Domain-Specific Language & Support Tools
for High-Level Stream Parallelism

THESIS SUBMITTED FOR THE DEGREE REQUIREMENTS OF:
DocToORr OF PHILOSOPHY IN COMPUTER SCIENCE

Dalvan Griebler

Advisor:
Prof. Dr. Marco Danelutto
Co-advisor:

Prof. Dr. Luiz Gustavo Fernandes

Computer Science Department, Ph.D. Program in Computer Science
University of Pisa, Pisa, Italy

Printed: April 28, 2016

ASSESSMENT COMMITTEE

Assoc. Prof. Marco Aldinucci
Computer Science Department, University of Torino, Torino - Italy

Assoc. Prof. José Daniel Garcia

Computer Science and Engineering Department, University Carlos III of Madrid,
Madrid - Spain

Assoc. Prof. Cesar A. F De Rose
Faculty of Informatics, Computer Science Graduate Program, Pontifical Catholic
University of Rio Grande do Sul, Porto Alegre - Brazil

ABSTRACT

Stream-based systems are representative of several application domains including video,
audio, networking, graphic processing, etc. Stream programs may run on different
kinds of parallel architectures (desktop, servers, cell phones, and supercomputers) and
represent significant workloads on our current computing systems. Nevertheless, most
of them are still not parallelized. Moreover, when new software has to be developed,
programmers often face a trade-off between coding productivity, code portability, and
performance. To solve this problem, we provide a new Domain-Specific Language
(DSL) that naturally /on-the-fly captures and represents parallelism for stream-based
applications. The aim is to offer a set of attributes (through annotations) that preserves
the program’s source code and is not architecture-dependent for annotating parallelism.
We used the C++ attribute mechanism to design a “de-facto” standard C++ embedded
DSL named SPar. However, the implementation of DSLs using compiler-based tools
is difficult, complicated, and usually requires a significant learning curve. This is
even harder for those who are not familiar with compiler technology. Therefore, our
motivation is to simplify this path for other researchers (experts in their domain)
with support tools (our tool is CINCLE) to create high-level and productive DSLs
through powerful and aggressive source-to-source transformations. In fact, parallel
programmers can use their expertise without having to design and implement low-level
code. The main goal of this thesis was to create a DSL and support tools for high-level
stream parallelism in the context of a programming framework that is compiler-based
and domain-oriented. Thus, we implemented SPar using CINCLE. SPar supports the
software developer with productivity, performance, and code portability while CINCLE
provides sufficient support to generate new DSLs. Also, SPar targets source-to-source
transformation producing parallel pattern code built on top of FastFlow and MPI.
Finally, we provide a full set of experiments showing that SPar provides better coding
productivity without significant performance degradation in multi-core systems as
well as transformation rules that are able to achieve code portability (for cluster
architectures) through its generalized attributes.

SOMMARIO

I sistemi che elaborano stream di dati vengono utilizzati in svariati domini applicativi
che includono, per esempio, quelli per il trattamento di video, audio, per la gestione delle
reti e per la grafica. I programmi che elaborano stream di dati possono essere utilizzati
e fatti girare su diversi tipi di architetture (dai telefoni cellulari, ai sistemi desktop e
server, ai super computer) e di solito hanno unpeso computazionale significativo. Molti
di questi programmi sono ancora sequenziali. Inoltre, nel caso di sviluppo di nuove
applicazioni su stream, i programmatori devono impegnarsi a fondo per trovare un buon
compromesso fra programmabilita, produttivita, portabilita del codice e prestazioni.
Per risolvere i problemi relativi alla parallelizzazione e allo sviluppo di applicazioni su
stream, abbiamo messo a disposizione un linguaggio di programmazione domain-specific
(DSL) che cattura e rappresenta gli aspetti legati al parallelismo in applicazioni su
stream. Lo scopo & quello di offrire una serie di attributi (annotazioni) che, modellando
gli aspetti relativi al calcolo parallelo dei dati sugli stream, permettano di preservare
il codice originale e non dipendano dall’architettura considerata. Abbiamo utilizzato
gli attributi C4++11 per mettere a disposizione un DSL “interno” chiamato SPar
pienamente conforme allo standard C+4. L’implementazione di un DSL mediante
compilatori € un processo complicato e che normalmente richiede un lungo processo
di apprendimento relativo agli strumenti utilizzati; il processo ¢ tanto piu lungo
quanto meno familiari si e rispetto alla tecnologia degli strumenti di compilazione. La
motivazione che ci ha spinto a questo lavoro ¢ dunque quella di semplificare la vita ad
altri ricercatori (esperti del loro specifico dominio applicativo) mettendo a disposizione
strumenti (CINCLE) che permettono la realizzazione di DSL di alto livello attraverso
trasformazioni di codice source-to-source efficaci e potenti. Tramite gli strumenti
messi a disposizione i programmatori di applicazioni parallele possono utilizzare la loro
esperienza senza dover progettare e implementare codice di basso livello. Lo scopo
principale di questa tesi ¢ quello di creare un DSL ad alto livello di astrazione per
computazioni parallele su stream e di metterne a disposizione gli strumenti di supporto
in un framework basato su compilatori e orientato al dominio delle applicazioni stream
parallel. Si e arrivati cosi alla realizzazione di SPar basata su CINCLE. SPar mette
a disposizione dello sviluppatore di applicazioni un ambiente ad alta produttivita,
alte prestazioni e che garantisce la portabilita del codice, mentre CINCLE mette a
disposizione il supporto necessario a generare nuovi DSL. SPar mette a disposizione
trasformazioni source-to-source che producono codice parallelo basato su pattern in
FastFlow e MPI. Alla fine della tesi presentiamo una serie completa di esperimenti
che mostrano sia come SPar fornisca una buona produttivita nella progettazione e
realizzazione delle applicazioni parallele su stream senza al contempo portare a un
degrado nelle prestazioni su sistemi multi core, sia come le regole di trasformazione
utilizzate per la generazione del codice FastFlow o MPI permettano di realizzare laiv
portabilita del codice basato su attributi su architetture di tipo diverso.

RESUMO

Sistemas baseados em fluxo continuo de dados representam diversos dominios de apli-
cagoes, por exemplo, video, audio, processamento grafico e de rede, etc. Os programas
que processam um fluxo continuo de dados podem executar em diferentes tipos de
arquiteturas paralelas (estagoes de trabalho, servidores, celulares e supercomputadores)
e representam cargas de trabalho significantes em nossos sistemas computacionais
atuais. Mesmo assim, a maioria deles ainda nao é paralelizado. Além disso, quando um
novo software precisa ser desenvolvido, os programadores necessitam lidar com solugoes
que oferecem pouca produtividade de coddigo, portabilidade de cédigo e desempenho.
Para resolver este problema, estamos oferecendo uma nova linguagem especifica de
dominio (DSL), que naturalmente captura e representa o paralelismo para aplicagoes
baseadas em fluxo continuo de dados. O objetivo é oferecer um conjunto de atributos
(através de anotagbes) que preservam o codigo fonte do programa e nao é dependente
de arquitetura para anotar o paralelismo. Neste estudo foi usado o mecanismo de
atributos do C++ para projetar uma DSL embarcada e padronizada com a linguagem
hospedeira, que foi nomeada como SPar. No entanto, a implementacao de DSLs usando
ferramentas baseadas em compiladores ¢ dificil, complicado e geralmente requer uma
curva de aprendizagem significativa. Isto é ainda mais dificil para aqueles que nao
sao familiarizados com uma tecnologia de compiladores. Portanto, a motivagao é
simplificar este caminho para outros pesquisadores (sabedores do seu dominio) com
ferramentas de apoio (a ferramenta é chamada de CINCLE) para implementar DSLs
produtivas e de alto nivel através de poderosas e agressivas transformagoes de fonte
para fonte. Na verdade, desenvolvedores que criam programas com paralelismo podem
usar suas habilidades sem ter que projetar e implementar o codigo de baixo nivel. O
principal objetivo desta tese foi criar uma DSL e ferramentas de apoio para paralelismo
de fluxo continuo de alto nivel no contexto de um framework de programacao que é
baseado em compilador e orientado a dominio. Assim, SPar foi criado usando CINCLE.
SPar oferece apoio ao desenvolvedor de software com produtividade, desempenho e
portabilidade de codigo, enquanto CINCLE oferece o apoio necessario para gerar novas
DSLs. Também, SPar mira transformacao de fonte para fonte produzindo coédigo de
padrdes paralelos no topo de FastFlow e MPI. Por fim, temos um conjunto completo
de experimentos demonstrando que SPar oferece melhor produtividade de codigo sem
degradar significativamente o desempenho em sistemas multi-core bem como regras de
transformagoes que sao capazes de atingir a portabilidade de cddigo (para arquiteturas
multi-computador) através dos seus atributos genéricos.

