

 32768

 65536

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

K
B

Number of Replicas

Prime Numbers (Memory)

spar spar−ond spar−blk spar−blk−ond

(a) Prime Numbers memory usage.

 128

 256

 512

 1024

 2048

 4096

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Prime Numbers (energy−ram)

spar spar−ond spar−blk spar−blk−ond

(b) Prime Numbers memory energy consumption.

Figure 7.48 – Memory performance (Prime Numbers)

kind of computation. In contrast, TBB and FastFlow provide more flexibility to the end user for
implementing different parallelism versions.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

seq spar
omp

ff ff-loop
tbb tbb-loop

P
e

rc
e

n
ta

g
e

 D
iff

e
re

n
c
e

Source Line of Code (Prime Number)

0.00 0.73 0.73

30.66

3.65

45.26

7.30

Figure 7.49 – Source line of code for Prime Number application.

All pseudo code versions can be seen in Section A.3.4. In Listing A.12, we can note
that OpenMP requires a single line annotation, where low-level parallel programming aspects
are put in the table such as scheduling and reduction operation. Therefore, scheduling
specification is not necessary to produce correct code. Yet, in later experiments it was
necessary to speedup performance. In contrast, even when SPar has been used for another
domain, it was able to provide efficient parallelism without needing to add extra attributes
through its annotations. On the other hand, TBB and FastFlow can provide a different
alternative for better productivity in this kind of application by using the lambda function
interface. However, this does not prevent the user from restructuring the “for” loop and
implementing the reduction operation as can be observed in Listings A.14 and A.16.

Performance Comparison

This section will compare the performance of the best solutions implemented to
evaluate the transformations of SPar. As previously discussed, the best alternatives for SPar

175

were when it used the spar_ondemand flag. In OpenMP, when using the default scheduler, the
performance is similar as with the default compilation of SPar. Thus, we plotted its results with
dynamic scheduler (omp-dyn). The results not discussed in this section are in the Appendix,
specifically in Section A.1.3. Therefore, Figure 7.50 presents the execution times and latency
for the number of replicas tested. All versions presented identical results, but using only
the spar_ondemand flag along with FastFlow revealed a performance degradation in the last
number of replicas. This is because of the on-demand scheduler that works intensively even
when there is no stream. Thus, the blocking mode prevents such overhead, because the
thread will be put to sleep when no work has to be done.

 16

 32

 64

 128

 256

 512

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Prime Numbers (Time)

spar−ond
spar−blk−ond

ff−loop
tbb−loop

omp−dyn

(a) Prime Numbers execution times.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Prime Numbers (Stream Performance)

spar−ond
spar−blk−ond

ff−loop
tbb−loop

omp−dyn

(b) Prime Numbers latency.

Figure 7.50 – Time performance comparison (Prime Numbers)

The scheduler overhead for this application is noted in Figure 7.51 as well as the
slightly worse performance difference of TBB, which is caused by its work-stealing scheduler.
This is confirmed through Figure 7.52, which shows efficiency when using the CPU and
energy consumption. We discovered that SPar and FastFlow versions consume more energy
than OpenMP and TBB.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
1

2
0

0
0

0
0

Number of Replicas

Prime Numbers (Stream Performance)

spar−ond
spar−blk−ond

ff−loop
tbb−loop

omp−dyn

(a) Prime Numbers throughput.

 0

 2

 4

 6

 8

 10

 12

 14

 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Prime Numbers (Speedup Throughput)

spar−ond
spar−blk−ond

ff−loop
tbb−loop

omp−dyn

(b) Prime Numbers throughput speed-up.

Figure 7.51 – Stream performance comparison (Prime Numbers)

176

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Prime Numbers (HPC Performance)

spar−ond
spar−blk−ond

ff−loop
tbb−loop

omp−dyn

(a) Prime Numbers HPC efficiency.

 512

 1024

 2048

 4096

 8192

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Prime Numbers (energy−cores)

spar−ond
spar−blk−ond

ff−loop
tbb−loop

omp−dyn

(b) Prime Numbers CPU cores energy consump-
tion.

Figure 7.52 – HPC performance comparison (Prime Numbers)

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

K
B

Number of Replicas

Prime Numbers (cache−miss)

spar−ond
spar−blk−ond

ff−loop
tbb−loop

omp−dyn

(a) Prime Numbers cache misses.

 1024

 2048

 4096

 8192

 16384

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Prime Numbers (energy−pkg)

spar−ond
spar−blk−ond

ff−loop
tbb−loop

omp−dyn

(b) Prime Numbers socket energy consumption
(cache and CPUs).

Figure 7.53 – CPU Socket performance comparison (Prime Numbers)

Finally, SPar versions were able to avoid more cache misses (Figure 7.53) than all
others. It also used less memory (see on Figure 7.54). Consequently, less memory energy
consumption was necessary for SPar and FastFlow versions.

Summary

The prime number application provides us an interesting problem that stresses the
need for performance flexibility. In the expressiveness evaluation, we could observe that SPar
attributes were generic enough to annotate the parallelism of this application in a stream
fashion. As in the other state-of-the-art tools, SPar requires the help of optimizations to
provide high performance on data parallel computations.

Concerning the performance comparison, we concluded that SPar is also efficient
for data parallel computations. Even though the prime number application is not a real stream
computation, the results were good. Also, we did not expected so good and optimistic results

177

 1024

 2048

 4096

 8192

 16384

 32768

 65536

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

K
B

Number of Replicas

Prime Numbers (Memory)

spar−ond
spar−blk−ond

ff−loop
tbb−loop

omp−dyn

(a) Prime Numbers memory usage.

 128

 256

 512

 1024

 2048

 4096

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Prime Numbers (energy−ram)

spar−ond
spar−blk−ond

ff−loop
tbb−loop

omp−dyn

(b) Prime Numbers memory energy consumption.

Figure 7.54 – Memory performance comparison (Prime Numbers)

such as less memory usage, cache efficiency and a small difference in stream performance
such as throughput and latency.

178

7.3.5 K-Means

During recent year data analysis has become one of the hottest research topics in
computer science. Among many algorithms existent in this field, one that is often used for
analyzing big data sets is K-Means. It is a simple algorithm of a non-supervised machine
learning to solve the clustering problem. The goal is to classify a given data set in groups.
Our algorithm was taken from the code examples of Phoenix++ [TYK11]. Listing 7.6 presents
the parallelized part of the algorithm to discuss and demonstrate how SPar attributes can be
used for annotating the parallelism.

K-Means aims to first define k centroids for each cluster. These centroids are
arranged at different locations bring different results. Consequently, it is necessary to place
them as far as possible from each other. The next step is to take each point belonging to a
given data set and associate it to the nearest centroid. Thus, when no data is pending, the
first step is completed, which has performed the first step grouping. Then, the second phase
is to recalculate the new cluster centroids from the previous step. After, a new connection
must be made between the same points of the new data sets and the nearest centroid. Finally,
K-Means algorithm has to iterate several times until all points are classified.

This application is not a real stream computation, but it was chosen to test SPar’s
expressiveness in other domains and how we could annotate parallelism correctly. Our
methodology seeks to find the regions where it is possible to stream the code. K-Means has
two dependent steps, making impossible to annotate them as stages (between line 3−18 and
19− 36). When analyzing inside each step, we can see the most outside for loop generates
a stream that is the index for the points and matrix of clusters or means. Thus, we found two
stream regions. As for each iteration new values for the matrix of clusters and means are
produced, they are input streams for ToStream annotations.

On the other hand, stream operations can be annotated in different ways using SPar.
Since we do so for performance evaluation later, we exemplified the most efficient way to
annotate. For instance, we could simply determine two stages in each one of the stream
regions. In this case, we put all stream operations in a single stage. The input of the stage
will be the same as the ToStream annotation plus the generated index, while the output is
only the stream element modified inside the stage. Therefore, the first step stage produces
the clusters as output and the second step stage produces the means. For a new iteration,
the first step consumes the output of the second step and vice versa. Lastly, we can replicate
each stage region because the points can be computed independently.

Note that the vector of points is not a stream, because it is a static data source
that was previously loaded from a data set file. Also, the amount of K-Means iteration is
determined by the first step stage (line 16). The next section will present the performance
results for this application.

179

1 while (modi f ied) {
2 modi f ied = fa lse ;
3 [[spar : : ToStream , spar : : Input (means)]] for (i n t i = 0 ; i < num_points ; i ++) {
4 [[spar : : Stage , spar : : Input (i , means) , spar : : Output (c l u s t e r s) , spar : : Replicate

()]] {
5 unsigned i n t min_d is t = ge t_sq_d is t (po in t s [i] , means [0]) ;
6 i n t min_idx = 0;
7 for (i n t j = 1 ; j < num_means ; j ++) {
8 unsigned i n t c u r _ d i s t = ge t_sq_d is t (po in t s [i] , means [j]) ;
9 i f (c u r _ d i s t < min_d is t) {

10 min_d is t = c u r _ d i s t ;
11 min_idx = j ;
12 }
13 }
14 i f (c l u s t e r s [i] != min_idx) {
15 c l u s t e r s [i] = min_idx ;
16 modi f ied = true ;
17 } }
18 }
19 [[spar : : ToStream , spar : : Input (c l u s t e r s)]] for (i n t i = 0 ; i < num_means ; i ++) {
20 [[spar : : Stage , spar : : Input (i , c l u s t e r s) , spar : : Output (means) , spar : : Replicate

()]] {
21 i n t * sum = (i n t *) mal loc (dim * sizeof (i n t)) ;
22 memset (sum, 0 , dim * sizeof (i n t)) ;
23 i n t grp_s ize = 0;
24 for (i n t j = 0 ; j < num_points ; j ++) {
25 i f (c l u s t e r s [j] == i) {
26 add_to_sum (sum, po in t s [j]) ;
27 grp_s ize ++;
28 }
29 }
30 for (i n t j = 0 ; j < dim ; j ++) {
31 i f (grp_s ize != 0) {
32 means [i] [j] = sum[j] / grp_s ize ;
33 }
34 }
35 f r ee (sum) ; }
36 }
37 }

Listing 7.6 – K-Means application using SPar.

SPar Performance

To evaluate the performance of SPar and its optimization flags, we created the
workload using 150,000 points to classify in 1,500 groups. The experiment ran in Pianosa

180

machine as in the previous experiments. We also used the same annotation schema with
different compilation flags. Figure 7.55 presents the execution times and latency for the
replicas tested. Note that the number of replicas is the same for each stream region. The
graphs clearly point out that using spar_blocking flag retrogrades the latency and completion
time with respect to other versions. The reason for such degradation is attributed to the
stream behavior that is fine grained and intensive. Consequently, when more replicas are
assigned, more blocking synchronization is necessary. This becomes even worse when used
with spar_ondemand, because more communication is performed to scheduling the stream
elements.

 4

 8

 16

 32

 64

 128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

kmeans (Time)

spar spar−ond spar−blk spar−blk−ond

(a) K-Means execution times.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

kmeans (Stream Performance)

spar spar−ond spar−blk spar−blk−ond

(b) K-Means latency.

Figure 7.55 – Time performance (K-Means)

The impact of the differences can be observed in Figure 7.56 by the throughput and
speedup. In general, when comparing the highest rates of the worst and best versions, the
difference is about 10,000 points for the given time of the replica. This is very significant
for the application’s performance. Moreover, we can also see the efficiency and energy
consumption in Figure 7.56, where no version was not good enough from 12 replicas up to
32.

With respect to the cache misses, all optimization flags presented similar perfor-
mance. This can be seen in Figure 7.58. However, energy consumption was dramatically
different, where the least efficient SPar version also consumed much more energy. This is an
indication of overheads by the parallel code generated. Finally, the memory usage (Figure
7.59) was also significantly different for the versions without the spar_ondemand flag, which
was similar to the previous applications because of the impact of FastFlow queues.

Productivity Comparison

Since we tested alternative implementations using low-level patterns with FastFlow
and TBB, it is not necessary to repeat such implementations to compare productivity because
we noted before that this requires much more effort to implement. Also, in terms of data

181

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
1

5
0

0
0

0

Number of Replicas

kmeans (Stream Performance)

spar spar−ond spar−blk spar−blk−ond

(a) K-Means throughput.

 0

 2

 4

 6

 8

 10

 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

kmeans (Speedup Throughput)

spar spar−ond spar−blk spar−blk−ond

(b) K-Means throughput speed-up.

Figure 7.56 – Stream performance (K-Means)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

kmeans (HPC Performance)

spar spar−ond spar−blk spar−blk−ond

(a) K-Means HPC efficiency.

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

kmeans (energy−cores)

spar spar−ond spar−blk spar−blk−ond

(b) K-Means CPU cores energy consumption.

Figure 7.57 – HPC performance (K-Means)

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 262144

 524288

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

K
B

Number of Replicas

kmeans (cache−miss)

spar spar−ond spar−blk spar−blk−ond

(a) K-Means cache misses.

 256

 512

 1024

 2048

 4096

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

kmeans (energy−pkg)

spar spar−ond spar−blk spar−blk−ond

(b) K-Means socket energy consumption (cache
and CPUs).

Figure 7.58 – CPU Socket performance (K-Means)

parallelism performance, the parallel for interface was demonstrated to be better suited for
this purpose. Figure 7.60 presents the percentage difference of SLOCs when using each
one of the programming frameworks. TBB and FastFlow require slightly more code because

182

 4096

 8192

 16384

 32768

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

K
B

Number of Replicas

kmeans (Memory)

spar spar−ond spar−blk spar−blk−ond

(a) K-Means memory usage.

 64

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

kmeans (energy−ram)

spar spar−ond spar−blk spar−blk−ond

(b) K-Means memory energy consumption.

Figure 7.59 – Memory performance (K-Means)

they need to add their library. While SPar and OpenMP, only annotations are necessary. The
parallelized parts of the code are in Section A.3.5.

0%

0%

1%

2%

2%

seq spar
omp

ff tbb

P
e

rc
e

n
ta

g
e

 D
iff

e
re

n
c
e

Source Line of Code (k-Means)

0.00

0.87 0.87

1.30 1.30

Figure 7.60 – Source line of code for K-Means application.

When comparing SPar (Listing 7.6) to OpenMP (Listing A.17), SPar achieved the
same productivity because it is placed along with the iteration statement and the stage must
be introduced. Consequently, this is one case where OpenMP provides better productivity,
because it was designed to be simple when there is easy data parallelism. In contrast, the
high-level SPar attributes are generic enough to annotate such parallelism. Specifically in this
application, we can conclude that OpenMP and SPar provide equivalent coding productivity,
while TBB (Listing A.19) and FastFlow (A.18) still requires minimal code rewriting in data
parallelism.

Performance Comparison

To compare performance, we used the same implementation version of the pro-
ductivity comparison and the default SPar version, which presented the best performance
among the options. Figure 7.61 plots the results of execution time and latency. We can
see that SPar achieved the worst performance with respect to the others. Fastflow also had

183

significant performance degradation starting with 17 replicas up to 30. This initial degradation
achieved the same peak of SPar, which coincides with hyper threading facilities usage of the
machine. We also expected that OpenMP and TBB would suffer some degradation starting
at 17 replicas. Figure 7.62 shows that only FastFlow was able to achieve a linear throughput
speedup until physical cores are full with replicas. The advantage is that less replicas are
needed by FastFlow parallelism when compared to OpenMP and TBB, which only achieved
the highest speedup by using 26 replicas.

 4

 8

 16

 32

 64

 128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

kmeans (Time)

spar ff tbb omp

(a) K-Means execution times.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

kmeans (Stream Performance)

spar ff tbb omp

(b) K-Means latency.

Figure 7.61 – Time performance comparison (K-Means)

 0

 5000

 10000

 15000

 20000

 25000

 30000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
1

5
0

0
0

0

Number of Replicas

kmeans (Stream Performance)

spar ff tbb omp

(a) K-Means throughput.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

kmeans (Speedup Throughput)

spar ff tbb omp

(b) K-Means throughput speed-up.