ACKNOWLEDGEMENTS

First of all, I would like to thank God for this opportunity and support given to me
during my whole life. Second, all the people that were around me, that were part
of this project. Their patience and help were fundamental. I especially thank my

advisors for supporting and guiding this research as well as their availability to discuss
and teach.

PREFACE

Research in parallel computing has been necessary aiming to achieve high-performance
and exploit parallelism in Cluster, Multi-Core, and General-Purpose Graphic Processing
Unit (GPGPU) architectures. We have had the pleasure of seeing the growth of new
programming models, methodologies, and programming interfaces for the efficient use
of such a great amount of computational power. These contributions have supported
discoveries in many scientific research fields including molecular dynamic simulations,
data analysis, weather forecasting, and aerodynamics simulations.

Even though several new interesting results have been achieved in parallel
computing over the last two decades, more work still needs to be done to achieve
higher level programming abstractions, coding productivity, better performance, etc.
At the moment, exploiting parallelism is still a challenging task that requires significant
expertise in parallel programming. For example, a software engineer must have a great
deal of knowledge of one or more of the following aspects along with their respective
challenges:

1. Hardware infrastructure: Optimization is not always abstracted by using
programming frameworks. Thus, memory locality, cache misses, network com-
munication, thread/process affinity, storage implementation, and energy con-
sumption will significantly impact the application’s performance and are heavily
dependent on hardware optimized features.

2. Programming models: May be used and carefully optimized in different ways
for synchronizing and communicating threads or processes. For instance, in
shared memory, one must pay attention to race conditions and deadlocks. In
message passing, deadlocks and process synchronizations are the most important.
For heterogeneous programming, there are thread synchronization and memory
copy between CPU and GPU. Finally, hybrid programming is a challenge for
the efficient use of message passing and shared memory models.

3. Problem decomposition: Is the computational mapping in the processors.
One must identify concurrent works and decompose them by using task, data,
DataFlow, and stream parallelism.

4. Parallelism strategies: Are algorithmic skeletons and design patterns for
helping programmers to express parallelism. Usually strategies like farm, pipeline,
and MapReduce are already provided in programming frameworks through a
template library such as FastFlow or TBB.

5. Load balancing: Refers to workloads being partitioned across CPUs. In general,
a static and dynamic approach may be adopted. Some frameworks implement
these primitives in their runtime system, such as OpenMP. However, it is up to
the user to define appropriate chunk sizes so that the work will be balanced.

ii

6. Scheduling policies: These are used to efficiently distribute jobs among CPUs.
Most of the frameworks do not offer the user the freedom to implement their
own scheduler, instead they must use one of the pre-defined scheduling policies
such as round robin, fixed priority, FIFO or EDF. In some applications, if the
runtime scheduler is not efficient enough, an ad-hoc scheduling policy must be
implemented.

7. Different Programming frameworks: These may be used to help developers
express parallelism. There are several available such as OpenMP, TBB, MPI,
OpenCL, X10, CUDA, and FastFlow. They are not able to abstract all the
previous aspects and most of them are designed for a particular programming
model.

These items are only a partial list of the problems and possibilities regarding
parallel programming. We could also highlight many challenges related to each one of
these items that are still being researched to improve performance and abstraction.
Moreover, some researchers prefer to focus on a specific set of aspects, concerning a
specific architecture. Focusing on a specific domain helps people to achieve better
and more efficient solutions. Thus, when looking at the current state-of-the-art, only
experts are able to efficiently parallelize their applications. It is clear that abstractions
are also needed for software engineers and application developers because they already
have to face the complexities of their domain.

This research problem initially prompted my Master’s thesis, which proposed
an external Domain-Specific Language for Pattern-Oriented Parallel Programming
(named DSL-POPP) [Gril2]. The first version provided building block annotations
for implementing master/slave-like computations on multi-core platforms. The re-
sults demonstrated significant programming effort reduction without performance
losses [GAF14]. During the Ph.D., a second version was released, which supported
pipeline-like parallelization [GF13]. Even though the results also demonstrated good
performance, some abstraction limitations were discovered that considerably changed
the subsequent domain and interface [GDTF15]. In general, many other problems arose
from this initial research which made the work more advanced, primarily regarding
high-level parallelism and DSL design.

Another related domain-specific language for MapReduce-like computations was
proposed in [AGLF15a], which had the same principles as DSL-POPP. However, a
completely new and unified programming language was created. The goal was to avoid
MapReduce application developers from having to implement their code twice in order
to run in distributed and shared memory environments. The performance results
based on the transformation rules were efficient and the DSL significantly reduced
the programming effort. The results of this collaboration further reinforced the
importance of having a high-level abstraction to avoid architecture details (Chapter 6).

iii

Additionally, the experience with the external DSL also demonstrated many advantages
for coding productivity, as presented before in DSL-POPP [AGLF15b].

These past experiences were fundamental to the planning and development of the
proposed programming framework (Chapter 3). DSL-POPP was initially an external
interface and a cross-compiler was manually developed. Since the goal was always to
preserve the sequential source code by only adding annotations, developers still had to
learn another language when using it. Consequently, the drawback was that it did
not preserve the syntax of the C language. Also, as the compiler did not follow any
standardization and due to its internal customization for a specific pattern, there was
no modularity for adding new annotations and features. In the literature there are only
a small set of tools for creating internal DSLs in C/C++ (Clang and GCC plugins).
Most of them only extend language capabilities and their internal implementations vary.
Thus, there is a significant learning curve to implement a solution, which nonetheless
has more or less the same limitations found previously in DSL-POPP.

One of the design goals of our framework is modularity and simplicity for building
high-level C/C++ embedded DSLs. The challenge is to allow parallel programming
experts to provide custom annotations by using the standard C++ mechanism so
that parallel code can be automatically generated. Although this mechanism (C++11
attributes) was released in 2011, GCC plugins (compilation time callbacks for the
AST) and Clang (compiler front-end on top of LLVM) are still difficult to customize
and create new attribute annotations.

Another limitation is that these tools do not allow for transformations in the
Abstract Syntax Tree (AST). Thus, there are only two options: use pretty print
parallel code or build another AST when parsing the code so that modifications
will be performed in the new one. GCC plugin constraints and complexities are
justified by the C/C++ flexibility and its design goal is not for source-to-source code
transformations/generations. On the other hand, Clang provides better modularity
with functionalities for parsing AST and creating another one, but it still requires
significant expertise in its front-end library and compilers.

The major difference between the annotation-based proposal is that instead
of using pragma annotations, C++11 attributes are not preprocessing annotations
and are fully represented in the AST with other C/C++ statements. Consequently,
they are parsed in the AST, giving more power to the language developer to perform
transformations. All of these aspects demonstrate that a Compiler Infrastructure for
building New C/C++ Language Extensions was necessary, which is referred to in
the text as CINCLE' (Chapter 4). This contribution allows one to achieve high-level
parallelism abstractions, as will be presented in Chapter 5 by implementing a DSL for
stream parallelism (SPar).

iThis is also the name of the bird that lives on shallow streams in Italy, France and Germany

iv

Stream domain was chosen as the annotation interface because it is interesting,
widely used, simple enough, general, and suitable for teaching purposes. Moreover,
it helps us to address another new perspective and allows application-level DSL
designers to integrate automatic parallelization through SPar. Vertical validation of
the framework was done through a DSL for geospatial data visualization targeting
multi-core parallelism [LGMF15] [Led16]. When compared with TBB, SPar was able
to increase coding productivity by 30% " without significant performance losses.