Figure 7.62 – Stream performance comparison (K-Means)

We can prove the efficiency of the programming frameworks in Figure 7.63 as well
as evaluate the energy consumption of the CPU cores. As in the other applications, SPar
and FastFlow usually consume more energy than the others. However, less cache misses
are generated as can be observed in Figure 7.64. Concerning memory usage, there were
contrasts among the interfaces, but OpenMP outperforms all other versions.

184

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

kmeans (HPC Performance)

spar ff tbb omp

(a) K-Means HPC efficiency.

 128

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

kmeans (energy−cores)

spar ff tbb omp

(b) K-Means CPU cores energy consumption.

Figure 7.63 – HPC performance comparison (K-Means)

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

 1.67772e+07

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

kmeans (cache−miss)

spar ff tbb omp

(a) K-Means cache misses.

 256

 512

 1024

 2048

 4096

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

kmeans (energy−pkg)

spar ff tbb omp

(b) K-Means socket energy consumption (cache
and CPUs).

Figure 7.64 – CPU Socket performance comparison (K-Means)

 4096

 8192

 16384

 32768

 65536

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

K
B

Number of Replicas

kmeans (Memory)

spar ff tbb omp

(a) K-Means memory usage.

 32

 64

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

kmeans (energy−ram)

spar ff tbb omp

(b) K-Means memory energy consumption.

Figure 7.65 – Memory performance comparison (K-Means)

Summary

K-means application provided us a different challenge for SPar. Its interface was
generic enough to annotate the parallelism in a stream fashion. The usage of SPar’s

185

optimization flags resulted in performance degradation. Also, coding productivity when
considering SLOCs is not significant different because the interfaces provided suitable
mechanisms for implementing this kind of parallelism. However, TBB and FastFlow still
require more code rewriting when using lambda function.

SPar did not achieve similar performance as other specialized programming frame-
works for data parallelism. Even FasFlow’s interface for data parallelism suffers some degra-
dations. Although not favorable to SPar, results give us interesting insights for investigating in
the future alternatives to achieve better performance for data parallelism. However, our top
research goal was to enable performance and productivity in stream parallelism applications.

186

7.4 Cluster Environment

This section shows the results of the experiments targeting the cluster environment
to evaluate SPar’s performance and code portability. In fact, we used two of the same
applications previously discussed and we applied different transformation rules to each one of
them. In case, the transformation rules used by the compiler in the multi-core environment are
the same when manually generated for the respectively application in the cluster environment.

7.4.1 Sobel Filter

This application was previously discussed and annotated with SPar in Section 7.3.1.
We provided two previous versions, but in this section we only generate the code manually
for the second version, which is denoted as [[T0]]{20, [[S0, Rn]]{21}}. There are no any new
attributes inserted and transformations follow Rule 6.1 described in Section 6.6. Our goal is to
demonstrate that transformation rules are generalized and enough to achieve code portability.

In the cluster environment, our experiments were set up with balanced and un-
balanced workloads. For the balanced workload 320 images were used with 3000x2250
resolution. On the other hand, the unbalanced workload was composed of 1,280 images, and
four different resolutions were selected (800x600, 1024x768, 1600x1200 and 3000x2250).
We ran the application ten times to take an average duration of the Dodge cluster (see the
configuration in Section 7.2.2). The standard deviations are plotted through error bars in the
graphs.

Figure 7.66 presents the graphs of execution time (a) and latency (b) for the replicas
tested. The application reduced the completion time and latency in half in almost all replicas
tested. If compared to the multi-core environment, the same performance is not expected
because there is a network and distributed file system. The problem is that our application
does not reduce the completion time when increasing the number of replicas. The throughput
and speedup helped us to better understand the impacts in Figure 7.67.

As previously discussed, the Sobel filter performs more in disk than CPU and the
latency and overhead increases because of the distributed file system. In case, it will be
hard to achieve speedups greater than two using this workload, since it is not concerning
the environment. In the Appendix Section A.2 the results use unbalanced workloads. They
presented similar results even though there were the highest number of images. As the
image size varies with smaller images, the latency was lower such as in Figure A.27(b)
demonstrates.

Another important aspect concerning the results is that we are using an older ma-
chine in the cluster environment and less sophisticated hardware and network. Unfortunately,

187

 16

 32

 64

 128

 256

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S
e

c
o

n
d

s

Number of Replicas

Sobel (Time)

spar

(a) Sobel Filter execution times.

 50

 100

 150

 200

 250

 300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Sobel (Stream Performance)

spar

(b) Sobel Filter latency.

Figure 7.66 – Time performance using balanced workload (Sobel Filter)

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T
h

ro
u

g
h

p
u

t
o

f
3

2
0

Number of Replicas

Sobel (Stream Performance)

spar

(a) Sobel Filter throughput.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S
p

e
e

d
−

u
p

Number of Replicas

Sobel (Speedup Throughput)

spar

(b) Sobel Filter throughput speed-up.

Figure 7.67 – Stream performance using balanced workload (Sobel Filter)

the disk bottleneck impacts much more in the cluster environment. Thus, we can conclude
that even providing code portability, performance may be not the same as the other environ-
ment. It depends not only on the code generated, but also on the hardware aspects and
application constraints.

7.4.2 Prime Number

In the prime number application, the annotation schema is exactly the same as
discussed before in Section 7.3.4 and can be denoted as [[T0]]{20, [[S0, Rn]]{21}, [[S1]]{22}}.
Consequently, we applied Rule 6.3 to manually generate the code, so that we can demonstrate
that code portability is possible. The experiment was conducted in the Dodge cluster and the
problem size was the same as in multi-core, which is to find the primers from 1 to 1,200,000
numbers.

188

Figure 7.68 presents the results concerning completion time metric. The contrasts
are similar as presented in Figure 7.44 when the code generated is without optimization flags,
which is performing in a round robin fashion. Thus, this result was also expected in a cluster
environment, which can better observed in Figure 7.69 through the throughput rates and
speedup. As the machines are different (in the cluster and multi-core environments), the
results in the original source code were also different for latency and completion time (with 0
replica).

 8

 16

 32

 64

 128

 256

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

S
e

c
o

n
d

s

Number of Replicas

Prime Numbers (Time)

spar

(a) Prime Numbers execution times.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Prime Numbers (Stream Performance)

spar

(b) Prime Numbers latency.

Figure 7.68 – Time performance (Prime Numbers)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

T
h

ro
u

g
h

p
u

t
o

f
1

2
0

0
0

0
0

Number of Replicas

Prime Numbers (Stream Performance)

spar

(a) Prime Numbers throughput.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

S
p

e
e

d
−

u
p

Number of Replicas

Prime Numbers (Speedup Throughput)

spar

(b) Prime Numbers throughput speed-up.

Figure 7.69 – Stream performance (Prime Numbers)

We already highlighted the importance of the scheduler in this application in Section
7.3.4. Unfortunately, for the cluster environment, our runtime did not providing this opti-
mization. We expect in the future to also support an on-demand scheduler to enable better
performance for applications where performance depends on the scheduler. Unlike the Sobel
filter application, we demonstrated through this experiment that we were also able to provide
performance portability along with code portability, like a CPU bound application.

189

7.5 Summary

In this chapter, we first performed experiments in the multi-core environment to
evaluate and compare Spar’s performance and code productivity to TBB, FastFlow, OpenMP,
and eventually Pthreads. Our performance results were similar as those tuning manually and
better than TBB and OpenMP for streaming applications. Also, our experiments demonstrated
that we reduced the programming effort significantly and increased the coding productivity
compared to TBB and FastFlow. As expected, SPar was able to annotate data parallel
computations and maintain productivity, but provided less performance than OpenMP.

In the cluster environment, we evaluated the code portability by using two identical
annotated applications previously tested for the multi-core environment. Thus, code portability
was granted through the transformation rules proposed for both environments. However,
performance portability also depends on application features (e.g., the disk bottleneck), and
runtime support for scheduling optimizations.

190

Part IV

Discussions

191

193

8. CONCLUSIONS

This chapter will present the conclusions of the thesis.

Contents

8.1 OVERVIEW . 194

8.2 ASSESSMENTS . 195

8.3 LIMITATIONS . 196

8.4 CONSIDERATIONS . 196

194

8.1 Overview

This dissertation has contributed to the fields of domain-specific language design
and support tools for high-level stream parallelism. The support tools proposed include
the Compiler Infrastructure for New C/C++ Languages Extensions (CINCLE). CINCLE uses
several standard tools to provide a simpler and more efficient environment/infrastructure
for generating standard C++ embedded DSLs, especially for introducing the C++ attribute
mechanism. Moreover, CINCLE was implemented to support the user with aggressive
source-to-source code transformations (AST to AST) as well as to provide an AST that is fully
compliant with the standard grammar. Also, it provides a set of APIs and a tree visualization
library to increase productivity and accelerate the learning curve when designing DSLs.

CINCLE provides essential features and capabilities for high-level abstraction that
have been used to build an embedded C++ DSL for stream parallelism (named as SPar).
SPar helps users to annotate parallelism with only five attributes that are implemented using
the standard C++ attribute mechanism. The language terms are related only the streaming
domain, avoiding low-level parallel programming aspects such as models, scheduling policies,
load balancing, and others. SPar essentially aims to enhance code productivity without
significantly degraded performance. We also created a methodology where developers ask
themselves five questions that will instruct them what to do when annotating the code. Thus,
it guides them reduce programming effort and achieve efficient stream parallelism.

The design of the SPar language was also essential to introduce code portability.
We therefore created generalized transformation rules to translate SPar attributes to parallel
patterns. These rules are independent of the target architecture and programming framework,
and can therefore be easily implemented into a compiler algorithm or manually generated.
First, the SPar compiler was implemented to perform source-to-source code transformations
automatically targeting multi-cores using the FastFlow framework and accomplish the inter-
pretation and semantic analysis of the attributes. Then, we demonstrated how the translations
target code portability by manually generating the code for clusters using the MPI library.

Lastly, we performed a set of experiments to evaluate productivity, performance,
and code portability. We picked five different applications that were annotated with SPar as
well as implemented with TBB, FastFlow, OpenMP, and later Pthreads. Thus, productivity
and performance were evaluated in a multi-core environment. Code portability was tested
by implementing two of the five applications in a cluster environment without changing the
source code tested in the multi-core experiments, while using the same transformation rules
used to generate the multi-core versions.

195

8.2 Assessments

In the dissertation we achieved all of the established goals. The first goal was to pro-
vide support tools that enable parallel programmers to create standard C++ embedded DSLs.
We met this goal by creating CINCLE. It was sufficient to support us in the implementation of
the SPar compiler. We were able to perform complex source-to-source transformations and
semantic analysis using CINCLE. Also, in Section 5.7, we highlighted that CINCLE simplified
DSL design and, through real use cases (Section 4.9), that it performed quite well.

Our second goal was to provide high-level stream parallelism and coding productivity
without significant performance degradation in multi-core systems. We achieved this goal by
creating SPar. The experiments (Section 7.3) and presentation in Chapter 5 revealed that
SPar provides a simpler vocabulary with only five attributes sufficient to annotate different
kinds of applications and parallelism. High-level stream parallelism is achieved because C++
programmers do not have to be aware of any low-level parallel programming aspects. The
results of the experiments proved that SPar is more productive without demonstrating any
significant performance degradation in stream applications. Moreover, it is able to provide the
same productivity in data parallel applications with competitive performance (e.g. K-Means
and Prime Numbers applications) when compared to other frameworks (TBB, FastFlow
and OpenMP). In addition, SPar performed similar to FastFlow (implemented manually),
illustrating that the automatic code generation designed was efficient and does not add
significant overhead.

The third goal was to introduce code portability in multi-core and cluster systems.
We met this goal by introducing generalized transformation rules from SPar attributes tar-
geting parallel patterns. We demonstrated that it is possible to provide code portability in
SPar because we were able to transform code integration the transformation rules in the
compiler to automatically generate parallel code using FastFlow (multi-cores) and manually
generate code using the MPI library (clusters). Although code portability was achieved, the
results demonstrated that performance portability depends on application characteristics and
scheduling optimizations of the runtime support.

In addition to our main goals, we have met the programming framework aims as well
as support application level DSL to entirely abstract parallelism exploitation. We achieved
a vertical validation of the framework in a collaborative research project that created a DSL
for geospatial visualizations (named as GMaVis) [Led16]. GMaVis provides a descriptive
language that generates a robust C++ code along with SPar annotations to take advantage
of parallelism in multi-core architectures. It is important to highlight this study because
we validated our perspective and the results demonstrated increased code productivity
and simplicity for the designer of the DSL application. These results verify the thesis in a
completely different scenario.

196

8.3 Limitations

The limitations relate to real use cases and experiments regarding productivity,
performance, and code portability. We cannot generalize performance and productivity in
an application that is not stream-oriented. SPar is not able to deal with state-full stages
and stages with feedbacks channels. This is also a research challenge in the parallel
programming field that has not been solved in a completely abstract and general way. In
SPar, we recommend that state-full stages should not be replicated.

CINCLE’s infrastructure was initially made to deal with C++ attributes. Even though
we proposed it as a more generic support tool, there is no guarantee at the moment that
it also works for other kinds of language extensions that are not C++ annotations. There
are limitations concerning the AST because Bison cannot solve all ambiguities. Therefore,
we need to test CINCLE with bigger amount of code and an algorithm must be created
to address complex ambiguities after the creation of the AST. SPar’s code generation was
not a problem, but it would become a problem if we were to perform DataFlow and other
sophisticated analysis at compilation time.

Our generalized transformation rules are not generic enough when other domains
are taken into account. Although generalized, the rules we used only deal with SPar attributes
and may produce only farm, pipeline, and compositions of pipeline with farm stages. They
are so-called generalized because they were created to enable one to produce more complex
transformations for other SPar annotation sentences allowed by its semantics. Consequently,
code portability inherits these limitations either integrating them into the compiler algorithm to
perform changes automatically in the AST or for manually generating code.

8.4 Considerations

The dissertation also contributes to the wider scenario of computer science dealing
with parallel patterns, FastFlow runtime, and the C++ community. Concerning parallel patterns,
we stress the fact that they were proposed independently of a target architecture, and we
have proven that they can also be integrated with a different scenario such as DSLs. For
instance, SPar provides a higher abstraction level that can be translated into parallel code
using a parallel patterns approach. On the other hand, using FastFlow we further contributed
to stresses its performance and flexibility to exploit parallelism. We bring significant insights to
different performance metrics when compared to other state-of-the-art frameworks. Because
SPar can easily combine different annotation sentences, we can further expand the test
scenarios to FastFlow runtime so that it can be improved in the future and support better
performance and flexibility.

197

Using the standard C++ attribute mechanism, we contributed by providing a use
case and pointing out the challenges that were not clear before starting the DSL design.
This work has proven that this mechanism is a suitable alternative to providing high-level
abstraction and powerful source-to-source transformations. Unfortunately, we found out that
there is weak support in the documentation and there is no clear understanding what can
be provided. We are happy with the design of CINCLE, which can now also be used for
other DSLs aiming at parallelism abstractions. Moreover, SPar is a real use case that can be
proposed to directly integrate into the grammar, because it is a “de-facto” embedded in C++
language.

198

199

9. FUTURE WORK

This chapter will present and discuss potential future work related to the contributions
of this dissertation.

Contents

9.1 PROGRAMMING FRAMEWORK . 200

9.1.1 CINCLE . 200

9.1.2 SPAR . 200

9.1.3 TRANSFORMATION RULES . 201

9.2 EXPERIMENTS . 202

200

9.1 Programming Framework

This dissertation has achieved and presented contributions in our programming
framework. They may be extended in different ways in the coming years to improve our
findings in high-level parallel programming, compiler-based tools, and the stream parallelism
domain.

In addition to the opportunities to expand and improve our specific contributions,
which will be described in detail in the next sections, we will also give some ideas of what we
expect to achieve in the customization space and support space in the next years (see Figure
3.1). In the customization space, our collaborative work in [Led16] only targeted a small set
of applications. There are a variety of applications to be explored and we are seeking DSLs
in the application layer that will be embedded with C++ to reuse the CINCLE infrastructure,
because GMaVis is an external DSL (a completely new language). For the support space,
there is the possibility to create/reuse different runtimes targeting virtual machines, GPU,
DSP, FPGA, and others.