This research is also a collaboration with the University of Pisa, providing
inspiration for this work (e.g. such as the adoption of the stream parallelism domain
and the use of the C++ annotation mechanism). The major ideas come from EU
(European Union) projects such as REPARA™ (annotation mechanism) and the open
source project at UNIPI such as FastFlow'" (stream parallelism). Both projects have
justified and inspired some of our work.

In this thesis, we will provide a new programming framework perspective for high-
level stream parallelism. Our motivation is to contribute to the scientific community
with a high-level parallelism design with support tools for generating new embedded
C++ DSLs. It primarily supports users to build custom and standardized annotation-
based interfaces to perform powerful source-to-source transformations.

Another contribution is to enable productive stream parallelism by preserving the
sequential source code of the application. In this case, we prototyped a new DSL with
suitable attributes at the stream domain level by using our designed infrastructure,
which also became the use case to illustrate its capabilities and robustness. Moreover,
as a consequence of the generalized transformation rules created, our DSL seeks
to support code portability by performing automatic parallel code generation for
multi-cores and clusters.

iMeasuring the source lines of code.
Whttp://repara-project.eu/
Vhttp://calvados.di.unipi.it/

LisT OF PAPERS

. Towards a Domain-Specific Language for Patterns-Oriented Parallel
Programming. Programming Languages - 17th Brazilian Symposium - SBLP
[GF13].

. Performance and Usability Evaluation of a Pattern-Oriented Parallel
Programming Interface for Multi-Core Architectures. The 26th Interna-
tional Conference on Software Engineering € Knowledge Engineering [GAF14].

. An Embedded C++ Domain-Specific Language for Stream Par-

allelism. International Conference on Parallel Computing (ParCo 2015)
[GDTF15].

. A Unified MapReduce Domain-Specific Language for Distributed and
Shared Memory Architectures. The 27th International Conference on Soft-
ware Engineering € Knowledge Engineering [AGLF15a).

. Coding Productivity in MapReduce Applications for Distributed and
Shared Memory Architectures. International Journal of Software Engineer-
ing and Knowledge Engineering [AGLF15b].

. Towards a Domain-Specific Language for Geospatial Data Visualiza-
tion Maps with Big Data Sets. ACS/IEEE International Conference on
Computer Systems and Applications [LGMF15].

LIST OF ABBREVIATIONS

SPar Stream Parallelism

CINCLE Compiler Infrastructure for New C/C++ Language Extensions
AST Abstract Syntax Tree

GCC GNU C Compiler

GPGPU General-Purpose Graphics Processing Unit
GPU General-Purpose Graphics Processing Unit

CPU Central Processing Unit

FIFO First In, First Out

EDF Earliest Deadline First

OpenMP Open MultiProcessing

TBB Threading Building Blocks

MPI Message Passing Interface

OpenCL Open Computing Language

CUDA Compute Unified Device Architecture

UNIPI University of Pisa

REPARA Reengineering and Enabling Performance and poweR of Applications
DSL Domain-Specific Language

loT Internet of Things

DAG Directed Acyclic Graph

PPL Pervasive Parallelism Laboratory

IR Internal Representation

APl Application Program Interface

PIPS Parallelization Infrastructure for Parallel Systems
RTL Register Transfer Language

LLVM Low-Level Virtual Machine

EDG Edison Design Group

ANTRL Another Tool For Language Recognition

viii

IDE Integrated Development Environment

FPGA Field-Programmable Gate Array

DSP Digital Signal Processor

MIT Massachusetts Institute of Technology

APGAS Asynchronous Partitioned Global Address Space
SLOC Source Lines of Code

CONTENTS

List of Figures xiii
List of Tables Xvii
| Scenario 1
1 Introduction 3
1.1 Contextualization 4
1.1.1 Perspectives on High-Level Parallelism 4

1.1.2 Stream Parallelism Domain 7

1.2 Goals. e 13
1.3 Contributions 14
1.4 Outline. e 14

2 Related Work 17
2.1 High-Level Parallelism 18
2.1.1 REPARA Research Project 18

2.1.2 Stanford Pervasive Parallelism Research 19

2.1.3 Discussion 21

22 C/C++4 DSL Design Spaceo 22
221 Cetus e 22

222 PIPS . . . e 23

2.2.3 GCC-Plugins o 25

224 Clang o 26

225 ROSE e 27

2.2.6 Comparison 28

2.3 Parallel Programming Frameworks 30
2.3.1 Stream-Based 31

2.3.2 Annotation-Based L. 32

2.3.3 General-Purpose Frameworks 34

2.3.4 Comparison e 35

24 Concluding Remarks oo L 38

Il Contributions 39
3 Overview of the Contributions 41
3.1 Introduction 42
3.2 The Programming Framework 42

3.3 A Compiler-Based Infrastructure 45

Contents

3.4 High-Level and Productive Stream Parallelism 46
3.5 Introducing Code Portability for Multi-Core and Clusters 47

CINCLE: A Compiler Infrastructure for New C/C++ Language Extensions 49

4.1 Introduction Lo 50
4.2 Original Contribution 0. 51
4.3 Implementation Design Goals 52
4.4 The CINCLE Infrastructure 54
4.5 CINCLE Front-End 5}
4.6 CINCLE Middle-End 56
4.7 CINCLE Back-End 57
4.8 Supporting New Language Extensions 59
4.9 Real Use Cases 0 60
4.10 Summary ..o o. o e e 63
SPar: an Embedded C++ DSL for Stream Parallelism 65
5.1 Imtroductiono 66
5.2 Original Contributions L. 67
5.3 Design Goals 67
5.4 SPar DSL: Syntax and Semantics 69

54.1 ToStream 69

5.4.2 Stage 71

543 Inmput.o 72

544 Output. 72

5.4.5 Replicate 73
5.5 Methodology Schema: How to Annotate 74
5.6 Examples and Good Practices 75
5.7 SPar Compiler 81
5.8 SPar Internals 82
5.9 Annotation Statistics on Real Use Cases 83
5.10 Summary e 84
Introducing Code Portability for Multi-Core and Cluster 85
6.1 Introduction 86
6.2 Original Contribution L. 86
6.3 Parallel Patterns in a Nutshell 87
6.4 Multi-Core Runtime (FastFlow) 89
6.5 Cluster Runtime (MPI Boost) 91

6.5.1 Farm 91

6.5.2 Pipeline 92

6.5.3 Pattern Compositions 93

6.6 Generalized Transformation Rules 94

Contents xi

6.7 Source-to-Source Transformations Use Cases 98
6.7.1 Transformations for Multi-Core 98

6.7.2 Transformations for Cluster 100

6.8 Summary 102
11l Experiments 103
7 Results 105
7.1 Imtroduction 107
7.2 Experimental Methodology 107
7.2.1 Benchmarking Setup 107

7.2.2 Tests Environment 108

7.2.3 Performance Evaluation 109

7.2.4 Coding Productivity Instrumentation 110

7.3 Multi-Core Environment 111
7.3.1 Sobel Filter 111

7.3.2 Video OpenCV 126

7.3.3 Mandelbrot Set L 133

7.3.4 Prime Numbers 140

7.3.5 K-Meanso 148

7.4 Cluster Environment 156
7.4.1 Sobel Filter 156

7.4.2 Prime Number, 157

7.5 SUMMATY . . o v oo e e 159
IV Discussions 161
8 Conclusions 163
8.1 Overview 164
8.2 Assessments 165
8.3 Limitations 166
8.4 Considerations 166

9 Future Work 169
9.1 Programming Framework 170
9.1.1 CINCLE e 170

9.1.2 SPar 170

9.1.3 Transformation Rules 171

9.2 Experiments e 172

xii Contents

V Complements 173
10 Bibliography 175
A Appendix 189
A.1 Complementary Results on Multi-Core 190
A.1.1 Filter Sobel SPar Performance 190

A.1.2 Filter Sobel Performance Comparison 193

A.1.3 Prime Numbers Performance Comparison 198

A.1.4 Mandelbrot Set Performance Comparison 200

A.2 Complementary Results on Cluster 201
A.3 Sources for Coding Productivity, 201
A.3.1 Filter Sobel 202

A3.2 Video OpenCV 206

A.3.3 Mandelbrot 208

A.3.4 Prime Numbers 210

A35 K-Means 213

LisT OF FIGURES

1.1
1.2
1.3
1.4

2.1
2.2

2.3
2.4
2.5
2.6
2.7

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6

6.7

6.8
6.9

Reactive systems representation.o oo 8
DataFlow/DataStream systems representation. 9
Stream systems representation. 11
Thesis flowchart. 15
REPARA’ workflow. Extracted from [REP16] 18
Stanford pervasive parallelism research framework. Extracted from

[PPLI6). o 20
Cetus overview. Extracted from [JLFY05]. 23
PIPS infrastructure. Extracted from [AACT11]. 24
GCC internals overview. Extracted from [L614]. 25
LLVM infrastructure. Extracted from [LA14]. 27
ROSE overview. Extracted from [SQ03, ROS16]. 28
The programming framework picture. 43
The CINCLE Infrastructure 46
The environment of CINCLE infrastructure. 54
CINCLE AST node. 55
CINCLE AST representation. 56
AST visualizations. L 61
Performance comparison (machine with SSD hard drive). 62
Only SPar compiler performance (machine with SSD hard drive). . . . 62
Annotation methodology schema. 74
Activity graphson SPar. o Lo 75
SPar Compiler. 81
SPar AST. 83
Overview of different parallel patterns. Extracted from [MRR12]. . . . 88
A set of task-based parallel patterns for stream parallelism. 88
FastFlow Architecture. Adapted from [DT15]. 89
FastFlow Queues. Adapted from [Fasl6]. 90
FastFlow skeletons from the core pattern layer. 90
MPI farm implementation (circle represents process and arrows represent

communications). 92
MPI pipeline implementation (circle represents process and arrows

represent communications). 93
MPI skeleton compositions. o0 93
Mapping the transformations to FastFlow generated code. 99

6.10 Mapping the transformations to MPI generated code. 101

Xiv List of Figures
7.1 Time performance using balanced workload (Listing 7.1) 114
7.2 Time performance using balanced workload (Listing 7.2) 115
7.3 Stream performance using balanced workload (Listing 7.1) 115
7.4 Stream performance using balanced workload (Listing 7.2) 115
7.5 HPC performance using balanced workload (Listing 7.1) 116
7.6 HPC performance using balanced workload (Listing 7.2) 116
7.7 CPU Socket performance using balanced workload (Listing 7.1) 117
7.8 CPU Socket performance using balanced workload (Listing 7.2) 117
7.9 Memory performance using balanced workload (Listing 7.1) 118
7.10 Memory performance using balanced workload (Listing 7.2) 118
7.11 Source line of code for filter Sobel application. 119
7.12 Time performance comparison using balanced workload (Listing 7.1) . 121
7.13 Time performance comparison using balanced workload (Listing 7.2) . 121
7.14 Stream performance comparison using balanced workload (Listing 7.1) 121
7.15 Stream performance comparison using balanced workload (Listing 7.2) 122
7.16 HPC performance comparison using balanced workload (Listing 7.1) . 122
7.17 HPC performance comparison using balanced workload (Listing 7.2) . 123
7.18 CPU Socket performance comparison using balanced workload (Listing

TL) 123
7.19 CPU Socket performance comparison using balanced workload (Listing

T2) 124
7.20 Memory performance comparison using balanced workload (Listing 7.1) 124
7.21 Memory performance comparison using balanced workload (Listing 7.2) 125
7.22 Time performance (Video OpenCV) 127
7.23 Stream performance (Video OpenCV) 128
7.24 HPC performance (Video OpenCV) 128
7.25 CPU Socket performance (Video OpenCV) 128
7.26 Memory performance (Video OpenCV) 129
7.27 Source line of code for Video OpenCV application. 129
7.28 Time performance comparison (Video OpenCV) 130
7.29 Stream performance comparison (Video OpenCV) 131
7.30 HPC performance comparison (Video OpenCV) 131
7.31 CPU Socket performance comparison (Video OpenCV) 132
7.32 Memory performance comparison (Video OpenCV) 132
7.33 Time performance (Mandelbrot) 134
7.34 Stream performance (Mandelbrot) 135
7.35 HPC performance (Mandelbrot) 135
7.36 CPU Socket performance (Mandelbrot) 136
7.37 Memory performance (Mandelbrot) 136
7.38 Source line of code for Mandelbrot application. 137
7.39 Time performance comparison (Mandelbrot) 138
7.40 Stream performance comparison (Mandelbrot) 138

List of Figures XV

7.41 HPC performance comparison (Mandelbrot) 139
7.42 CPU Socket performance comparison (Mandelbrot) 139
7.43 Memory performance comparison (Mandelbrot) 139
7.44 Time performance (Prime Numbers) 142
7.45 Stream performance (Prime Numbers) 142
7.46 HPC performance (Prime Numbers) 143
7.47 CPU Socket performance (Prime Numbers) 143
7.48 Memory performance (Prime Numbers) 144
7.49 Source line of code for Prime Number application. 144
7.50 Time performance comparison (Prime Numbers) 145
7.51 Stream performance comparison (Prime Numbers) 146
7.52 HPC performance comparison (Prime Numbers) 146
7.53 CPU Socket performance comparison (Prime Numbers) 146
7.54 Memory performance comparison (Prime Numbers) 147
7.55 Time performance (K-Means) 150
7.56 Stream performance (K-Means), 151
7.57 HPC performance (K-Means) 151
7.58 CPU Socket performance (K-Means) 151
7.59 Memory performance (K-Means) 152
7.60 Source line of code for K-Means application. 152
7.61 Time performance comparison (K-Means) 153
7.62 Stream performance comparison (K-Means) 154
7.63 HPC performance comparison (K-Means) 154
7.64 CPU Socket performance comparison (K-Means) 154
7.65 Memory performance comparison (K-Means) 155
7.66 Time performance using balanced workload (Sobel Filter) 157
7.67 Stream performance using balanced workload (Sobel Filter) 157
7.68 Time performance (Prime Numbers) 158
7.69 Stream performance (Prime Numbers) 158
9.1 Statistics of Streamlt benchmarks [TA10]. Extracted from [Wonl12]. . . 171
A.1 Time performance using unbalanced workload (pipe-like) 190
A.2 Time performance using unbalanced workload (farm-like) 190
A.3 Stream performance using unbalanced workload (pipe-like) 191
A.4 Stream performance using unbalanced workload (farm-like) 191
A.5 HPC performance using unbalanced workload (pipe-like) 191
A.6 HPC performance using unbalanced workload (farm-like) 192
A.7 CPU Socket performance using unbalanced workload (pipe-like) 192
A.8 CPU Socket performance using unbalanced workload (farm-like) 192
A.9 Memory performance using unbalanced workload (pipe-like) 193
A.10 Memory performance using unbalanced workload (farm-like) 193

A.11 Time performance comparison using unbalanced workload (Listing 7.1) 194

xvi List of Figures

A.12 Time performance comparison using unbalanced workload (Listing 7.2) 194
A.13 Stream performance comparison using unbalanced workload (Listing 7.1) 194
A.14 Stream performance comparison using unbalanced workload (Listing 7.2) 195
A.15 HPC performance comparison using unbalanced workload (Listing 7.1) 195
A.16 HPC performance comparison using unbalanced workload (Listing 7.2) 195
A.17 CPU Socket performance comparison using unbalanced workload (List-

ing 7.1) . . 196
A.18 CPU Socket performance comparison using unbalanced workload (List-