9.1.1 CINCLE

CINCLE is not ready to release to the scientific community because it is still being
improved. Considering the time spent in related projects to consolidate their tools, we have a
great deal of work ahead in terms of software development and testing to make CINCLE a
competitive tool in the C++ DSL design space. In addition to the technical aspects and the
clear documentation that need to be completed, in the future we aim to provide a better API
by using C++ templates and object oriented approaches. Moreover, we intend to improve
CINCLE to support more complex source code analysis regarding data-flow, pattern matching,
automatic code parallelization, other internal optimizations, and compiler techniques for code
generation.

9.1.2 SPar

The performance experiments have demonstrated opportunities for SPar to generate
more efficient code by using FastFlow with respect to memory and energy. One possible future
project would be to evaluate the FastFlow runtime to optimize code generation, combining
different sized queues to increase memory performance. Another possible optimization would
be to implement dynamic changing of the blocking and non-blocking mode to improve energy
efficiency.

201

Concerning the DSL interface and capabilities, it would be interesting to support
users by offering stages for feedback communication. Another option would be to add sliding
window option in the Stage attribute. This could give more opportunities for fine tuning
streaming applications. Moreover, new optimization flags could be created to target different
schedulers to increase performance for a wider set of applications and architectures.

At the present moment we only support the replication of stateless stages. The
benchmark characterization of StreamIt is presented in Figure 9.1. This is the result of
streaming applications for the filter types (stages). As we can observe, these applications
are almost always composed of stateless stages, only six percent were state-full. In fact, half
of this six percent are avoidable by using internal compiler techniques. Therefore, as future
work, we can investigate techniques to avoid state-full stages while the rest are unavoidable
in benchmark applications.

Figure 9.1 – Statistics of StreamIt benchmarks [TA10]. Extracted from [Won12].

When transformation rules for clusters are also integrated in the SPar compiler, a
future work could be to exploit hybrid parallelism. Here we can combined code generation
to exploit clusters with multi-core machines. Because there is one MPI process inside
each machine, it could be equipped with FastFlow code to exploit lightweight multi-thread
parallelism. This implementation could optimize the performance and have better scale for
some cluster applications.

9.1.3 Transformation Rules

Our transformation rules target only stream parallel patterns. As future work, we plan
to include data parallel patterns like map and reduce, when possible. An example would be
the following SPar sentence [[T0]]{[[S0, Rn]]{21}}. In this case, there is a ToStream annotation
in front of the “for” loop and inside of the loop the immediately sentence is a stage block
declaration. Due to the fact that it has the attribute replicate, we can assume that it can run
independently. Also, there is no 2 between the annotation T0 and S0. Consequently, we could
apply the map parallel pattern or transform it into a parallel “for”. This is just one hypothetical

202

case to achieve better performance transformation rules when data parallel computations are
annotated using SPar. There will probably be other similar cases. Therefore, there are many
possibilities for future investigation if it works well for maintaining consistency with different
parallel architecture targets.

9.2 Experiments

There is a lack of streaming application benchmarks in C++ and most of the state-
of-the-art benchmarks are low-level and use old C code. This causes many incompatibilities
when compiling with the new standard compiler. A future work would be to create a standard
C++ benchmark that tests all stream parallelism properties. Also, it would be interesting to do
experiments with robust applications. In this case, a big challenge for future work would be to
implement some of the PARSEC and StreamIt benchmarks.

In the cluster environment, we have tested only two transformation rules. A future
work is to conduct more experiments in this environment with all of the applications experi-
mented in the dissertation. Other experiments to benchmark complex transformations rules
would be interesting to observe their efficiency. Also, to test if equivalent transformation rules
are also equivalent in performance.

Concerning code productivity, it would be interesting to expand the experiments
taking into account other metrics such as those presented in [SS96], where experiments
were conducted with students. Also, software engineering methods could be applied such as
the COCOMO II model [BAB+00] to predict cost and programming effort.

Part V

Complements

203

205

References

[AAC+11] Amini, M.; Ancourt, C.; Coelho, F.; Creusillet, B.; Guelton, S.; Irigoin, F.; Jouvelot,
P.; Keryell, R.; Villalon, P. “PIPS Is not (only) Polyhedral Software”. In: First
International Workshop on Polyhedral Compilation Techniques, 2011, pp. 6.

[ACD+15] Aldinucci, M.; Campa, S.; Danelutto, M.; Kilpatrick, P.; Torquati, M. “Pool
Evolution: A Domain Specific Parallel Pattern”, International Journal of Parallel
Programming (IJPP), March 2015, pp. 1–21.

[AD07] Aldinucci, M.; Danelutto, M. “Skeleton-based Parallel Programming: Functional
and Parallel Semantics in a Single Shot”, Computer Languages, Systems and
Structures, vol. 33–3, October 2007, pp. 179–192.

[ADA+12] Aldinucci, M.; Danelutto, M.; Anardu, L.; Torquati, M.; Kilpatrick, P. “Parallel
Patterns + Macro Data Flow for Multi-Core Programming”. In: 20th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing
(PDP), 2012, pp. 27–36.

[ADK+11] Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Meneghin, M.; Torquati, M.
“Accelerating Code on Multi-Cores with FastFlow”. In: Euro-Par 2011 Parallel
Processing, 2011, pp. 170–181.

[ADK+12] Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Meneghin, M.; Torquati, M. “An
Efficient Unbounded Lock-Free Queue for Multi-core Systems”. In: Euro-Par
2012 Parallel Processing, 2012, pp. 662–673.

[ADKT12] Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Torquati, M. “Targeting
Heterogeneous Architectures Via Macro Data Flow”, Parallel Processing
Letters, vol. 22–2, May 2012, pp. 12.

[ADKT14] Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Torquati, M. “FastFlow: High-Level
and Efficient Streaming on Multi-core”. In: Programming Multi-core and Many-
core Computing Systems, 2014, pp. 14.

[ADM+09] Aldinucci, M.; Danelutto, M.; Meneghin, M.; Kilpatrick, P.; Torquati, M.
“Efficient Streaming Applications on Multi-Core with FastFlow: the Biosequence
Alignment Test-Bed”. In: Parallel Computing: From Multicores and GPU’s to
Petascale, 2009, pp. 273–280.

[ADP+14] Aldinucci, M.; Drocco, M.; Pezzi, G. P.; Misale, C.; Tordini, F.; Torquati, M.
“Exercising High-Level Parallel Programming on Streams: A Systems Biology
use Case”. In: 34th International Conference on Distributed Computing Systems
Workshops (ICDCSW), 2014, pp. 51–56.

206

[AGJ+14] Acun, B.; Gupta, A.; Jain, N.; Langer, A.; Menon, H.; Mikida, E.; Ni, X.; Robson,
M.; Sun, Y.; Totoni, E.; Wesolowski, L.; Kale, L. “Parallel Programming with
Migratable Objects: Charm++ in Practice”. In: International Conference for
High Performance Computing, Networking, Storage and Analysis, 2014, pp.
647–658.

[AGLF15a] Adornes, D.; Griebler, D.; Ledur, C.; Fernandes, L. G. “A Unified MapReduce
Domain-Specific Language for Distributed and Shared Memory Architectures”.
In: The 27th International Conference on Software Engineering & Knowledge
Engineering, 2015, pp. 6.

[AGLF15b] Adornes, D.; Griebler, D.; Ledur, C.; Fernandes, L. G. “Coding Productivity in
MapReduce Applications for Distributed and Shared Memory Architectures”,
International Journal of Software Engineering and Knowledge Engineering,
vol. 25–10, December 2015, pp. 1739–1741.

[AGT14] Andrade, H. C. M.; Gedik, B.; Turaga, D. S. “Fundamentals of Stream
Processing”. New York, USA: Cambridge University Press, 2014, 560p.

[AI91] Ancourt, C.; Irigoin, F. “Scanning Polyhedra with DO Loops”. In: Third ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, 1991,
pp. 39–50.

[ALSU07] Aho, A. V.; Lam, M. S.; Sethi, R.; Ullman, J. D. “Compilers: Principles,
Techniques, & Tools”. Boston, USA: Person Addison Wesley, 2007, 1038p.

[Ami12] Amini, M. “Source-to-Source Automatic Program Transformations for GPU-like
Hardware Accelerators”, Ph.D. Thesis, École Nationale Supérieure des Mines
de Paris, Paris, French, 2012, 347p.

[AMT10] Aldinucci, M.; Meneghin, M.; Torquati, M. “Efficient Smith-Waterman on Multi-
Core with FastFlow”. In: 18th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), 2010, pp. 195–199.

[And13] Anderson, Q. “Storm Real-time Processing Cookbook”. Birmingham, UK:
PACKT, 2013, 255p.

[APD+15] Aldinucci, M.; Pezzi, G. P.; Drocco, M.; Spampinato, C.; Torquati, M. “Parallel
Visual Data Restoration on Multi-GPGPUs using Stencil-Reduce Pattern”,
International Journal of High Performance Computing Application, vol. 29–4,
2015, pp. 461–472.

[ATD+13] Aldinucci, M.; Tordini, F.; Drocco, M.; Torquati, M.; Coppo, M. “Parallel Stochastic
Simulators in System Biology: the Evolution of the Species”. In: 21th Euromicro

207

International Conference on Parallel, Distributed and Network-Based Processing
(PDP), 2013, pp. 410–419.

[BAB+00] Boehm, B. W.; Abts, C.; Brown, A. W.; Chulani, S.; Clark, B. K.; Horowitz, E.;
Madachy, R.; Reifer, D. J.; Steece, B. “Software Cost Estimation with COCOMO
II”. Upper Saddle River, United States: Prentice Hall, 2000, 544p.

[BC05] Benoit, A.; Cole, M. “Two Fundamental Concepts in Skeletal Parallel
Programming”. In: International Conference on Computational Science (ICCS),
2005, pp. 764–771.

[BDLT13] Buono, D.; Danelutto, M.; Lametti, S.; Torquati, M. “Parallel Patterns for General
Purpose Many-Core”. In: 21th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), 2013, pp. 131–139.

[BE05] Basumallik, A.; Eigenmann, R. “Towards Automatic Translation of OpenMP to
MPI”. In: 19th Annual International Conference on Supercomputing, 2005, pp.
189–198.

[BGP14] Boob, S.; Gonzalez–Vélez, H.; Popescu, A. M. “Automated Instantiation of
Heterogeneous Fast Flow CPU/GPU Parallel Pattern Applications in Clouds”. In:
22th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP), 2014, pp. 162–169.

[BJK+95] Blumofe, R. D.; Joerg, C. F.; Kuszmaul, B. C.; Leiserson, C. E.; Randall, K. H.;
Zhou, Y. “Cilk: An Efficient Multithreaded Runtime System”. In: Symposium on
Principles and Practice of Parallel Programming, 1995, pp. 207–216.

[BMD+11] Bueno, J.; Martinell, L.; Duran, A.; Farreras, M.; Martorell, X.; Badia, R. M.;
Ayguade, E.; Labarta, J. “Productive Cluster Programming with OmpSs”. In:
17th International Conference on Parallel Processing, 2011, pp. 555–566.

[BME07] Basumallik, A.; Min, S.-J.; Eigenmann, R. “Programming Distributed Memory
Sytems Using OpenMP”. In: IEEE International on Parallel and Distributed
Processing Symposium, 2007, pp. 1–8.

[BML+12] Bae, H.; Mustafa, D.; Lee, J.-W.; Aurangzeb; Lin, H.; Dave, C.; Eigenmann, R.;
Midkiff, S. P. “The Cetus Source-to-Source Compiler Infrastructure: Overview
and Evaluation”, International Journal of Parallel Programming, vol. 41–6,
August 2012, pp. 753–767.

[BPD+12] Bueno, J.; Planas, J.; Duran, A.; Badia, R. M.; Martorell, X.; Ayguade, E.;
Labarta, J. “Productive Programming of GPU Clusters with OmpSs”. In: 26th
International Parallel and Distributed Processing Symposium, 2012, pp. 557–
568.

208

[BSL+11] Brown, K. J.; Sujeeth, A. K.; Lee, H. J.; Rompf, T.; Chafi, H.; Odersky,
M.; Olukotun, K. “A Heterogeneous Parallel Framework for Domain-Specific
Languages”. In: International Conference on Parallel Architectures and
Compilation Techniques, 2011, pp. 89–100.

[CCA+10] Condie, T.; Conway, N.; Alvaro, P.; Hellerstein, J. M.; Elmeleegy, K.; Sears,
R. “MapReduce Online”. In: 7th USENIX Conference on Networked Systems
Design and Implementation, 2010, pp. 21.

[Cha16] Charm++. “Parallel Programming Framework”. Source: http://charmplusplus.
org/, Febuary 2016.

[Cil16] Cilk, I. “Intel® Cilk Plus”. Source: https://www.cilkplus.org/, Febuary 2016.

[CJvdP07] Chapman, B.; Jost, G.; van der Pas, R. “Using OpenMP: Portable Shared
Memory Parallel Programming (Scientific and Engineering Computation)”.
London, UK: MIT Press, 2007, 378p.

[Cla16] Clang. “The Clang’s Documentation”. Source: http://clang.llvm.org/docs/,
Febuary 2016.

[Col89] Cole, M. “Algorithmic Skeletons: Structured Management of Parallel
Computation”. Cambridge, USA: MIT Press, 1989, 170p.

[Col04] Cole, M. “Bringing Skeletons out of the Closet: A Pragmatic Manifesto for
Skeletal Parallel Programming”, Parallel Computing, vol. 30–3, March 2004, pp.
389–406.

[CSB+11] Chafi, H.; Sujeeth, A. K.; Brown, K. J.; Lee, H.; Atreya, A. R.; Olukotun, K.
“A Domain-specific Approach to Heterogeneous Parallelism”. In: 16th ACM
Symposium on Principles and Practice of Parallel Programming, 2011, pp.
35–46.

[DBM+09] Dave, C.; Bae, H.; Min, S.-J.; Lee, S.; Eingenmann, R.; Midkiff, S. “Centus:
A Source-to-Source Compiler Infrastructure for Multicores”, IEEE Computer,
vol. 42–12, 2009, pp. 36–42.

[DDST14] Danelutto, M.; Deri, L.; Sensi, D. D.; Torquati, M. “Deep Packet Inspection on
Commodity Hardware using FastFlow”. In: Parallel Computing: Accelerating
Computational Science and Engineering (CSE), 2014, pp. 92–99.

[DG08] Dean, J.; Ghemawat, S. “MapReduce: Simplified Data Processing on Large
Clusters”, Communications ACM, vol. 51–1, January 2008, pp. 107–113.

http://charmplusplus.org/
http://charmplusplus.org/
https://www.cilkplus.org/
http://clang.llvm.org/docs/

209

[DGS+16] Danelutto, M.; Garcia, J. D.; Sanchez, L. M.; Sotomayor, R.; Torquati, M.
“Introducing Parallelism by using REPARA C++11 Attributes”. In: 24th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing
(PDP), 2016, pp. 5.

[DJP+11] DeVito, Z.; Joubert, N.; Palacios, F.; Oakley, S.; Medina, M.; Barrientos, M.;
Elsen, E.; Ham, F.; Aiken, A.; Duraisamy, K.; Darve, E.; Alonso, J.; Hanrahan,
P. “Liszt: A Domain Specific Language for Building Portable Mesh-based
PDE Solvers”. In: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2011, pp. 12.

[DK14] Danelutto, M.; Kifle, H. A. “Stream parallel computations on GPUs”. In:
International Workshop on High-level Programming for Heterogeneous and
Hierarchical Parallel Systems (HLPGPU), 2014, pp. 26–32.

[DM06] Dolotin, V.; Morozov, A. “The Universal Mandelbrot Set”. Singapore, US: World
of Science Press, 2006, 176p.