Ing 7.2) . ..o 196
A.19 Memory performance comparison using unbalanced workload (Listing

TL) 196
A.20 Memory performance comparison using unbalanced workload (Listing

T2) 197
A.21 Time performance comparison (Prime Numbers Default) 198
A.22 Stream performance comparison (Prime Numbers Default) 198
A.23 HPC performance comparison (Prime Numbers Default) 199
A.24 CPU Socket performance comparison (Prime Numbers Default) 199
A.25 Memory performance comparison (Prime Numbers Default) 199
A.26 Stream performance comparison (Mandelbrot) 200
A.27 Time performance using unbalanced workload (Filter Sobel) 201

A.28 Stream performance using unbalanced workload (Filter Sobel) 201

LisT OF TABLES

2.1
2.2

4.1
4.2

5.1

7.1
7.2

Related works for C/C++ DSL design space. 29
Related parallel programming frameworks. 37
Basic API functions. 59
Statistics of CINCLE (number of nodes on the AST). 63
Statistics of SPar annotations on the experiment. 83
The Pianosau machine configurations. 108

The Dodge cluster machines’ configuration (total of 4 nodes).. 109

CCCCCCC

INTRODUCTION

This chapter will introduce and contextualize the dissertation research.

Contents
1.1 Contextualization 000000 4
1.1.1 Perspectives on High-Level Parallelism 4
1.1.2 Stream Parallelism Domain 7
1.2 Goals v i i i e e e e e e e e e e e e e e 13
1.3 Contributions L Lo e e 14

1.4 Outline. i i i i i i it e e e e e e e e e e e e e e e e 14

4 1. Introduction

Contextualization

In order to contextualize the research problems and challenges, the first section will
present the central perspectives regarding high-level parallelism. The goal is to present
the main challenges and issues of providing high-level parallelism in respect to the
state-of-the-art alternatives, and show how our research provides solutions to these
concerns. The subsequent section will introduce the stream parallelism domain and
highlight its central difficulties when parallelizing with current state-of-the-art tools.
Additionally, we believe that stream parallelism properties are generic enough to
increase the level of abstraction. Thus, we will show their advantages and how we
plan to implement them using a standard C++ mechanism.

1.1.1| Perspectives on High-Level Parallelism

For many years parallel computing has been mostly considered in specialized super-
computer centers, but this has dramatically changed in the last decade. Currently,
there are different degrees of parallelism from embedded systems to high-performance
servers, due to the availability of multiprocessing architectures such as multi-core,
accelerators and clusters [RJ15, RR10]. Also, technology improvements have con-
tributed to increasing the capabilities of hardware resources such as memory, network
and storage, and supporting complex software on different kinds of devices. This
heterogeneity raises many challenges for software developers regarding performance
portability!, code portability’ and coding productivity'.

In the software industry, many general-purpose programming languages are
making progress on higher-level abstractions, supporting software engineers in the
building process of complex applications with better code productivity. However,
these applications have many challenges to achieve performance and code portability
on parallel architectures while preserving their coding productivity. Unfortunately,
compilers such as GCC are not able to automatically parallelize code from these high-
level language abstractions. In fact, from a compiler’s point of view only vectorized
code is automatically parallelized, while other high-level abstractions (viewed as coarse-
grained code regions) do not provide the necessary semantic information for the compiler
to perform code parallelization. Consequently, developers are forced to restructure
their application by using low-level and architecture-dependent programming interfaces

iTt means the code achieves the same performance on different platforms and architectures.
"Allows a code to run in different architectures and platforms without any changes.
"Reduces the amount of code and programming effort.

1.1. Contextualization 5

such as MPI [GHLL'98], CUDA [KmWH10] and Pthreads [NBF96] if they hope to
exploit parallel hardware efficiently.

The current software development process consists of prototyping an efficient
program in a high-level language and then implementing some kind of high-performance
code. This two-step process is very time-consuming, especially if we take into account
that the code eventually produced is strongly architecture-dependent. For instance,
it requires the programmer to have expert knowledge in hardware and parallel pro-
gramming to produce high-performance code when targeting different architectures.
In big team projects, some programmers will work on the high-level part while others
will have to implement the lowest-level version of the application. The problem is
that different versions of the parallelized application will have to be implemented in
order to target different architectures. Thus, a project will usually have many versions
that differ slightly from the original and any update could require rethinking the
parallelization strategy in order to better exploit the architecture’s resources.

To solve this problem, the Domain-Specific Language (DSL) approach has
proven to be a suitable alternative to high-level parallelism abstractions in recent years
[Gril2, GAF14, GF13, AGLF15a, AGLF15b]. Also, DSLs have proven to be effective
when targeting code productivity, code portability, and performance in different general-
purpose programming languages [SLB*11, DJP"11, HSWO14, Suj14]. Though these
solutions lack generality, they increase optimization and abstraction to enable the user
to focus on better ideas and algorithms rather than on general problems related to
parallelism exploitation.

A DSL can be implemented using different techniques. An “External” DSL
implementation is a language completely distinct from the host language. Thus, it
is necessary to create a custom compiler [Fow10, Gholl]. Usually, external DSLs are
more flexible and easier to model for the domain-specific scenario. Yet, depending
on the environment, they require much more expertise in compiler design even using
compiler frameworks like LLVM, because the high-level interface must be translated
into the low-level intermediate representation. On the other hand, “Internal” DSL
implementations are fully integrated with the host language syntax and semantics.
They are provided as a library or by using specific host language mechanisms [VBD13].
Our DSL uses the embedded C++11 attributes [[SO11b, ISO14] already present in the
host language grammar and therefore it is “de facto” an internal/embedded DSL.

According to the literature, an internal DSL should be easier to implement
because the host language should provide an alternative to suitably integrate custom
language constructions. However, in C++, the context is entirely different when one
intends to use its standard annotation mechanism. It requires a profound knowledge of
compiler design. We solved this problem by providing a new compiler infrastructure so
that we can provide a suitable alternative because the literature does not enable higher
abstraction level and aggressive code transformations. In addition, our programming

6 1. Introduction

framework perspective aims to facilitate other kinds of language extensions or compiler-
based tools to benefit from the infrastructure. This and other new perspectives will be
discussed and proven throughout this dissertation.

In spite of the DSL benefits, designing an embedded C+4 DSL for high-level
parallelism abstractions is still a challenging task. It requires expertise in multiple
areas such as parallel programming, programming languages, compiler architecture, etc.
Recently, researchers from Stanford University have been working on the same subject
to create high-performance and high-level embedded DSLs for the Scala language
[OSV10]. They developed the Delite compiler framework to enable DSL designers to
quickly and efficiently target parallel heterogeneous hardware [SBL*14]. Overall, their
research builds on a stack of domain-specific solutions that in principle share similar
goals with this work. In contrast, our idea is to contribute to the C/C++ [Strl4]
community, which is widely used in several market and real world applications.

Delite is logically between a high-level application DSL and low-level hardware
and runtime libraries. Integrated with Scala, its framework provides parallel patterns
that can be instantiated by the application’s DSL designer without worrying about the
parallelism aspect of heterogeneous hardware. Unlike C++4-, Scala is more recent and
was created along with the DSL support implementation, which requires parallelism
abstractions. In our proposed research, in addition to providing high-level parallelism
to an application’s DSL designers, we have also proposed a compiler infrastructure
as an alternative for experts in parallelism exploitation to quickly prototype DSLs
based on annotations. This contribution can significantly improve the abstraction
level of parallelism in C4++ programs. Similar to Delite, we propose an embedded
C++ domain-specific language, yet for stream-oriented parallelism. Our goal is that
the programmer will not be required to instantiate patterns or methods as in Delite.
Instead we aim to preserve the application’s source code as much as possible, only
requiring the programmer to insert proper annotations for annotating the stream
parallelism features.

In the C4++ community, a research closest to ours is Re-engineering and Enabling
Performance and poweR of Applications (REPARA) [REP16]. Its vision is to help
develop new solutions for parallel heterogeneous computing [GSFS15] in order to
strike balance between source code maintainability, energy efficiency, and performance
[DTK15]. In general, REPARA differs from our work in many ways, but shares the idea
of maintaining the source code by introducing abstract representations of parallelism
through annotations [DGS™16]. Thus, a standard C++11 attribute mechanism is
used as skeleton-like code annotations (farm, pipe, map, for, reduce, among others).
Attributes are preprocessed and exploited within a methodology, which eventually
produces code targeting heterogeneous architectures.

From the high-level parallelism perspective of REPARA, attributes are in-
terpreted by a refactoring tool that is on top of eclipse IDE (Integrated Develop-

1.1. Contextualization 7

ment Environment), which is responsible for the source-to-source transformations to
C++/FastFlow. As a consequence of refactoring methodologies, theses transformations
occur in place and produce code that is transparent to users. Like REPARA, we aim
to be standard C++ compliant. However, in our programming framework, attributes
are used at compiler level and source-to-source code transformations are hidden from
the users. Moreover, our goal is to be domain-specific for stream parallelism, targeting
multi-core and clusters to support an application’s DSL designer as in the Delite
framework’s vision.

There are also other programming interfaces that provide high-level paral-
lelism that are not DSLs. Examples are MapReduce [MS12, DG08, CCAT10, Had16],
Charm++ [AGJT14, Chal6], X10 [Mill5, X1016], Spark [KKWZ15], Storm [And13],
and Intel Cilk Plus [BJK™95, Cil16]. While offering many suitable features for different
applications, these approaches force programmers to deal with different programming
models that are not natural to the application domain. This negatively impacts coding
productivity. Moreover, it is difficult for them to provide good performance when
targeting different parallel architectures, because their embedded interface is still too
low-level. Therefore, they require different implementation versions of the source code
to target different hardware.

Our perspective on high-level parallel programming relies on language attributes
that annotate abstract representations of potential parallelism. In our vision, other
annotation-based models such as OpenMP [Qui03] are conceptually much lower-level,
because users have to express the parallelism and deal with low-level details relative to
high-performance coding. These interfaces achieve coding productivity only in specific
cases such as independent loop parallelization. In addition, code portability is still
strongly architecture-dependent, which requires the production of different versions of
the application in order to target other architectures.

1.1.2| Stream Parallelism Domain

Stream processing is one of the most commonly used paradigms in computer systems
[TA10, AGT14]. We can find it in our daily software applications and computational
hardware. All personal computer processors run a sequence of instructions in a
streaming fashion to achieve throughput, latency, and quality of service at the user
level. On the software side, the increase of the Internet of Things (IoT) field and the
big data explosion has made stream processing a trending topic in computer science.
There are millions of data sources on the Internet that are collecting and exchanging
information through devices and social media. Therefore, the need for high throughput
and low latency is also crucial for software that deals with image, video, networking,
and real time data analysis.

8 1. Introduction

Different variants of the stream programming paradigm have emerged over the
years (reactive, DataFlow and stream parallelism) [TA10, AGT14, TKA02a, ADKT14,
ADKT11]. They characterize the stream as a set of continuous data/instructions/tasks
that flows naturally through a sequence of operations. Each operation consumes
input and produces output like an assembly line that is also called as a pipeline. In
general, stream processing has a continuous flow and unbounded stream behavior.
However, some of today’s application scenarios are irregular and have bounded streams.
Consequently, it is a challenge for stream-based systems to control the end of the
stream and maintain good performance even if there is not infinite flow.

Stream processing variants share similar motivations, goals, and characteristics
that make it difficult for a layperson to differentiate among them. Some scientists
simply say that they are equivalent in many aspects. In fact, they all share the same
principles. However, the resulting systems have subtle distinctions. It is possible to
highlight that, for example, a reactive system is more concerned with latency than
throughput. A typical example is a spreadsheet, where a person is usually applying
several mathematical equations (stream operations) in the data cells (stream sources).
Subsequently, the system reacts to all data updated in the cell, ensuring that latency
is small when compared to human perception [Furl4].

A representation of reactive environmental characteristics can be found in Figure
1.1. Each actor in the system propagates operation results and reacts when they
receives a new input event. Many web services use reactive programming for different
types of events. For instance, the most common is to answer over click events such as
subscriptions to a social network and to purchase goods. The system may have to deal
with different click sources and instantaneously react to the event. Thus, parallelism is
especially designed for each application to achieve latency, attend many events, react
over data scaling, and recover when failures happen in a timely manner.

B LM

Low Latency

Stream

Efx X AY fxé
| B _& b 6"

Replication for Resiliency

Figure 1.1: Reactive systems representation.

Listing 1.1 illustrates an example of a simple reactive stream code from the
programming perspective. It is a program that reads events from the keyboard and
can print the multiplication table. Therefore, the stream source is a digit or a set of
digits that will be processed to return a multiplication table. Through this example it
is possible to see the following challenges: Providing scalability and low response time
when the user enters a set of digits to be computed; and preserving resiliency when

1.1. Contextualization 9

a non-digit character is inserted so that the application does not stop, crash or lose
information.

void proc (){
int stream_ source;
while (1) {
std :: cout << "Enter a digit: ";
std :: cin >> stream_ source;
for (int i = 1; i < 11; ++i){
std :: cout << stream_ sourcexi << std::endl;

}

std :: cout << "\n———— —\n";

Listing 1.1: Reactive stream code example.

DataFlow programming is another stream-based paradigm, which is also called
DataStream by some scientists to avoid being confused with the architectural term
DataFlow [AGT14]. It is a way for runtime systems to automatically extract parallelism
from an application. In order to do so, the programmer explicitly indicates how data
will flow in the program in such a way that the system may build a Directed Acyclic
Graph (DAG). Then, when there are independent operations, that have all of their
input data available, they are designed to execute in parallel.

Stream

fx

Figure 1.2: DataFlow/DataStream systems representation.

A representative illustration can be found in Figure 1.2, where the spheres
are operators and arrows are dependencies. Usually, DataFlow computations are
represented through dependency graphs in the main memory. Operators are processed
by threads or processes as soon as all their input data items become available as shown
in Figure 1.2. Hence, each data operator thread will know when its work can be done
and go ahead. When input dependencies are used it means that an operator can
only perform its computation after the input data is available. Similarly, an output
dependency is a specification for subsequent operators stating where they will obtain
their results. Consequently, the connections and synchronizations between operators
are represented and ensured by input and output dependencies. This behavior is quite
similar to reactive programming. However, DataFlow is more closely related to data
parallelism than event driven parallelism (reactive systems).

10 1. Introduction

When looking at the literature regarding parallel programming interfaces for
multi-core architectures, we can point out different solutions that target the DataFlow
paradigm [CJvdP07, PC11, Omp16]. OpenMP was originally designed for data par-
allelism in FORTRAN and C, but has also introduced task parallelism and some
clauses (depend, in, out, inout) targeting a kind of DataFlow parallelism in task
regions since its 4.0 version. A simple code example is given in Listing 1.2 to illustrate
the programmer’s point of view, presenting a program that performs a sequence of
operations over a contiguous bounded data stream.

void proc(){
#pragma omp parallel

{
#pragma omp single
{
for (int i = 0; i < NREGION; —++i){
int xpersons = new int [NPERSON];
#pragma omp task depend(out: persons|[i])
{
load (persons);
}
#pragma omp task depend(in: persons|[i])
{
regions_ min[i] = min(persons);
}
#pragma omp task depend(in: persons|[i])
{
regions_max[i] = max(persons);
}
}
}
}

Listing 1.2: OpenMP DataFlow code example.