[DT14] Danelutto, M.; Torquati, M. “Loop Parallelism: A New Skeleton Perspective on
Data Parallel Patterns”. In: 22th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), 2014, pp. 52–59.

[DT15] Danelutto, M.; Torquati, M. “Structured Parallel Programming with “core”
FastFlow”. In: Central European Functional Programming School: 5th Summer
School, 2015, pp. 29–75.

[DTK15] Danelutto, M.; Torquati, M.; Kilpatrick, P. “A Green Perspective on Structured
Parallel Programming”. In: 23rd Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), 2015, pp. 430–437.

[Fas16] FastFlow. “FastFlow website”. Source: http://mc-fastflow.sourceforge.net/,
Febuary 2016.

[FHLLB09] Frigo, M.; Halpern, P.; Leiserson, C. E.; Lewin-Berlin, S. “Reducers and Other
Cilk++ Hyperobjects”. In: Twenty-first Annual Symposium on Parallelism in
Algorithms and Architectures, 2009, pp. 79–90.

[Fow10] Fowler, M. “Domain-Specific Languages”. Boston, USA: Addison-Wesley, 2010,
460p.

[Fur14] Furrow, A. “Functional Reactive Programming on iOS”. Leanpub, 2014, 91p.

[GAF14] Griebler, D.; Adornes, D.; Fernandes, L. G. “Performance and Usability
Evaluation of a Pattern-Oriented Parallel Programming Interface for Multi-Core

http://mc-fastflow.sourceforge.net/

210

Architectures”. In: The 26th International Conference on Software Engineering
& Knowledge Engineering, 2014, pp. 25–30.

[GCC16a] GCC. “The GNU Compiler Collection”. Source: https://gcc.gnu.org/,
Febuary 2016.

[GCC16b] GCC, G. “Plugins (online documentation)”. Source: https://gcc.gnu.org/
onlinedocs/gccint/Plugins.html, March 2016.

[GDTF15] Griebler, D.; Danelutto, M.; Torquati, M.; Fernandes, L. G. “An Embedded C++
Domain-Specific Language for Stream Parallelism”. In: Parallel Computing: On
the Road to Exascale, Proceedings of the International Conference on Parallel
Computing, 2015, pp. 317–326.

[GF13] Griebler, D.; Fernandes, L. G. “Towards a Domain-Specific Language for
Patterns-Oriented Parallel Programming”. In: Programming Languages - 17th
Brazilian Symposium - SBLP, 2013, pp. 105–119.

[GHJV02] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. “Design Patterns: Elements
of Reusable Object-Oriented Software”. Boston, USA: Addison-Wesley, 2002,
381p.

[GHLL+98] Gropp, W.; Huss-Lederman, S.; Lumsdaine, A.; Lusk, E.; Nitzberg, B.; Saphir,
W.; Snir, M. “MPI: The Complete Reference”. London, England: MIT Press,
1998, 350p.

[Gho11] Ghosh, D. “DSLs in Action”. Stamford, CT, USA: Manning publications Co.,
2011, 377p.

[Gor10] Gordon, M. I. “Compiler Techniques for Scalable Performance of Stream
Programs on Multicore Architectures”, Ph.D. Thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 2010, 223p.

[Gre14] Gregg, B. “Systems Performance: Enterprise and the Cloud”. Boston, USA:
Prentice Hall, 2014, 1220p.

[Gri12] Griebler, D. J. “Proposta de uma Linguagem Específica de Domínio de
Programação Paralela Orientada a Padrões Paralelos: Um Estudo de Caso
Baseado no Padrão Mestre/Escravo para Arquiteturas Multi-Core”, Master’s
Thesis, Faculdade de Informática - PPGCC - PUCRS, Porto Alegre, Brazil,
2012, 168p.

[GSFS15] García, J. D.; Sotomayor, R.; Fernández, J.; Sánchez, L. M. “Static Partitioning
and Mapping of Kernel-Based Applications Over Modern Heterogeneous

https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gccint/Plugins.html
https://gcc.gnu.org/onlinedocs/gccint/Plugins.html

211

Architectures”, Simulation Modelling Practice and Theory, vol. 58–1,
November 2015, pp. 79–94.

[Gue11] Guelton, S. “Building Source-to-Source Compilers for Heterogeneous Targets”,
Ph.D. Thesis, École Nationale Supérieure des Mines de Paris, Paris, French,
2011, 221p.

[Gus11] Gustafson, J. L. “Little’s Law”. In: Encyclopedia of Parallel Computing, Padua,
D. (Editor), Springer US, 2011, pp. 1038–1041.

[GVL10] González-Vélez, H.; Leyton, M. “A Survey of Algorithmic Skeleton Frameworks:
High-level Structured Parallel Programming Enablers”, Software Practice &
Experience, vol. 40–12, November 2010, pp. 1135–1160.

[Had16] Hadoop. “Apache Hadoop”. Source: http://hadoop.apache.org/, Febuary 2016.

[Hag06] von Hagen, W. “The Definitive Guide to GCC”. Berkeley, CA: Apress, 2006,
570p.

[HP11] Hennessy, J. L.; Patterson, D. A. “Computer Architecture: a Quantitative
Approach”. Boston, USA: Morgan-Kaufmann, 2011, 998p.

[HSWO14] Hong, S.; Salihoglu, S.; Widom, J.; Olukotun, K. “Simplifying Scalable
Graph Processing with a Domain-Specific Language”. In: Annual IEEE/ACM
International Symposium on Code Generation and Optimization, 2014, pp. 11.

[IJT91] Irigoin, F.; Jouvelot, P.; Triolet, R. “Semantical Interprocedural Parallelization:
An Overview of the PIPS Project”. In: 5th International Conference on
Supercomputing, 1991, pp. 244–251.

[ISO11a] ISO/IEC-14882:2011. “Information Technology - Programming Languages -
C++”, Technical Report, International Standard, Geneva, Switzerland, 2011.

[ISO11b] ISO/IEC-9899:2011. “Information technology - Programming languages - C”,
Technical Report, International Standard, Geneva, Switzerland, 2011, 683p.

[ISO14] ISO/IEC-14882:2014. “Information Technology - Programming Languages -
C++”, Technical Report, International Standard, Geneva, Switzerland, 2014,
1358p.

[JLF+05] Johnson, T. A.; Lee, S.-I.; Fei, L.; Basumallik, A.; Upadhyaya, G.; Eigenmann, R.;
Midkiff, S. P. “Experiences in Using Cetus for Source-to-source Transformations”.
In: 17th International Conference on Languages and Compilers for High
Performance Computing, 2005, pp. 1–14.

http://hadoop.apache.org/

212

[Kar05] Karlsson, B. “Beyond the C++ Standard Library: Introduction to Boost”. Boston,
USA: Addison Wesley Professional, 2005, 432p.

[KB16] Kaebler, A.; Bradski, G. “Learning OpenCV Computer Vision in C++ with the
OpenCV library”. Sebastopol, CA: O’Reily Press, 2016, 396p.

[KKWZ15] Karau, H.; Konwinski, A.; Wendell, P.; Zaharia, M. “Learning Spark: Lightning-
Fast Big Data Analysis”. Sebastopol, CA, USA: O’Reilly Media, 2015, 274p.

[KmWH10] Kirk, D. B.; mei W. Hwu, W. “Programming Massively Parallel Processors: A
Hands-on Approach”. Burlington, MA, USA: Elsevier, 2010, 279p.

[LA14] Lopes, B. C.; Auler, R. “Getting Started with LLVM Core Libraries”. Birmingham,
UK: PACKT Publishing, 2014, 314p.

[Led16] Ledur, C. “GMaVis: A Domain-Specific Language for Large-Scale Geospatial
Data Visualization Supporting Multi-core Parallelism”, Master’s Thesis,
Faculdade de Informática - PPGCC - PUCRS, Porto Alegre, Brazil, 2016, 143p.

[Lei09] Leiserson, C. E. “The Cilk++ Concurrency Platform”. In: 46th Annual Design
Automation Conference, 2009, pp. 522–527.

[Lev09] Levine, J. R. “Flex & Bison”. Sebastopol, CA: O’Reilly Media Inc., 2009, 294p.

[LGMF15] Ledur, C.; Griebler, D.; Manssuor, I.; Fernandes, L. G. “Towards a Domain-
Specific Language for Geospatial Data Visualization Maps with Big Data Sets”.
In: ACS/IEEE International Conference on Computer Systems and Applications,
2015, pp. 8.

[LLS+13] Lee, I.-T. A.; Leiserson, C. E.; Schardl, T. B.; Sukha, J.; Zhang, Z. “On-the-fly
Pipeline Parallelism”. In: ACM Symposium on Parallelism in Algorithms and
Architectures, 2013, pp. 140–151.

[Ló14] López, S. A. “Compile-Time Support for Thread-Level Speculation”, Ph.D.
Thesis, Universidad de Valladolid, Valladolid, Spain, 2014, 245p.

[Mil15] Milthorpe, J. J. “X10 for High-Performance Scientific Computing”, Ph.D. Thesis,
Australian National University, Australia, 2015, 159p.

[Mis14] Misale, C. “Accelerating Bowtie2 With a Lock-Less Concurrency Approach
and Memory Affinity”. In: 22th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), 2014, pp. 578–585.

[MMPSC08] Millot, D.; Muller, A.; Parrot, C.; Silber-Chaussumier, F. “STEP: A Distributed
OpenMP for Coarse-Grain Parallelism Tool”. In: OpenMP in a New Era of
Parallelism: 4th International Workshop, 2008, pp. 83–99.

213

[MRR12] McCool, M.; Robison, A. D.; Reinders, J. “Structured Parallel Programming:
Patterns for Efficient Computation”. MA, USA: Morgan Kaufmann, 2012, 406p.

[MS12] Miner, D.; Shook, A. “MapReduce Design Patterns”. Sebastopol, CA, USA:
O’Reilly, 2012, 251p.

[MSM05] Mattson, T. G.; Sanders, B. A.; Massingill, B. L. “Patterns for Parallel
Programming”. Boston, USA: Addison-Wesley, 2005, 355p.

[MW08] Maurer, J.; Wong, M. “Towards Support for Attributes in C++ (Revision 6)”,
Technical Report, The C++ Standards Committee, 2008.

[NBF96] Nicbols, B.; Buttlar, D.; Farrell, J. P. “Pthreads Programming”. Sebastopol, USA:
O’Reilly, 1996, 286p.

[Omp16] OmpSs. “The OmpSs Programming Model”. Source: https://pm.bsc.es/ompss,
Febuary 2016.

[Ope16] OpenMP. “Open Multi-Processing API specification for parallel programming”.
Source: http://openmp.org/, Febuary 2016.

[OSV10] Odersky, M.; Spoon, L.; Venners, B. “Programming in Scala 2nd”. Walnut Creek,
California: Artima Press, 2010, 883p.

[Par13] Par, T. “The Definitive ANTRL 4 Reference”. The Pragmatic Programmers, 2013,
322p.

[PBAL13] Planas, J.; Badia, R. M.; Ayguadé, E.; Labarta, J. “Self-Adaptive OmpSs Tasks
in Heterogeneous Environments”. In: IEEE 27th International Symposium on
Parallel Distributed Processing, 2013, pp. 138–149.

[PC11] Pop, A.; Cohen, A. “A Stream-Computing Extension to OpenMP”. In: 6th
International Conference on High Performance and Embedded Architectures
and Compilers, 2011, pp. 5–14.

[PC13] Pop, A.; Cohen, A. “OpenStream: Expressiveness and Data-flow Compilation
of OpenMP Streaming Programs”, ACM Transactions on Architecture and Code
Optimization, vol. 9–4, January 2013, pp. 53:1–53:25.

[Pop12] Pop, A. “Leveraging Streaming for Deterministic Parallelization: an Integrated
Language, Compiler and Runtime Approach”, Ph.D. Thesis, École Nationale
Supérieure des Mines de Paris, Paris, French, 2012, 282p.

[PPL16] PPL. “The Pervasive Parallelism Laboratory”. Source: https://ppl.stanford.edu/
projects, Febuary 2016.

https://pm.bsc.es/ompss
http://openmp.org/
https://ppl.stanford.edu/projects
https://ppl.stanford.edu/projects

214

[Pro14] Project, R. “D3.3: Static Partitioning Tool”, Technical Report, University of Pisa,
Pisa, Italy, 2014, 167p.

[Pro15] Project, R. “D4.3: Source Code Transformations for Coarse Grained Parallelism”,
Technical Report, University of Pisa, Pisa, Italy, 2015, 49p.

[QSYS04] Quinlan, D.; Schordan, M.; Yi, Q.; Saebjornsen, A. “Classification and Utilization
of Abstractions for Optimization”. In: Leveraging Applications of Formal Methods:
First International Symposium, 2004, pp. 57–73.

[Qui03] Quinn, M. J. “Parallel Programming in C with MPI and OpenMP”. New York,
USA: McGraw-Hill, 2003, 544p.

[RCJ11] Reed, E. C.; Chen, N.; Johnson, R. E. “Expressing Pipeline Parallelism
Using TBB Constructs: A Case Study on What Works and What Doesn’T”.
In: Compilation of the Co-located Workshops of SPLASH, 2011, pp. 133–138.

[Rei07] Reinders, J. “Intel Threading Building Blocks”. Sebastopol, CA, USA: O’Reilly,
2007, 334p.

[REP16] REPARA. “Reengineering and Enabling Performance and poweR of
Applications”. Source: http://repara-project.eu/?page_id=244, Febuary 2016.

[RJ15] Reinders, J.; Jeffers, J. “High Performance Parallelism Pearls: Multicore and
Many-core Programming Approaches”. United States: ElSci, 2015, 549p.

[RO10] Rompf, T.; Odersky, M. “Lightweight Modular Staging: A Pragmatic Approach
to Runtime Code Generation and Compiled DSLs”. In: Ninth International
Conference on Generative Programming and Component Engineering, 2010,
pp. 127–136.

[ROS16] ROSE. “ROSE@LLNL: Making Compiler Technology Accessible”. Source:
http://rosecompiler.org/, Febuary 2016.

[RR10] Rauber, T.; Rünger, G. “Parallel Programming for Multicore and Cluster
Systems”. New York, USA: Springer, 2010, 463p.

[SBL+14] Sujeeth, A. K.; Brown, K. J.; Lee, H.; Rompf, T.; Chafi, H.; Odersky, M.; Olukotun,
K. “Delite: A Compiler Architecture for Performance-Oriented Embedded
Domain-Specific Languages”, ACM Transactions on Embedded Computing
Systems, vol. 13–4, July 2014, pp. 25.

[Sch14] Schaling, B. “The Boost C++ Libraries”. XML Press, 2014, 570p.

http://repara-project.eu/?page_id=244
http://rosecompiler.org/

215

[SGA+13] Soulé, R.; Gordon, M. I.; Amarasinghe, S.; Grimm, R.; Hirzel, M. “Dynamic
Expressivity with Static Optimization for Streaming Languages”. In: 7th ACM
International Conference on Distributed Event-based Systems, 2013, pp. 159–
170.

[SLB+11] Sujeeth, A.; Lee, H.; Brown, K.; Rompf, T.; Chafi, H.; Wu, M.; Atreya, A.; Odersky,
M.; Olukotun, K. “OptiML: An Implicitly Parallel Domain-Specific Language for
Machine Learning”. In: 28th International Conference on Machine Learning
(ICML-11), 2011, pp. 609–616.

[SLJ+14] Samadi, M.; Lee, J.; Jamshidi, A. D.; Mahlke, S.; Hormati, A. “Scaling
Performance via Self-Tuning Approximation for Graphics Engines”, ACM
Transaction Computer Systems, vol. 32–3, September 2014, pp. 7:1–7:29.

[SQ03] Schordan, M.; Quinlan, D. “A Source-To-Source Architecture for User-Defined
Optimizations”. In: Modular Programming Languages: Joint Modular Languages
Conference, 2003, pp. 214–223.