The program performs a data analysis to identify the maximum and minimum
age of people in each region. Therefore, the loop iterates for each region, loading
everyone’s age into a vector to find and store the maximum and minimum age. In
order for OpenMP to exploit DataFlow parallelism, we have to describe the data
dependencies in such a way that OpenMP can run the max and min operations in
parallel, as presented in Listing 1.2 in the pragma task annotations. Nonetheless, its
usage is strongly dependent on the OpenMP programming model. For instance, it is
not enough to describe the data dependency. One must be aware of task parallelism,
where task pragmas are a group of tasks that will run concurrently, and the output
and input dependency will synchronize the data flow. In our OpenMP example, the
first task group will update the input data of the next two task groups (max and min
operators) so that they execute in parallel. Finally, note that a DataFlow region must
also be encapsulated by parallel and single directives.

1.1. Contextualization 11

Stream parallelism programming inherits many of the capabilities of previous
paradigms. In contrast to DataFlow programming, stream operations’ dependencies
are not determined by input and output data specifications. In stream parallelism,
the operation sequence is structured in such a way that dependencies are evidenced
and input and output describes what will be consumed and produced by a kernel as
illustrated in Figure 1.3. A kernel is composed of an operator or a set of operations
performed at each element of the stream.

Inside kernels, operations are expected to be sequential and they are performed
locally during the computation. The specifications of input and output also help the
system to prevent global data manipulation, whereas local operations can improve
memory performance through data locality. The stream parallelism paradigm also
simplifies the implementation of the task scheduler since the flow is completely deter-
ministic. In DataFlow for example, the model is highly data dependent, resulting in
a non-deterministic flow and complex scheduler implementation because the flow of
tokens within the graph may vary depending on the input token values during the
execution of the program. Depending on the token flow, the scheduler should make
different scheduling decisions.

Kernel-0 Kernel-1 Kernel-2 Kernel-N

oy {ELLEL L]

Figure 1.3: Stream systems representation.

-
et ()

————=

Stream parallelism applications work over intensive and unbounded streams,
focusing on high throughput rates and low latency. The undefined end of a stream is
a difficult for DataFlow systems. On the other hand, stream systems have DataFlow
semantics. Therefore, not all the graphs we can express with DataFlow may be
expressed with stream parallelism. For example, similar undefined behavior is also
present in reactive applications, but there is an elastic stream (a set of events) frequency
that must be addressed in timely manner, while stream applications usually have bigger
streams with a constant frequency where the throughput may be a priority instead
of latency. Examples of real world applications are face tracking, video streaming,
network packet routing, image processing, among others. Listing 1.3 outlines the
structure of a typical stream parallel application.

The code example implements a stream application, where each element of the
stream is a string. Therefore, the stream application starts on the “while” loop. At
each iteration, the loop reads a stream element, computes a result using the element,
and writes the result on a given output stream. The end of the stream is monitored
by a condition checked after reading one element. Note that it is common that the
number of computations of the stream elements (also called as filter) vary among the

12 1. Introduction

applications, but a stream application will usually have a sequence for these three
operations: read, filter, and write [TA10].

void proc_seq(){
std::string stream_ element;
while (1) {
read_in(stream_element) ;
if (stream_in.eof()) break;
compute (stream__element) ;
write_out (stream_element) ;

Listing 1.3: Stream application code example.

Due to the fact that OpenMP is not designed for naturally annotating these
kinds of applications, the most efficient way to explore stream parallelism is to use
FastFlow [Fasl6, ADKT14] or TBB [Rei07, TBB16] frameworks. Both frameworks
also support DataFlow parallelism and present a similar programming interface because
they leverage the same meta-programming features. However, the runtime systems
are very different as are the design goals, which will be explained in detail later in this
dissertation (Chapter 2). To exemplify the expressiveness of stream parallelism when
using such frameworks, a pseudo code in FastFlow is given in Listing 1.4, extending
the example of Listing 1.3. From this code, we can point out the main drawbacks of
these frameworks are source code rewriting and restructuring.

struct firstStage: {f node_t<std::string> {
std::string stream_ element;
std::string *svc(std::string *) {
while (1) {
read_in(stream_ element);
if (stream_in.eof()) break;
ff _send_out (new std::string(stream_element));
}
return EOS;
}
H
struct secondStage: ff node_t<std::string> {
std::string #svc(std::string sstream_element) {
compute (xstream__element) ;
return stream_ element;

}
b
struct thirdStage: ff_node_t<std::string> {
std::string *svc(std::string sstream_element) {
write out (* streamielement) ;
delete stream_ element;
return GO_ON;

}

1.2. Goals 13

}s
void proc_ff(){
ff Pipe<> pipe(make unique<firstStage >(),
make_unique<secondStage >(),
make_unique<thirdStage >());
if (pipe.run_and_wait_end()<0) error("running pipe");

Listing 1.4: FastFlow stream code example.

In contrast to these frameworks, the scope of this research is limited to stream
parallelism and does not address similar approaches such as DataFlow or Reactive
parallelization. The main expected state-of-the-art contribution is to provide a high-
level DSL for expressing stream parallelism. Even though C++ template libraries
can provide interesting coding productivity and abstractions, this work aims to raise
the abstraction level without significantly affecting performance. The proposal is to
use the standard C++ attribute mechanism [MWO08, ISO14], maintaining on-the-fly
stream parallelism such as the example in Listing 1.5, where the sequential source
code (Listing 1.3) is not restructured. Chapter 5 will present and discuss the proposed
DSL in detail to address stream parallelism by using standard C++ attributes.

void proc_spar () {
std :: string stream_ element;
[[spar ::ToStream,spar :: Input (stream__element)]] while(1){
read_in(stream__element);
if (stream_in.eof ()) break;
[[spar::Stage,spar::Input(stream__element) ,spar:: OQutput(
stream__element)]]
{ compute(stream_element); }
[[spar::Stage,spar:: Input(stream_element) |]
{ write_out(stream_element); }
}
}

Listing 1.5: Proposal interface exemplification for stream parallelism.

Goals

The main objectives of this dissertation are the following:

e G1: The first goal is to provide support tools that enable parallel programming
experts to create standard C++ embedded DSLs.

e G2: The second goal is to provide high-level stream parallelism and coding
productivity without significant performance degradation in multi-core systems.

14

1. Introduction

e G3: The third goal is to introduce code portability in multi-core and cluster

systems.

Contributions

This work contributes to a programming framework for high-level parallelism abstrac-

tions that includes the following specific contributions:

C1: A compiler infrastructure for generating new language extensions

in C/C++.
C2: A domain-specific language for stream parallelism.

C3: Generalized transformation rules for source-to-source code gen-
eration that exploits parallelism in multi-core and cluster.

C4: Experimental validation through the implementation of several
different use cases to access features of the framework and design
choices.

Outline

This dissertation is organized in five parts:

e Scenario: This part of the dissertation introduces the context, problems, chal-

lenges, and motivations in Chapter 1. Chapter 2 presents the related works to
highlight the differences and similarities to our research.

Contributions: This is the most important part of the dissertation. Chapter
3 gives an overview of the contributions, first presenting the programming
framework. Then, it informally discusses each one of the contributions related
to the framework. Chapter 4 details this contribution C1 (see Section 1.3),
presenting the Compiler Infrastructure for New C/C++ Language Extensions
(CINCLE). Then, Chapter 5 details contribution C2, presenting an Embedded
C++ DSL for Stream Parallelism (SPar). Chapter 6 details contribution C3,
introducing code portability for multi-core and cluster systems.

1.4. Outline 15

e Experiments: This corresponds to Chapter 7 and contribution C4. First we
present our experimental methodology. Secondly we discuss the experiments
that were performed with a set of applications for evaluating productivity and
performance in a multi-core environment, comparing it with other frameworks.
Finally, we evaluate the coding productivity along with performance in the
cluster environment.

e Discussions: In Chapter 8 we conclude the dissertation. Chapter 9 then
describes future works and research perspectives.

e Complements: This is the complementary part of the work. Chapter 10 is
composed of the bibliographies and Chapter A has the appendixes that support
our discussions.