[SS96] Szafron, D.; Schaeffer, J. “An Experiment to Measure the Usability of Parallel
Programming Systems”, Concurrency: Practice and Experience, vol. 8–2,
March 1996, pp. 147–166.

[Str14] Stroustrup, B. “Programming: Principles and Practice Using C++”. San
Francisco, USA: Addison-Wesley Professional, 2014, 2596p.

[Str16] StreamIt. “Website”. Source: http://groups.csail.mit.edu/cag/streamit,
Febuary 2016.

[Suj14] Sujeeth, A. K. “Productivity and Performance with Embedded Domain-Specific
Language”, Ph.D. Thesis, Stanford University, Stanford, USA, 2014, 179p.

[SUPT14] Secco, A.; Uddin, I.; Pezzi, G. P.; Torquati, M. “Message Passing on InfiniBand
RDMA for Parallel Run-Time Supports”. In: 22th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP),
2014, pp. 130–137.

[TA10] Thies, W.; Amarasinghe, S. “An Empirical Characterization of Stream Programs
and Its Implications for Language and Compiler Design”. In: International
Conference on Parallel Architectures and Compilation Techniques, 2010, pp.
365–376.

[TBB16] TBB, I. “Intel® Threading Building Blocks”. Source:
http://threadingbuildingblocks.org, Febuary 2016.

http://groups.csail.mit.edu/cag/streamit
http://threadingbuildingblocks.org

216

[TDM+14] Tordini, F.; Drocco, M.; Merelli, I.; Milanesi, L.; Liò, P.; Aldinucci, M. “NuChart-II:
A Graph-Based Approach for the Analysis and Interpretation of Hi-C Data”.
In: 11th International meeting on Computational Intelligence methods for
Bioinformatics and Biostatistics (CIBB), 2014, pp. 1–13.

[Thi09] Thies, W. “Language and Compiler Support for Stream Programs”, Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, 2009, 240p.

[TKA02a] Thies, W.; Karczmarek, M.; Amarasinghe, S. P. “StreamIt: A Language
for Streaming Applications”. In: 11th International Conference on Compiler
Construction, 2002, pp. 179–196.

[TKA02b] Thies, W.; Karczmarek, M.; Amarasinghe, S. P. “StreamIt: A Language
for Streaming Applications”. In: 11th International Conference on Compiler
Construction, 2002, pp. 179–196.

[TYK11] Talbot, J.; Yoo, R. M.; Kozyrakis, C. “Phoenix++: Modular MapReduce for
Shared-memory Systems”. In: Second International Workshop on MapReduce
and Its Applications, 2011, pp. 9–16.

[VBD+13] Voelter, M.; Benz, S.; Dietrich, C.; Engelmann, B.; Helander, M.; Kats, L.;
Visser, E.; Wachsmuth, G. “DSL Engineering Designing, Implementing and
Using Domain-Specific Languages”. Germany: Ebook, 2013, 560p.

[Won12] Wong, E. “Optimizations in Stream Programming for Multimedia Applications
”, Master’s Thesis, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 2012, 89p.

[Wri10] Wright, S. “Digital Compositing for Film and Video”. Oxford, UK: Focal Press
and Elsevier, 2010, 513p.

[X1016] X10. “Performance and Productivity at Scale”. Source: http://x10-lang.org/,
Febuary 2016.

[ZLRA08] Zhang, D.; Li, Q. J.; Rabbah, R.; Amarasinghe, S. “A Lightweight Streaming
Layer for Multicore Execution”, SIGARCH Computer Architecture News, vol. 36–
2, May 2008, pp. 18–27.

http://x10-lang.org/

217

Appendix A – APPENDIX

This chapter presents all appendixes to complement the discussions of the thesis.

Contents

A.1 COMPLEMENTARY RESULTS ON MULTI-CORE 218

A.1.1 FILTER SOBEL SPAR PERFORMANCE . 218

A.1.2 FILTER SOBEL PERFORMANCE COMPARISON . 220

A.1.3 PRIME NUMBERS PERFORMANCE COMPARISON 225

A.1.4 MANDELBROT SET PERFORMANCE COMPARISON 227

A.2 COMPLEMENTARY RESULTS ON CLUSTER 228

A.3 SOURCES FOR CODING PRODUCTIVITY 228

A.3.1 FILTER SOBEL . 228

A.3.2 VIDEO OPENCV . 233

A.3.3 MANDELBROT . 235

A.3.4 PRIME NUMBERS . 238

A.3.5 K-MEANS . 241

218

A.1 Complementary Results on Multi-Core

During this section, complementary results of the applications when running in a
multi-core environment are plotted.

A.1.1 Filter Sobel SPar Performance

This section is just complementing the results concerning the Filter Sobel application,
instead using unbounded workload for comparing the SPar optimization flags and application
versions.

 16

 32

 64

 128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Sobel (Time)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(a) Filter Sobel execution times.

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Sobel (Stream Performance)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(b) Filter Sobel latency.

Figure A.1 – Time performance using unbalanced workload (pipe-like)

 8

 16

 32

 64

 128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Sobel (Time)

spar spar−ond spar−blk spar−blk−ond

(a) Filter Sobel execution times.

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Sobel (Stream Performance)

spar spar−ond spar−blk spar−blk−ond

(b) Filter Sobel latency.

Figure A.2 – Time performance using unbalanced workload (farm-like)

219

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
1

2
8

0

Number of Replicas

Sobel (Stream Performance)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(a) Filter Sobel throughput.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Sobel (Speedup Throughput)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(b) Filter Sobel throughput speed-up.

Figure A.3 – Stream performance using unbalanced workload (pipe-like)

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
1

2
8

0

Number of Replicas

Sobel (Stream Performance)

spar spar−ond spar−blk spar−blk−ond

(a) Filter Sobel throughput.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Sobel (Speedup Throughput)

spar spar−ond spar−blk spar−blk−ond

(b) Filter Sobel throughput speed-up.

Figure A.4 – Stream performance using unbalanced workload (farm-like)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Sobel (HPC Performance)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(a) Filter Sobel HPC efficiency.

 128

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−cores)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(b) Filter Sobel CPU cores energy consumption.

Figure A.5 – HPC performance using unbalanced workload (pipe-like)

220

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Sobel (HPC Performance)

spar spar−ond spar−blk spar−blk−ond

(a) Filter Sobel HPC efficiency.

 128

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−cores)

spar spar−ond spar−blk spar−blk−ond

(b) Filter Sobel CPU cores energy consumption.

Figure A.6 – HPC performance using unbalanced workload (farm-like)

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

 1.67772e+07

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (cache−miss)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(a) Filter Sobel cache misses.

 256

 512

 1024

 2048

 4096

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−pkg)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(b) Filter Sobel socket energy consumption
(cache and CPUs).

Figure A.7 – CPU Socket performance using unbalanced workload (pipe-like)

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

 1.67772e+07

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (cache−miss)

spar spar−ond spar−blk spar−blk−ond

(a) Filter Sobel cache misses.

 256

 512

 1024

 2048

 4096

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−pkg)

spar spar−ond spar−blk spar−blk−ond

(b) Filter Sobel socket energy consumption
(cache and CPUs).

Figure A.8 – CPU Socket performance using unbalanced workload (farm-like)

A.1.2 Filter Sobel Performance Comparison

This section is presenting more results concerning the Filter Sobel application using
unbounded workload for the performance comparison.

221

 32768

 65536

 131072

 262144

 524288

 1.04858e+06

 2.09715e+06

 4.1943e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (Memory)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(a) Filter Sobel memory usage.

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−ram)

spar−pipe
spar−pipe−ond

spar−pipe−blk
spar−pipe−blk−ond

(b) Filter Sobel memory energy consumption.

Figure A.9 – Memory performance using unbalanced workload (pipe-like)

 32768

 65536

 131072

 262144

 524288

 1.04858e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (Memory)

spar spar−ond spar−blk spar−blk−ond

(a) Filter Sobel memory usage.

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−ram)

spar spar−ond spar−blk spar−blk−ond

(b) Filter Sobel memory energy consumption.

Figure A.10 – Memory performance using unbalanced workload (farm-like)

 16

 32

 64

 128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Sobel (Time)

spar−pipe ff−pipe tbb−pipe omp−pipe

(a) Filter Sobel execution times.

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Sobel (Stream Performance)

spar−pipe ff−pipe tbb−pipe omp−pipe

(b) Filter Sobel latency.

Figure A.11 – Time performance comparison using unbalanced workload (Listing 7.1)

222

 8

 16

 32

 64

 128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Sobel (Time)

spar ff tbb omp

(a) Filter Sobel execution times.

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Sobel (Stream Performance)

spar ff tbb omp

(b) Filter Sobel latency.

Figure A.12 – Time performance comparison using unbalanced workload (Listing 7.2)

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
1

2
8

0

Number of Replicas

Sobel (Stream Performance)

spar−pipe ff−pipe tbb−pipe omp−pipe

(a) Filter Sobel throughput.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Sobel (Speedup Throughput)

spar−pipe ff−pipe tbb−pipe omp−pipe

(b) Filter Sobel throughput speed-up.

Figure A.13 – Stream performance comparison using unbalanced workload (Listing 7.1)

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
1

2
8

0

Number of Replicas

Sobel (Stream Performance)

spar ff tbb omp

(a) Filter Sobel throughput.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Sobel (Speedup Throughput)

spar ff tbb omp

(b) Filter Sobel throughput speed-up.

Figure A.14 – Stream performance comparison using unbalanced workload (Listing 7.2)

223

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Sobel (HPC Performance)

spar−pipe ff−pipe tbb−pipe omp−pipe

(a) Filter Sobel HPC efficiency.

 128

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−cores)

spar−pipe ff−pipe tbb−pipe omp−pipe

(b) Filter Sobel CPU cores energy consumption.

Figure A.15 – HPC performance comparison using unbalanced workload (Listing 7.1)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Sobel (HPC Performance)

spar ff tbb omp

(a) Filter Sobel HPC efficiency.

 128

 256

 512

 1024

 2048

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−cores)

spar ff tbb omp

(b) Filter Sobel CPU cores energy consumption.

Figure A.16 – HPC performance comparison using unbalanced workload (Listing 7.2)

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

 1.67772e+07

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (cache−miss)

spar−pipe ff−pipe tbb−pipe omp−pipe

(a) Filter Sobel cache misses.

 256

 512

 1024

 2048

 4096

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−pkg)

spar−pipe ff−pipe tbb−pipe omp−pipe

(b) Filter Sobel socket energy consumption
(cache and CPUs).

Figure A.17 – CPU Socket performance comparison using unbalanced workload (Listing 7.1)

224

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

 1.67772e+07

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (cache−miss)

spar ff tbb omp

(a) Filter Sobel cache misses.

 256

 512

 1024

 2048

 4096

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−pkg)

spar ff tbb omp

(b) Filter Sobel socket energy consumption
(cache and CPUs).

Figure A.18 – CPU Socket performance comparison using unbalanced workload (Listing 7.2)

 32768

 65536

 131072

 262144

 524288

 1.04858e+06

 2.09715e+06

 4.1943e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (Memory)

spar−pipe ff−pipe tbb−pipe omp−pipe

(a) Filter Sobel memory usage.

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−ram)

spar−pipe ff−pipe tbb−pipe omp−pipe

(b) Filter Sobel memory energy consumption.

Figure A.19 – Memory performance comparison using unbalanced workload (Listing 7.1)

 32768

 65536

 131072

 262144

 524288

 1.04858e+06

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Sobel (Memory)

spar ff tbb omp

(a) Filter Sobel memory usage.

 128

 256

 512

 1024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Sobel (energy−ram)

spar ff tbb omp

(b) Filter Sobel memory energy consumption.

Figure A.20 – Memory performance comparison using unbalanced workload (Listing 7.2)

225

A.1.3 Prime Numbers Performance Comparison

In this section, complementary results are presented for the Prime Numbers appli-
cation running in multi-core.

 16

 32

 64

 128

 256

 512

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
e

c
o

n
d

s

Number of Replicas

Prime Numbers (Time)

spar ff tbb omp

(a) Prime Numbers execution times.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Prime Numbers (Stream Performance)

spar ff tbb omp

(b) Prime Numbers latency.

Figure A.21 – Time performance comparison (Prime Numbers Default)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
1

2
0

0
0

0
0

Number of Replicas

Prime Numbers (Stream Performance)

spar ff tbb omp

(a) Prime Numbers throughput.

 0

 2

 4

 6

 8

 10

 12

 14

 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Prime Numbers (Speedup Throughput)

spar ff tbb omp

(b) Prime Numbers throughput speed-up.

Figure A.22 – Stream performance comparison (Prime Numbers Default)

226

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
ff

ic
ie

n
c
y

Number of Replicas

Prime Numbers (HPC Performance)

spar ff tbb omp

(a) Prime Numbers HPC efficiency.

 512

 1024

 2048

 4096

 8192

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Prime Numbers (energy−cores)

spar ff tbb omp

(b) Prime Numbers CPU cores energy consump-
tion.

Figure A.23 – HPC performance comparison (Prime Numbers Default)

 256

 1024

 4096

 16384

 65536

 262144

 1.04858×10
6

 4.1943×10
6

 1.67772×10
7

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

K
B

Number of Replicas

Prime Numbers (cache−miss)

spar ff tbb omp

(a) Prime Numbers cache misses.

 1024

 2048

 4096

 8192

 16384

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Prime Numbers (energy−pkg)

spar ff tbb omp

(b) Prime Numbers socket energy consumption
(cache and CPUs).

Figure A.24 – CPU Socket performance comparison (Prime Numbers Default)

 1024

 2048

 4096

 8192

 16384

 32768

 65536

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

K
B

Number of Replicas

Prime Numbers (Memory)

spar ff tbb omp

(a) Prime Numbers memory usage.

 128

 256

 512

 1024

 2048

 4096

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

J
o

u
le

s

Number of Replicas

Prime Numbers (energy−ram)

spar ff tbb omp

(b) Prime Numbers memory energy consumption.

Figure A.25 – Memory performance comparison (Prime Numbers Default)

227

A.1.4 Mandelbrot Set Performance Comparison

Some complementary results about the Mandelbrot set application are demonstrated
in this section that run in a multi-core machine.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T
h

ro
u

g
h

p
u

t
o

f
4

0
0

0
0

0
0

0
0

Number of Replicas

Mandelbrot (Stream Performance)

spar−blk−ond
ff

tbb
omp

pt

(a) Mandelbrot throughput.

 0

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

S
p

e
e

d
−

u
p

Number of Replicas

Mandelbrot (Speedup Throughput)

spar−blk−ond
ff

tbb
omp

pt

(b) Mandelbrot throughput speed-up.

Figure A.26 – Stream performance comparison (Mandelbrot)

228

A.2 Complementary Results on Cluster

This section will present all complementary results for evaluating the performance
on cluster environment.

 32

 64

 128

 256

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S
e

c
o

n
d

s

Number of Replicas

Sobel (Time)

spar

(a) Filter Sobel execution times.

 30

 40

 50

 60

 70

 80

 90

 100

 110

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L
a

te
n

c
y
(m

ill
is

e
c
o

n
d

s
)

Number of Replicas

Sobel (Stream Performance)

spar

(b) Filter Sobel latency.

Figure A.27 – Time performance using unbalanced workload (Filter Sobel)

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T
h

ro
u

g
h

p
u

t
o

f
1

2
8

0

Number of Replicas

Sobel (Stream Performance)

spar

(a) Filter Sobel throughput.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S
p

e
e

d
−

u
p

Number of Replicas

Sobel (Speedup Throughput)

spar

(b) Filter Sobel throughput speed-up.

Figure A.28 – Stream performance using unbalanced workload (Filter Sobel)

A.3 Sources for Coding Productivity

This section will present all applications pseudo codes used to evaluate and compare
the coding productivity.

A.3.1 Filter Sobel

229

1 / / g loba l d e c l a r a t i o n
2 i n t main (i n t argc , char * argv []) {
3 #pragma omp p a r a l l e l num_threads (workers)
4 {
5 #pragma omp single
6 {
7 / / open d i r e c t o r y . . .
8 DIR * dp t r = opendi r (. . .) ;
9 struct d i r e n t * d f p t r ;

10 while ((d f p t r = readd i r (dp t r)) != NULL) {
11 / / preprocessing
12 i f (f i l e _ e x t e n s i o n == "bmp") {
13 to t_ img ++;
14 #pragma omp task
15 {
16 / / Reads the image . . .
17 image = read (name, height , width) ;
18 / / App l ies the Sobel
19 new_image=sobel (image , height , width) ;
20 / / Wr i tes the image . . .
21 w r i t e (newname, new_image , height , width) ;
22 }
23 } else {
24 t o t _ n o t ++;
25 }
26 }
27 / / end processing
28 }
29 }
30 return 0;
31 }

Listing A.1 – Filter Sobel using OpenMP.

1 / / g loba l d e c l a r a t i o n
2 i n t main (i n t argc , char * argv []) {
3 #pragma omp p a r a l l e l num_threads (workers)
4 {
5 #pragma omp single
6 {
7 / / open d i r e c t o r y . . .
8 DIR * dp t r = opendi r (. . .) ;
9 struct d i r e n t * d f p t r ;

10 while ((d f p t r = readd i r (dp t r)) != NULL) {
11 / / preprocessing
12 i f (f i l e _ e x t e n s i o n == "bmp") {
13 to t_ img ++;
14 / / Reads the image . . .
15 image = read (name, height , width) ;
16 #pragma omp task depend (i n : image [to t_ img]) depend (out : new_image [to t_ img])
17 {
18 / / App l ies the Sobel
19 new_image=sobel (image , height , width) ;
20 }
21 #pragma omp task depend (i n : new_image [to t_ img])
22 {
23 / / Wr i tes the image . . .
24 w r i t e (newname, new_image , height , width) ;
25 }
26 } else {
27 t o t _ n o t ++;
28 }
29 }
30 }
31 }
32 / / end processing
33 return 0;
34 }

Listing A.2 – Filter Sobel using OpenMP (pipeline-like).

1 #include < f f / farm . hpp>
2 using namespace f f ;
3 struct FF_Stream {
4 FF_Stream (char *name, char *newname) :
5 name(name) ,newname(newname) { } ;
6
7 char *name ;

230

8 char *newname ;
9 } ;

10 struct E m i t t e r _ f f : f f_node_t <FF_Stream> {
11 const s td : : s t r i n g f i l e p a t h ;
12 unsigned i n t to t_ img ;
13 unsigned i n t t o t _ n o t ;
14 E m i t t e r _ f f (const s td : : s t r i n g f i l e p a t h , unsigned i n t tot_ img , unsigned i n t t o t _ n o t) :
15 f i l e p a t h (f i l e p a t h) , to t_ img (to t_ img) , t o t _ n o t (t o t _ n o t) { }
16
17 FF_Stream * svc (FF_Stream *) {
18 / / open d i r e c t o r y . . .
19 DIR * dp t r = opendir (. . .) ;
20 struct d i r e n t * d f p t r ;
21 while ((d f p t r = readd i r (dp t r)) != NULL) {
22 / / preprocessing
23 i f (f i l e _ e x t e n s i o n == "bmp") {
24 to t_ img ++;
25 FF_Stream * stream = new FF_Stream (name, newname, . . .) ;
26 f f_send_out (stream) ;
27 } else {
28 t o t _ n o t ++;
29 }
30 }
31 return EOS;
32 }
33 } ;
34 void StageRepl icate_Spar (FF_Stream * i n) {
35 / / Reads the image . . .
36 image = read (in−>name, height , width) ;
37 / / App l ies the Sobel
38 new_image=sobel (image , height , width) ;
39 / / Wr i tes the image . . .
40 w r i t e (in−>newname, new_image , height , width) ;
41 }
42 FF_Stream * StageRep l i ca te_ f f (FF_Stream * in , f f_node * const) {
43 StageRepl icate_Spar (i n) ;
44 delete i n ;
45 return (FF_Stream *)GO_ON; / / end of the stream
46 }
47 / / g loba l d e c l a r a t i o n
48 i n t main (i n t argc , char * argv []) {
49 E m i t t e r _ f f Emi t te r (i n t e r a t i n g , f i l e p a t h , tot_ img , t o t _ n o t) ;
50 ff_Farm <FF_Stream> StageRepl icate (StageRep l ica te_ f f , workers) ;
51 StageRepl icate . add_emit ter (Emi t te r) ;
52 StageRepl icate . set_scheduling_ondemand () ;
53 StageRepl icate . remove_co l lec tor () ;
54 i f (StageRepl icate . run_and_wait_end () <0) { / / executes the farm
55 e r r o r (" Running farm \ n ") ;
56 return −1;
57 }
58 to t_ img=Emi t te r . to t_ img ;
59 t o t _ n o t =Emi t te r . t o t _ n o t ;
60 }

Listing A.3 – Filter Sobel using FastFlow (farm-like).

1 #include < f f / p i p e l i n e . hpp>
2 using namespace f f ;
3 struct FF_Stream {
4 FF_Stream (char *name, char *newname , . . .) :
5 name(name) ,newname(newname) , . . . { } ;
6 / / l i s t o f v a r i a b l e
7 char *name ;
8 char *newname ;
9 unsigned char * image ;

10 unsigned char * new_image ;
11 . . .
12 } ;
13 struct E m i t t e r _ f f : f f_node_t <FF_Stream> {
14 const s td : : s t r i n g f i l e p a t h ;
15 unsigned i n t to t_ img ;
16 unsigned i n t t o t _ n o t ;
17 E m i t t e r _ f f (const s td : : s t r i n g f i l e p a t h , unsigned i n t tot_ img , unsigned i n t t o t _ n o t) :
18 f i l e p a t h (f i l e p a t h) , to t_ img (to t_ img) , t o t _ n o t (t o t _ n o t) { }
19
20 FF_Stream * svc (FF_Stream *) {
21 / / open d i r e c t o r y . . .
22 DIR * dp t r = opendir (. . .) ;
23 struct d i r e n t * d f p t r ;
24 while ((d f p t r = readd i r (dp t r)) != NULL) {

231

25 / / preprocessing
26 i f (f i l e _ e x t e n s i o n == "bmp") {
27 to t_ img ++;
28 / / Reads the image . . .
29 image = read (name, height , width) ;
30 FF_Stream * stream = new FF_Stream (name, newname, . . .) ;
31 f f_send_out (stream) ;
32 } else {
33 t o t _ n o t ++;
34 }
35 }
36 return EOS;
37 }
38 } ;
39 void StageRepl icate_Spar (FF_Stream * i n) {
40 / / App l ies the Sobel
41 in−>new_image=sobel (in−>image , in−>height , in−>width) ;
42 }
43 void Stage_Spar (FF_Stream * i n) {
44 / / Wr i tes the image . . .
45 w r i t e (in−>newname, in−>new_image , in−>height , in−>width) ;
46 }
47 FF_Stream * StageRep l i ca te_ f f (FF_Stream * in , f f_node * const) {
48 StageRepl icate_Spar (i n) ;
49 return i n ;
50 }
51 FF_Stream * Stage_f f (FF_Stream * in , f f_node * const) {
52 Stage_Spar (i n) ;
53 delete i n ;
54 return (FF_Stream *)GO_ON; / / end of the stream
55 }
56 / / g loba l d e c l a r a t i o n
57 i n t main (i n t argc , char * argv []) {
58 E m i t t e r _ f f Emi t te r (f i l e p a t h , tot_ img , t o t _ n o t) ;
59 ff_Farm <FF_Stream> StageRepl icate (StageRep l ica te_ f f , workers) ;
60 StageRepl icate . add_emit ter (Emi t te r) ;
61 StageRepl icate . set_scheduling_ondemand () ;
62 StageRepl icate . remove_co l lec tor () ;
63 struct Mul t i Inpu t_Stage : f f_minode_t <FF_Stream> {
64 FF_Stream * svc (FF_Stream * stream) {
65 return Stage_f f (stream , th is) ;
66 }
67 } ;
68 Mul t i Inpu t_Stage S;
69 f f_P ipe <> pipe (StageRepl icate ,S) ;
70 i f (p ipe . run_and_wait_end () <0) { / / executes the p i p e l i n e
71 e r r o r (" Running p i p e l i n e \ n ") ;
72 return −1;
73 }
74 to t_ img=Emi t te r . to t_ img ;
75 t o t _ n o t =Emi t te r . t o t _ n o t ;
76 }

Listing A.4 – Filter Sobel using FastFlow (pipe-like).

1 #include <tbb / p i p e l i n e . h>
2 #include <tbb / t a s k _ s c h e d u l e r _ i n i t . h>
3 struct TBB_Stream {
4 TBB_Stream (char *name, char *newname) :
5 name(name) ,newname(newname) { } ;
6
7 char *name ;
8 char *newname ;
9 } ;

10 class Emi t te r_ tbb : public tbb : : f i l t e r {
11 public :
12 Emi t te r_ tbb (const s td : : s t r i n g f i l e p a t h , unsigned i n t tot_ img , unsigned i n t t o t _ n o t) ;
13 void * operator () (void *) ;
14 const s td : : s t r i n g f i l e p a t h ;
15 unsigned i n t to t_ img ;
16 unsigned i n t t o t _ n o t ;
17 } ;
18 Emi t te r_ tbb : : Emi t te r_ tbb (const std : : s t r i n g f i l e p a t h , unsigned i n t tot_ img , unsigned i n t t o t _ n o t) :
19 tbb : : f i l t e r (s e r i a l _ i n _ o r d e r) , f i l e p a t h (f i l e p a t h) , to t_ img (to t_ img) , t o t _ n o t (t o t _ n o t)
20 { }
21 void * Emi t te r_ tbb : : operator () (void *) {
22 struct d i r e n t * d f p t r ;
23 / / open d i r e c t o r y . . .
24 DIR * dp t r = opendi r (. . .) ;
25 struct d i r e n t * d f p t r ;

232

26 while ((d f p t r = readd i r (dp t r)) != NULL) {
27 / / preprocessing
28 i f (f i l e _ e x t e n s i o n == "bmp") {
29 to t_ img ++;
30 TBB_Stream * stream = new TBB_Stream (name, newname) ;
31 return stream ;
32 } else {
33 t o t _ n o t ++;
34 }
35 }
36 return NULL;
37 }
38 class StageRepl icate_tbb : public tbb : : f i l t e r {
39 public :
40 StageRepl icate_tbb () ;
41 void * operator () (void * i npu t) ;
42 } ;
43 StageRepl icate_tbb : : StageRepl icate_tbb () : tbb : : f i l t e r (p a r a l l e l) { }
44 void * StageRepl icate_tbb : : operator () (void * i npu t) {
45 TBB_Stream * i n = stat ic_cast <TBB_Stream* >(i npu t) ;
46 / / Reads the image . . .
47 image = read (in−>name, height , width) ;
48 / / App l ies the Sobel
49 new_image=sobel (image , height , width) ;
50 / / Wr i tes the image . . .
51 w r i t e (in−>newname, new_image , height , width) ;
52 delete i n ;
53 return NULL;
54 }
55 / / g loba l d e c l a r a t i o n
56 i n t main (i n t argc , char * argv []) {
57 tbb : : t a s k _ s c h e d u l e r _ i n i t i n i t (workers) ;
58 tbb : : p i p e l i n e p i p e l i n e ;
59 Emi t te r_ tbb Emi t te r (f i l e p a t h , tot_ img , t o t _ n o t) ;
60 p i p e l i n e . a d d _ f i l t e r (Emi t te r) ;
61 StageRepl icate_tbb StageRepl icate ;
62 p i p e l i n e . a d d _ f i l t e r (StageRepl icate) ;
63 p i p e l i n e . run (workers) ;
64 to t_ img=Emi t te r . to t_ img ;
65 t o t _ n o t =Emi t te r . t o t _ n o t ;
66 }

Listing A.5 – Filter Sobel using TBB (farm-like).

1 unsigned i n t to t_ img =0 , workers =1 , n i n t e r =1 , t o t _ n o t =0;
2 #include <tbb / p i p e l i n e . h>
3 #include <tbb / t a s k _ s c h e d u l e r _ i n i t . h>
4 struct TBB_Stream {
5 TBB_Stream (char *name, char *newname, . . .) :
6 name(name) ,newname(newname) , . . . { } ;
7 / / l i s t o f v a r i a b l e
8 char *name ;
9 char *newname ;

10 unsigned char * image ;
11 unsigned char * f i l t e r e d _ i m a g e ;
12 . . .
13 } ;
14 class Emi t te r_ tbb : public tbb : : f i l t e r {
15 public :
16 Emi t te r_ tbb (const s td : : s t r i n g f i l e p a t h , unsigned i n t tot_ img , unsigned i n t t o t _ n o t) ;
17 void * operator () (void *) ;
18 const s td : : s t r i n g f i l e p a t h ;
19 unsigned i n t to t_ img ;
20 unsigned i n t t o t _ n o t ;
21 } ;
22 Emi t te r_ tbb : : Emi t te r_ tbb (const std : : s t r i n g f i l e p a t h , unsigned i n t tot_ img , unsigned i n t t o t _ n o t) :
23 tbb : : f i l t e r (s e r i a l _ i n _ o r d e r) , f i l e p a t h (f i l e p a t h) , to t_ img (to t_ img) , t o t _ n o t (t o t _ n o t)
24 { }
25 void * Emi t te r_ tbb : : operator () (void *) {
26 / / open d i r e c t o r y . . .
27 DIR * dp t r = opendi r (. . .) ;
28 struct d i r e n t * d f p t r ;
29 while ((d f p t r = readd i r (dp t r)) != NULL) {
30 / / preprocessing
31 i f (f i l e _ e x t e n s i o n == "bmp") {
32 to t_ img ++;
33 / / Reads the image . . .
34 image = read (name, height , width) ;
35 TBB_Stream * stream = new TBB_Stream (name, newname, . . .) ;
36 return stream ;

233

37 } else {
38 t o t _ n o t ++;
39 }
40 }
41 return NULL;
42 }
43 class StageRepl icate_tbb : public tbb : : f i l t e r {
44 public :
45 StageRepl icate_tbb () ;
46 void * operator () (void * i npu t) ;
47 } ;
48 StageRepl icate_tbb : : StageRepl icate_tbb () : tbb : : f i l t e r (p a r a l l e l) { }
49 void * StageRepl icate_tbb : : operator () (void * i npu t) {
50 TBB_Stream * i n = stat ic_cast <TBB_Stream* >(i npu t) ;
51 / / App l ies the Sobel
52 in−>new_image=sobel (in−>image , in−>height , in−>width) ;
53 return i n ;
54 }
55 class Stage_tbb : public tbb : : f i l t e r {
56 public :
57 Stage_tbb () ;
58 void * operator () (void * i npu t) ;
59 } ;
60 Stage_tbb : : Stage_tbb () : tbb : : f i l t e r (s e r i a l _ i n _ o r d e r) { }
61 void * Stage_tbb : : operator () (void * i npu t) {
62 TBB_Stream * i n = stat ic_cast <TBB_Stream* >(i npu t) ;
63 / / Wr i tes the image . . .
64 w r i t e (in−>newname, in−>new_image , in−>height , in−>width) ;
65 delete i n ;
66 return NULL;
67 }
68 / / g loba l d e c l a r a t i o n
69 i n t main (i n t argc , char * argv []) {
70 tbb : : t a s k _ s c h e d u l e r _ i n i t i n i t ((workers +2)) ;
71 tbb : : p i p e l i n e p i p e l i n e ;
72 Emi t te r_ tbb Emi t te r (i n t e r a t i n g , f i l e p a t h , tot_ img , t o t _ n o t) ;
73 p i p e l i n e . a d d _ f i l t e r (Emi t te r) ;
74 StageRepl icate_tbb StageRepl icate ;
75 p i p e l i n e . a d d _ f i l t e r (StageRepl icate) ;
76 Stage_tbb S;
77 p i p e l i n e . a d d _ f i l t e r (S) ;
78 p i p e l i n e . run (workers) ;
79 to t_ img=Emi t te r . to t_ img ;
80 t o t _ n o t =Emi t te r . t o t _ n o t ;
81 }

Listing A.6 – Filter Sobel using TBB (pipe-like).

A.3.2 Video OpenCV

1 #include < f f / farm . hpp>
2 #include < f f / p i p e l i n e . hpp>
3 using namespace f f ;
4 struct Stream {
5 Stream (Mat src , Mat res , i n t channel , Size S) : s rc (s rc) , res (res) , channel (channel) ,S(S) { }
6 Mat src ;
7 Mat res ;
8 i n t channel ;
9 Size S;

10 } ;
11 struct Source : f f_node_t <Stream> {
12 i n t channel ;
13 Size S;
14 Mat src ;
15 Mat res ;
16 Source (i n t channel , Size S) : channel (channel) ,S(S) { }
17 Stream * svc (Stream *) {
18 for (; ;) {
19 to ta l_ f rames ++;
20 inputV ideo >> src ;
21 i f (s rc . empty ()) break ;
22 Stream * s = new Stream (src , res , channel ,S) ;
23 f f_send_out (s) ;

234

24 }
25 return EOS;
26 }
27 } ;
28 Stream * StageRepl icate (Stream * t , f f_node * const) {
29 vector <Mat> sp l ;
30 s p l i t (t−>src , sp l) ; / / process − e x t r a c t on ly the c o r r e c t channel
31 for (i n t i =0; i < 3 ; ++ i) {
32 i f (i != t−>channel) {
33 sp l [i] = Mat : : zeros (t−>S, sp l [0] . type ()) ;
34 }
35 }
36 merge (spl , t−>res) ;
37 cv : : GaussianBlur (t−>res , t−>res , cv : : Size (0 , 0) , 3) ;
38 cv : : addWeighted (t−>res , 1 .5 , t−>res , −0.5, 0 , t−>res) ;
39 Sobel (t−>res , t−>res ,−1 ,1 ,0 ,3) ;
40 return t ;
41 } ;
42 struct Drain : f f_node_t <Stream> {
43 Stream * svc (Stream * t) {
44 outputVideo << t−>res ;
45 delete t ;
46 return GO_ON;
47 }
48 } ;
49 ff_OFarm<Stream> F(StageRepl icate , workers) ;
50 Source E(channel ,S) ;
51 F . se tEmi t te rF (E) ;
52 Drain d ra in ;
53 F . se tCo l l ec to rF (d ra in) ;
54 i f (F . run_and_wait_end () <0) {
55 e r r o r (" running pipe ") ;
56 return −1;
57 }

Listing A.7 – Video OpenCV using FastFlow.

1 #include <tbb / p i p e l i n e . h>
2 #include <tbb / t a s k _ s c h e d u l e r _ i n i t . h>
3 using namespace tbb ;
4 struct Stream {
5 Stream (Mat src , Mat res , i n t channel , Size S) : s rc (s rc) , res (res) , channel (channel) ,S(S) { }
6 Mat src ;
7 Mat res ;
8 i n t channel ;
9 Size S;

10 } ;
11 class Source : public tbb : : f i l t e r {
12 public :
13 Source (i n t channel , Size S) ;
14 void * operator () (void *) ;
15 i n t channel ;
16 Size S;
17 Mat src ;
18 Mat res ;
19 } ;
20 Source : : Source (i n t channel , Size S) : tbb : : f i l t e r (s e r i a l _ i n _ o r d e r) , channel (channel) ,S(S) { }
21 void * Source : : operator () (void *) {
22 for (; ;) {
23 to ta l_ f rames ++;
24 inputV ideo >> src ;
25 i f (s rc . empty ()) break ;
26 Stream * s = new Stream (src , res , channel ,S) ;
27 return s ;
28 }
29 return NULL;
30 } ;
31 class StageRepl icate : public tbb : : f i l t e r {
32 public :
33 vector <Mat> sp l ;
34 StageRepl icate () ;
35 void * operator () (void * i npu t) ;
36 } ;
37 StageRepl icate : : StageRepl icate () : tbb : : f i l t e r (p a r a l l e l) { }
38 void * StageRepl icate : : operator () (void * i npu t) {
39 Stream * t = stat ic_cast <Stream * >(i npu t) ;
40 cv : : s p l i t (t−>src , sp l) ;
41 for (i n t i =0; i < 3 ; ++ i) {
42 i f (i != t−>channel) {
43 sp l [i] = Mat : : zeros (t−>S, sp l [0] . type ()) ;

235

44 }
45 }
46 merge (spl , t−>res) ;
47 cv : : GaussianBlur (t−>res , t−>res , cv : : Size (0 , 0) , 3) ;
48 cv : : addWeighted (t−>res , 1 .5 , t−>res , −0.5, 0 , t−>res) ;
49 Sobel (t−>res , t−>res ,−1 ,1 ,0 ,3) ;
50 return t ;
51 }
52 class Drain : public tbb : : f i l t e r {
53 public :
54 Drain () ;
55 void * operator () (void * i npu t) ;
56 } ;
57 Drain : : Drain () : tbb : : f i l t e r (s e r i a l _ i n _ o r d e r) { }
58 void * Drain : : operator () (void * i npu t) {
59 Stream * t = stat ic_cast <Stream * >(i npu t) ;
60 outputVideo << t−>res ;
61 delete t ;
62 return NULL;
63 } ;
64 tbb : : t a s k _ s c h e d u l e r _ i n i t i n i t (workers) ;
65 tbb : : p i p e l i n e p i p e l i n e ;
66 Source E(channel ,S) ;
67 p i p e l i n e . a d d _ f i l t e r (E) ;
68 StageRepl icate SR;
69 p i p e l i n e . a d d _ f i l t e r (SR) ;
70 Drain D;
71 p i p e l i n e . a d d _ f i l t e r (D) ;
72 p i p e l i n e . run (workers) ;

Listing A.8 – Video OpenCV using TBB.

A.3.3 Mandelbrot

1 unsigned char *M = (unsigned char *) mal loc (dim) ;
2 #pragma omp p a r a l l e l num_threads (workers)
3 {
4 for (i n t i =0; i <dim ; i ++) {
5 double a , b , a2 , b2 , cr , k ;
6 double im= i n i t _ b +(step * i) ;
7 #pragma omp for
8 for (i n t j =0; j <dim ; j ++) {
9 a=cr= i n i t _ a +step * j ;

10 b=im ;
11 k =0;
12 for (k =0;k< n i t e r ; k++) {
13 a2=a*a ;
14 b2=b*b ;
15 i f ((a2+b2) >4.0) break ;
16 b=2*a*b+im ;
17 a=a2−b2+cr ;
18 }
19 M[j]= (unsigned char) 255−((k *255/ n i t e r)) ;
20 }
21 #pragma omp single
22 {
23 ShowLine (M, dim , i) ;
24 }
25 }
26 }

Listing A.9 – Mandelbrot using OpenMP.

1 #include < f f / farm . hpp>
2 #include < f f / spin−l ock . hpp>
3 #include < f f / mapping_ut i l s . hpp>
4 using namespace f f ;
5 s t a t i c l o c k _ t lock ;
6 typedef struct out i tem {
7 unsigned char * M;
8 i n t l i n e ;
9 } ostream_t ;

236

10 const double range =3.0 ;
11 const double i n i t _ a =−2.125, i n i t _ b =−1.5;
12 double step = range / ((double) DIM) ;
13 i n t dim = DIM ;
14 i n t n i t e r = ITERATION ;
15 class Worker : public f f_node {
16 public :
17 void * svc (void * task) {
18 i n t * t = (i n t *) task ;
19 ostream_t * o i = (ostream_t *) mal loc (sizeof (ostream_t)) ;
20 oi−>M = (unsigned char *) mal loc (dim * sizeof (char)) ;
21 i n t i = oi−>l i n e = * t ;
22 i n t j , k ;
23 double im , a , b , a2 , b2 , c r ;
24 im= i n i t _ b +(step * i) ;
25 for (j =0; j <dim ; j ++) {
26 a=cr= i n i t _ a +step * j ;
27 b=im ;
28 k =0;
29 for (k =0;k< n i t e r ; k++) {
30 a2=a*a ;
31 b2=b*b ;
32 i f ((a2+b2) >4.0) break ;
33 b=2*a*b+im ;
34 a=a2−b2+cr ;
35 }
36 oi−>M[j] = (unsigned char) 255−((k *255/ n i t e r)) ;
37 }
38 return o i ;
39 }
40 } ;
41 class Worker2 : public f f_node {
42 public :
43 void * svc (void * task) {
44 i n t * t = (i n t *) task ;
45 ostream_t * o i = (ostream_t *) mal loc (sizeof (ostream_t)) ;
46 oi−>M = (unsigned char *) mal loc (dim * sizeof (char)) ;
47 i n t i = oi−>l i n e = * t ;
48 i n t j , k ;
49 double im , a , b , a2 , b2 , c r ;
50 im= i n i t _ b +(step * i) ;
51 for (j =0; j <dim ; j ++) {
52 a=cr= i n i t _ a +step * j ;
53 b=im ;
54 k =0;
55 for (k =0;k< n i t e r ; k++)
56 {
57 a2=a*a ;
58 b2=b*b ;
59 i f ((a2+b2) >4.0) break ;
60 b=2*a*b+im ;
61 a=a2−b2+cr ;
62 }
63 oi−>M[j] = (unsigned char) 255−((k *255/ n i t e r)) ;
64 }
65 sp in_ lock (lock) ;
66 ShowLine (oi−>M, dim , oi−>l i n e) ;
67 spin_unlock (lock) ;
68 f ree (oi−>M) ;
69 f ree (o i) ;
70 return GO_ON;
71 }
72 } ;
73 class C o l l e c t o r : public f f_node {
74 public :
75 void * svc (void * task) {
76 ostream_t * t = (ostream_t *) task ;
77 ShowLine (t−>M, dim , t−>l i n e) ;
78 f ree (t−>M) ;
79 f ree (t) ;
80 return GO_ON;
81 }
82 private :
83 i n t i n i t ;
84 } ;
85 class Emi t te r : public f f_node {
86 public :
87 Emi t te r (i n t max_task) : ntask (max_task) { } ;
88 void * svc (void *) {
89 i n t * task = new i n t (dim−ntask) ;
90 −−ntask ;

237

91 i f (ntask <0) return NULL;
92 return task ;
93 }
94 private :
95 i n t ntask ;
96 } ;
97 f f_ fa rm <> farm (false , dim) ;
98 std : : vector < f f_node *>w;
99 for (i n t k =0;k<workers ; k++) {

100 w. push_back ((ncores >=4)? ((f f_node *)new Worker) : ((f f_node *)new Worker2)) ;
101 }
102 farm . add_workers (w) ;
103 Emi t te r E(dim) ;
104 farm . add_emit ter (&E) ;
105 C o l l e c t o r C;
106 i f (ncores >=4) {
107 farm . add_co l l ec to r (&C) ;
108 }
109 i f (farm . run_and_wait_end () <0) {
110 e r r o r (" running farm \ n ") ;
111 return −1;
112 }

Listing A.10 – Mandelbrot using FastFlow.

1 #include <tbb / p i p e l i n e . h>
2 #include <tbb / t a s k _ s c h e d u l e r _ i n i t . h>
3 struct TBB_Stream {
4 TBB_Stream (unsigned char *M, i n t i , double im , i n t n i t e r , double i n i t _ a , double step , i n t dim) :
5 M(M) , i (i) , im (im) , n i t e r (n i t e r) , i n i t _ a (i n i t _ a) , step (step) , dim (dim) { }
6 unsigned char *M;
7 i n t i ;
8 double im ;
9 i n t n i t e r ;

10 double i n i t _ a ;
11 double step ;
12 i n t dim ;
13 } ;
14 class Emi t te r_ tbb : public tbb : : f i l t e r {
15 public :
16 Emi t te r_ tbb (i n t dim , double i n i t _ b , double step , double i n i t _ a , i n t n i t e r , i n t i) ;
17 void * operator () (void *) ;
18 i n t dim ;
19 double i n i t _ b , step , i n i t _ a ;
20 i n t n i t e r ;
21 i n t i ;
22 } ;
23 Emi t te r_ tbb : : Emi t te r_ tbb (i n t dim , double i n i t _ b , double step , double i n i t _ a , i n t n i t e r , i n t i) :
24 tbb : : f i l t e r (s e r i a l _ i n _ o r d e r) , dim (dim) , i n i t _ b (i n i t _ b) , step (step) , i n i t _ a (i n i t _ a) , n i t e r (n i t e r) , i (i)
25 { }
26 void * Emi t te r_ tbb : : operator () (void *) {
27 while ((i ++)<dim) {
28 unsigned char *M = (unsigned char *) mal loc (dim) ;
29 double im= i n i t _ b +(step * i) ;
30 TBB_Stream * stream = new TBB_Stream (M, i , im , n i t e r , i n i t _ a , step , dim) ;
31 return stream ;
32 }
33 return NULL;
34 }
35 class StageRepl icate_tbb : public tbb : : f i l t e r {
36 public :
37 StageRepl icate_tbb () ;
38 void * operator () (void * i npu t) ;
39 } ;
40 StageRepl icate_tbb : : StageRepl icate_tbb () : tbb : : f i l t e r (p a r a l l e l) { }
41 void * StageRepl icate_tbb : : operator () (void * i npu t) {
42 TBB_Stream * i n = stat ic_cast <TBB_Stream* >(i npu t) ;
43 double a , b , a2 , b2 , cr , k ;
44 for (i n t j =0; j < in−>dim ; j ++) {
45 a=cr= in−>i n i t _ a +in−>step * j ;
46 b=in−>im ;
47 k =0;
48 for (k =0;k< in−>n i t e r ; k++) {
49 a2=a*a ;
50 b2=b*b ;
51 i f ((a2+b2) >4.0) break ;
52 b=2*a*b+in−>im ;
53 a=a2−b2+cr ;
54 }
55 in−>M[j]= (unsigned char) 255−((k *255/ in−>n i t e r)) ;

238

56 }
57 return i n ;
58 }
59 class Stage_tbb : public tbb : : f i l t e r {
60 public :
61 Stage_tbb () ;
62 void * operator () (void * i npu t) ;
63 } ;
64 Stage_tbb : : Stage_tbb () : tbb : : f i l t e r (s e r i a l _ i n _ o r d e r) { }
65 void * Stage_tbb : : operator () (void * i npu t) {
66 TBB_Stream * i n = stat ic_cast <TBB_Stream* >(i npu t) ;
67 ShowLine (in−>M, in−>dim , in−>i) ;
68 f ree (in−>M) ;
69 delete i n ;
70 return NULL;
71 }
72 tbb : : t a s k _ s c h e d u l e r _ i n i t i n i t ((workers +2)) ;
73 tbb : : p i p e l i n e p i p e l i n e ;
74 i n t i =0;
75 Emi t te r_ tbb Emi t te r (dim , i n i t _ b , step , i n i t _ a , n i t e r , i) ;
76 p i p e l i n e . a d d _ f i l t e r (Emi t te r) ;
77 StageRepl icate_tbb StageRepl icate ;
78 p i p e l i n e . a d d _ f i l t e r (StageRepl icate) ;
79 Stage_tbb S;
80 p i p e l i n e . a d d _ f i l t e r (S) ;
81 p i p e l i n e . run (workers) ;

Listing A.11 – Mandelbrot using TBB.

A.3.4 Prime Numbers

1 i n t prime_number (i n t n) {
2 i n t t o t a l = 0 ;
3 #pragma omp p a r a l l e l for shared (n) reduc t ion (+ : t o t a l) num_threads (workers) schedule (dynamic)
4 for (i n t i = 2 ; i <= n ; i ++) {
5 i n t prime = 1;
6 for (i n t j = 2 ; j < i ; j ++) {
7 i f (i % j == 0) {
8 prime = 0;
9 break ;

10 }
11 }
12 t o t a l = t o t a l + prime ;
13 }
14 return t o t a l ;
15 }

Listing A.12 – Prime Numbers using OpenMP.

1 #include < f f / p i p e l i n e . hpp>
2 using namespace f f ;
3 struct Spar_Stream {
4 Spar_Stream (i n t i , i n t prime) :
5 i (i) , prime (prime) { } ;
6 i n t i ;
7 i n t prime ;
8
9 } ;

10 void StageRepl icate_Spar (Spar_Stream * i n) {
11 for (i n t j = 2 ; j < in−>i ; j ++) {
12 i f (in−>i % j == 0) {
13 in−>prime = 0;
14 break ;
15 }
16 }
17 }
18 struct ToStream_ff : f f_node_t <Spar_Stream> {
19 i n t n ;
20 ToStream_ff (i n t n) :
21 n (n) { }
22
23 Spar_Stream * svc (Spar_Stream * i n) {

239

24 for (i n t i = 2 ; i <= n ; i ++) {
25 i n t prime = 1;
26 Spar_Stream * stream = new Spar_Stream (i , prime) ;
27 f f_send_out (stream) ;
28 }
29 return EOS;
30 }
31 } ;
32 Spar_Stream * StageRep l i ca te_ f f (Spar_Stream * in , f f_node * const) {
33 StageRepl icate_Spar (i n) ;
34 return i n ;
35 }
36 struct C o l l e c t o r : f f_node_t <Spar_Stream> {
37 C o l l e c t o r (i n t t o t a l) : t o t a l (t o t a l) { }
38 i n t t o t a l ;
39 Spar_Stream * svc (Spar_Stream * i n) {
40 t o t a l = t o t a l + in−>prime ;
41 delete i n ;
42 return GO_ON;
43 }
44 } ;
45 i n t prime_number (i n t n) {
46 i n t t o t a l = 0 ;
47 ToStream_ff ToStream (n) ;
48 C o l l e c t o r C(t o t a l) ;
49 ff_Farm <Spar_Stream> StageRepl icate (StageRep l ica te_ f f , workers) ;
50 StageRepl icate . add_co l l ec to r (C) ;
51 StageRepl icate . add_emit ter (ToStream) ;
52 StageRepl icate . set_scheduling_ondemand () ;
53 i f (StageRepl icate . run_and_wait_end () <0) { / / executes the farm
54 e r r o r (" Running farm \ n ") ;
55 return −1;
56 }
57 t o t a l =C. t o t a l ;
58 return t o t a l ;
59 }

Listing A.13 – Prime Numbers using FastFlow.

1 #include < f f / p a r a l l e l _ f o r . hpp>
2 using namespace f f ;
3 i n t prime_number (i n t n) {
4 i n t t o t a l = 0 ;
5 auto reduceF = [] (i n t& t o t a l , i n t elem) { t o t a l += elem ; } ;
6 auto bodyF = [] (i n t i , i n t & t o t a l) {
7 i n t prime = 1;
8 for (i n t j = 2 ; j < i ; j ++) {
9 i f (i % j == 0) {

10 prime = 0;
11 break ;
12 }
13 }
14 t o t a l +=prime ;
15 } ;
16 Paral le lForReduce < int > p f r (workers) ;
17 p f r . pa ra l l e l _ reduce (t o t a l , 0 , 0 , n , 1 , 1 , bodyF , reduceF , workers) ;
18 return t o t a l ;
19 }

Listing A.14 – Prime Numbers using FastFlow (parallel for).

1 #include <tbb / p i p e l i n e . h>
2 #include <tbb / t a s k _ s c h e d u l e r _ i n i t . h>
3 struct Stream_tbb {
4 Stream_tbb (i n t i , i n t prime) :
5 i (i) , prime (prime) { } ;
6 i n t i ;
7 i n t prime ;
8 } ;
9 void StageRepl icate (Stream_tbb * i n) {

10 for (i n t j = 2 ; j < in−>i ; j ++) {
11 i f (in−>i % j == 0) {
12 in−>prime = 0;
13 break ;
14 }
15 }
16 }
17 class Emi t te r_ tbb : public tbb : : f i l t e r {
18 public :

240

19 Emi t te r_ tbb (i n t n , i n t i) ;
20 void * operator () (void *) ;
21 i n t n ;
22 i n t i ;
23 } ;
24 Emi t te r_ tbb : : Emi t te r_ tbb (i n t n , i n t i) :
25 tbb : : f i l t e r (s e r i a l _ i n _ o r d e r) ,n (n) , i (i)
26 { }
27 void * Emi t te r_ tbb : : operator () (void *) {
28 while ((i ++) <= n) {
29 i n t prime = 1;
30 Stream_tbb * stream = new Stream_tbb (i , prime) ;
31 return stream ;
32 }
33 return NULL;
34 }
35 class StageRepl icate_tbb : public tbb : : f i l t e r {
36 public :
37 StageRepl icate_tbb () ;
38 void * operator () (void * i npu t) ;
39 } ;
40 StageRepl icate_tbb : : StageRepl icate_tbb () : tbb : : f i l t e r (p a r a l l e l) { }
41 void * StageRepl icate_tbb : : operator () (void * i npu t) {
42 Stream_tbb * i n = stat ic_cast <Stream_tbb * >(i npu t) ;
43 i f (i n != NULL) {
44 StageRepl icate (i n) ;
45 return i n ;
46 }
47 return NULL;
48 }
49 class Stage_tbb : public tbb : : f i l t e r {
50 public :
51 Stage_tbb (i n t t o t a l) ;
52 void * operator () (void * i npu t) ;
53 i n t t o t a l =0;
54 } ;
55 Stage_tbb : : Stage_tbb (i n t t o t a l) : tbb : : f i l t e r (s e r i a l _ i n _ o r d e r) , t o t a l (t o t a l) { }
56 void * Stage_tbb : : operator () (void * i npu t) {
57 Stream_tbb * i n = stat ic_cast <Stream_tbb * >(i npu t) ;
58 t o t a l = t o t a l + in−>prime ;
59 delete i n ;
60 return NULL;
61 }
62 i n t prime_number (i n t n) {
63 i n t t o t a l = 0 ;
64 i n t i =2;
65 tbb : : t a s k _ s c h e d u l e r _ i n i t i n i t (workers) ;
66 tbb : : p i p e l i n e p i p e l i n e ;
67 Emi t te r_ tbb Emi t te r (n , i) ;
68 p i p e l i n e . a d d _ f i l t e r (Emi t te r) ;
69 StageRepl icate_tbb SR;
70 p i p e l i n e . a d d _ f i l t e r (SR) ;
71 Stage_tbb S(t o t a l) ;
72 p i p e l i n e . a d d _ f i l t e r (S) ;
73 p i p e l i n e . run (workers) ;
74 t o t a l = S . t o t a l ;
75 return t o t a l ;
76 }

Listing A.15 – Prime Numbers using TBB.

1 #include " tbb / pa ra l l e l _ reduce . h "
2 #include " tbb / blocked_range . h "
3 #include <tbb / t a s k _ s c h e d u l e r _ i n i t . h>
4 using namespace tbb ;
5 i n t prime_number (i n t n) {
6 a f f i n i t y _ p a r t i t i o n e r ap ;
7 t a s k _ s c h e d u l e r _ i n i t i n i t (workers) ;
8 i n t t o t a l = 0 ;
9 auto bodyF = [] (const blocked_range < int > &r , i n t i n) −> i n t {

10 for (i n t i = r . begin () ; i != r . end () ;++ i) {
11 i n t prime = 1;
12 for (i n t j = 2 ; j < i ; j ++) {
13 i f (i % j == 0) {
14 prime = 0;
15 break ;
16 }
17 }
18 i n +=prime ;
19 }

241

Listing A.16 – Prime Numbers using TBB (parallel for).

A.3.5 K-Means

1 while (modi f ied) {
2 modi f ied = fa lse ;
3 #pragma omp p a r a l l e l for schedule (dynamic)
4 for (i n t i = 0 ; i < num_points ; i ++) {
5 unsigned i n t min_d is t = ge t_sq_d is t (po in t s [i] , means [0]) ;
6 i n t min_idx = 0;
7 for (i n t j = 1 ; j < num_means ; j ++) {
8 unsigned i n t c u r _ d i s t = ge t_sq_d is t (po in t s [i] , means [j]) ;
9 i f (c u r _ d i s t < min_d is t) {

10 min_d is t = c u r _ d i s t ;
11 min_idx = j ;
12 }
13 }
14 i f (c l u s t e r s [i] != min_idx) {
15 c l u s t e r s [i] = min_idx ;
16 modi f ied = true ;
17 }
18 }
19 #pragma omp p a r a l l e l for schedule (dynamic)
20 for (i n t i = 0 ; i < num_means ; i ++) {
21 i n t * sum = (i n t *) mal loc (dim * sizeof (i n t)) ;
22 memset (sum, 0 , dim * sizeof (i n t)) ;
23 i n t grp_s ize = 0;
24 for (i n t j = 0 ; j < num_points ; j ++) {
25 i f (c l u s t e r s [j] == i) {
26 add_to_sum (sum, po in t s [j]) ;
27 grp_s ize ++;
28 }
29 }
30 for (i n t j = 0 ; j < dim ; j ++) {
31 i f (grp_s ize != 0) {
32 means [i] [j] = sum[j] / grp_s ize ;
33 }
34 }
35 f ree (sum) ;
36 }
37 }

Listing A.17 – K-Means using OpenMP.

1 #include < f f / p a r a l l e l _ f o r . hpp>
2 using namespace f f ;
3 P a r a l l e l F o r p f (a t o i (argv [1]) , fa lse) ;
4 while (modi f ied) {
5 modi f ied = fa lse ;
6 p f . p a r a l l e l _ f o r (0 , num_points , [po in ts , means,& c lus te r s ,& modi f ied] (i n t i) {
7 unsigned i n t min_d is t = ge t_sq_d is t (po in t s [i] , means [0]) ;
8 i n t min_idx = 0;
9 for (i n t j = 1 ; j < num_means ; j ++) {

10 unsigned i n t c u r _ d i s t = ge t_sq_d is t (po in t s [i] , means [j]) ;
11 i f (c u r _ d i s t < min_d is t) {
12 min_d is t = c u r _ d i s t ;
13 min_idx = j ;
14 }
15 }
16 i f (c l u s t e r s [i] != min_idx) {
17 c l u s t e r s [i] = min_idx ;
18 modi f ied = true ;
19 }
20 }) ;
21 p f . p a r a l l e l _ f o r (0 ,num_means , [po in ts ,&means , c l us te r s , modi f ied] (i n t i) {
22 i n t * sum = (i n t *) mal loc (dim * sizeof (i n t)) ;
23 memset (sum, 0 , dim * sizeof (i n t)) ;
24 i n t grp_s ize = 0;
25 for (i n t j = 0 ; j < num_points ; j ++) {
26 i f (c l u s t e r s [j] == i) {

242

27 add_to_sum (sum, po in t s [j]) ;
28 grp_s ize ++;
29 }
30 }
31 for (i n t j = 0 ; j < dim ; j ++) {
32 i f (grp_s ize != 0) {
33 means [i] [j] = sum[j] / grp_s ize ;
34 }
35 }
36 f ree (sum) ;
37 }) ;
38 }

Listing A.18 – K-Means using FastFlow.

1 #include " tbb / tbb . h "
2 using namespace tbb ;
3 tbb : : t a s k _ s c h e d u l e r _ i n i t i n i t (a t o i (argv [1])) ;
4 while (modi f ied) {
5 modi f ied = fa lse ;
6 p a r a l l e l _ f o r (0 , num_points , [po in ts , means,& c lus te r s ,& modi f ied] (i n t i) {
7 unsigned i n t min_d is t = ge t_sq_d is t (po in t s [i] , means [0]) ;
8 i n t min_idx = 0;
9 for (i n t j = 1 ; j < num_means ; j ++) {

10 unsigned i n t c u r _ d i s t = ge t_sq_d is t (po in t s [i] , means [j]) ;
11 i f (c u r _ d i s t < min_d is t) {
12 min_d is t = c u r _ d i s t ;
13 min_idx = j ;
14 }
15 }
16 i f (c l u s t e r s [i] != min_idx) {
17 c l u s t e r s [i] = min_idx ;
18 modi f ied = true ;
19 }
20 }) ;
21 p a r a l l e l _ f o r (0 ,num_means , [po in ts ,&means , c l us te r s , modi f ied] (i n t i) {
22 i n t * sum = (i n t *) mal loc (dim * sizeof (i n t)) ;
23 memset (sum, 0 , dim * sizeof (i n t)) ;
24 i n t grp_s ize = 0;
25 for (i n t j = 0 ; j < num_points ; j ++) {
26 i f (c l u s t e r s [j] == i) {
27 add_to_sum (sum, po in t s [j]) ;
28 grp_s ize ++;
29 }
30 }
31 for (i n t j = 0 ; j < dim ; j ++) {
32 i f (grp_s ize != 0) {
33 means [i] [j] = sum[j] / grp_s ize ;
34 }
35 }
36 f ree (sum) ;
37 }) ;
38 }

Listing A.19 – k-Means using TBB.

243

	I Scenario
	Introduction
	Contextualization
	Perspectives on High-Level Parallelism
	Stream Parallelism Domain

	Goals
	Contributions
	Outline

	Related Work
	High-Level Parallelism
	REPARA Research Project
	Stanford Pervasive Parallelism Research
	Discussion

	C/C++ DSL Design Space
	Cetus
	PIPS
	GCC-Plugins
	Clang
	ROSE
	Comparison

	Parallel Programming Frameworks
	Stream-Based
	Annotation-Based
	General-Purpose Frameworks
	Comparison

	Concluding Remarks

	II Contributions
	Overview of the Contributions
	Introduction
	The Programming Framework
	A Compiler-Based Infrastructure
	High-Level and Productive Stream Parallelism
	Introducing Code Portability for Multi-Core and Clusters

	CINCLE: A Compiler Infrastructure for New C/C++ Language Extensions
	Introduction
	Original Contribution
	Implementation Design Goals
	The CINCLE Infrastructure
	CINCLE Front-End
	CINCLE Middle-End
	CINCLE Back-End
	Supporting New Language Extensions
	Real Use Cases
	Summary

	SPar: an Embedded C++ DSL for Stream Parallelism
	Introduction
	Original Contributions
	Design Goals
	SPar DSL: Syntax and Semantics
	ToStream
	Stage
	Input
	Output
	Replicate

	Methodology Schema: How to Annotate
	Examples and Good Practices
	SPar Compiler
	SPar Internals
	Annotation Statistics on Real Use Cases
	Summary

	Introducing Code Portability for Multi-Core and Cluster
	Introduction
	Original Contribution
	Parallel Patterns in a Nutshell
	Multi-Core Runtime (FastFlow)
	Cluster Runtime (MPI Boost)
	Farm
	Pipeline
	Pattern Compositions

	Generalized Transformation Rules
	Source-to-Source Transformations Use Cases
	Transformations for Multi-Core
	Transformations for Cluster

	Summary

	III Experiments
	Results
	Introduction
	Experimental Methodology
	Benchmarking Setup
	Tests Environment
	Performance Evaluation
	Coding Productivity Instrumentation

	Multi-Core Environment
	Sobel Filter
	Video OpenCV
	Mandelbrot Set
	Prime Numbers
	K-Means

	Cluster Environment
	Sobel Filter
	Prime Number

	Summary

	IV Discussions
	Conclusions
	Overview
	Assessments
	Limitations
	Considerations

	Future Work
	Programming Framework
	CINCLE
	SPar
	Transformation Rules

	Experiments

	V Complements
	References
	Appendix A – Appendix
	Complementary Results on Multi-Core
	Filter Sobel SPar Performance
	Filter Sobel Performance Comparison
	Prime Numbers Performance Comparison
	Mandelbrot Set Performance Comparison

	Complementary Results on Cluster
	Sources for Coding Productivity
	Filter Sobel
	Video OpenCV
	Mandelbrot
	Prime Numbers
	K-Means