Readers may prefer to navigate the document in different ways. Figure 1.4
illustrates a flowchart of the dissertation as a reading guideline. The preface is an
extended abstract to give more details about the dissertation and origins of the subject.
The introduction discusses the problem, motivations, and the expected contributions
in respect to the state-of-the-art. Consequently, if the reader is comfortable with the
scenario, it is possible to go directly to the overview of the contribution chapter and
then read related work for accurate information.

Scenario Contributions

Preface J Overview of the J

Introdu‘itﬁ ﬂ Contributions

CINCLE
Y
Related Work E

A
P PP e N
g

Abstract

R Code Portability for
Future Works Bibliography ‘ Multi-Core and C%usterJ
|
Conclusions € Appendix [« > Results
Discussions Complements Experiments

Figure 1.4: Thesis flowchart.

In the overview of the contribution chapter, we illustrate the thesis picture
and informally summarize the contributions. As in the flowchart, this part should
be read in sequence. First, the CINCLE chapter describes the technical aspects
of the infrastructure used to subsequently implement SPar, which is a high-level

16 1. Introduction

domain-specific language for annotating stream parallelism. Then, we introduce code
portability with transformation rules based on the SPar attributes.

After the contributions, the experiments portion presents the results of the
productivity, performance, and portability evaluation. Here one may refer to the
appendix chapter to see complementary materials for the assessments. Having become
aware of the achieved results, one can then go to the discussion portion, where they
will find the conclusions and future research perspectives.

RELATED WORK

This chapter presents an overview of the state-of-the-art works related to this research.

Contents

2.1 High-Level Parallelism 18
2.1.1 REPARA Research Project 18
2.1.2 Stanford Pervasive Parallelism Research 19
2.1.3 Discussiono 21

2.2 C/C++ DSL Design Spaceo v v v i v, 22
221 Cetus e 22
222 PIPS. . . . e 23
2.2.3 GCC-Plugins 25
224 Clang e 26
225 ROSE e 27
2.2.6 Comparison i e 28

2.3 Parallel Programming Frameworks 30
2.3.1 Stream-Based oo 31
2.3.1.1 FastFlow 31

2.3.1.2 Streamlt oo 32

2.3.2 Annotation-Based 0oL 32
2.3.2.1 OpenMP 33

2.3.2.2 OpenMP Extensions: OpenStream and ompSs 33

2.3.3 General-Purpose Frameworks 34
2331 Cilk . ..o 34

2332 TBB 35

2.3.4 Comparison 35

2.4 Concluding Remarks 38

18 2. Related Work

High-Level Parallelism

In this section we aim to present two research projects that inspired our work. First,
we introduce the REPARA research project which shares similar ideas regarding
C++ programming and tools. Then we present the research framework from the
pervasive parallelism laboratory at Stanford University which shares the domain-
specific perspective. Finally, we will discuss both works and compare them with
ours.

2.1.1| REPARA Research Project

Re-engineering and Enabling Performance and poweR of Applications (REPARA) is
a research project that started in September 2013 [REP16], founded by the Seven
Framework Programme (FP7-ICT). Its vision is to help develop new solutions for
parallel heterogeneous computing [GSFS15], balancing source code maintainability,
energy efficiency, and performance [DTK15]. Figure 2.1 presents the workflow proposed
to meet their goals (detailed in [REP16]), starting from the original source code and
moving to parallel the heterogeneous platforms (GPU and FPGA accelerators and
multi-cores).

Original
Application
Source
Code

Sl s 77 Z

Application
Bundle

e £ Sy 2

Source Code Application Transformation Source Code Runtime Application

Preparation Partitioning Analysis Transformation Integration Bundle

LS 7T T

Application

Bundle
Continuous Evaluation

Figure 2.1: REPARA’ workflow. Extracted from [REP16]

The first step is to prepare the source code. This is necessary to provide explicit
rules to express algorithms, tools for statical analysis and interactive refactoring, and
techniques for annotating source codes. The second step is application partitioning in
order to help application transformation to be mapped onto different devices. This is
based on the source code description for dynamic (run-time) and static (compile-time)

2.1. High-Level Parallelism 19

partitioning. The next step (transformation analysis) creates an abstract representation
of the opportunities for transformation. Consequently, the source code transformation
step takes into account this analysis to implement parallel code refactoring. The goal
is to work with interactive refactoring (tools integrated into IDE) to offer specific
transformations and non-interactive modes to re-apply the changes after refactoring
has been done.

REPARA also has a runtime integration step because transformations are not
enough to integrate different platforms. Primarily this is done to target different
frameworks with distinct libraries and tools. This can be managed inside application
partitioning tools, where the main goal is to change the application configuration
dynamically to achieve better balancing of power efficiency and performance. Moreover,
the central point of continuous evaluation goal is to also provide: I) qualitative
estimations to evaluate the effects of partitioning; IT) quantitative predictions to list
opportunities in the transformation analysis; III) estimations of performance and
energy efficiency during transformations; IV) software maintainability addressing the
application source code; and V) the integrated application to be monitored to improve
predictions.

All of these projects aim to develop different solutions. They have implemented
algorithmic skeletons that are introduced by using the C++11 attribute mechanism for
language representation. REPARA has created a set of partitioning tools that target
parallel patterns including pipe, farm, kernels, map, reduce, and others [DGS™16,
Prol4]. Also, some of the attributes have been integrated into Eclipse IDE plugin to
source-to-source transformations with FastFlow targeting multi-core and DSP/FPGA
[Prol5]. Because the project is still being developed, other tools are being created
that will validate REPARA’s approach regarding the workflow of ideas and goals.

2.1.2 | Stanford Pervasive Parallelism Research

The Stanford Pervasive Parallelism Laboratory (PPL) has a related research interest
in the field of domain-specific languages. The research project has been active since
2011 [BSL*11, CSB*11] and aims to develop a parallel computing platform by the
year 2020 [PPL16]. The primary goal is to make new DSLs for software developers
(domain experts) available, while taking advantage of heterogeneous parallelism for
those who are not experts in parallel programming. To achieve such a challenging
task, they are building a framework to support tools that are fully domain-oriented,
as shown in Figure 2.2. It provides a stack of multiple layers that goes from major
scientific applications to heterogeneous hardware devices.

This approach aims to create a consolidated environment for the Scala language
community and DSL designers with a parallel compiler and runtime infrastructure.

20 2. Related Work

Their research efforts are mainly related to the development of efficient mechanisms
for communication, synchronization, and performance monitoring. As a result, new
domain-specific application DSLs will arise where parallel programming should be com-
pletely transparent to the users [BSL™11, CSB*11]. Moreover, unlike the REPARA
project, the research is supported through the collaboration of open industrial affili-
ates.

PPL’s first layer consists of embedding a DSL with a high-level host language
(Scala). Thus, it can be integrated within the compiler, which is called Staging and
known as Lightweight Modular Staging for generating code by using Scala facilities
[RO10]. Along with this support, there are also domain-specific optimizations and
polymorphic embedding provided by the parallel runtime. In principle, they are APIs
implemented by the Delite compiler architecture that integrate several techniques for
source-to-source code transformations and data structures [BSL*11, CSBT11].

Delite was primarily created to support a large number of IR node types to
create a common IR to represent the source code for different targets [SBLT14].
It also includes data structures, parallel operators, built-in optimizations (matrix
multiplication and vector plus support), traversals and transformers (IR level rewriting
rules using pattern matching), and code generators for different platforms (from IR
to optionally Scala, C++, CUDA, and OpenCL). In fact, parallel operators available
through APT’s library may extend a pattern operator to enable parallelism. They
provide these pattern operators in a simple way to target task and data parallelism
and other domain-specific optimizations, such as scheduling and data locality.

A Scientific Virtual Personal Data
-—

Domain ‘ Machi
Specific Statistics Physics] Graph Alg. Le?:l?‘n'i':ne
Languages (R) (Liszt) (OptiQL) (Green Marl) (OptiML
EmbeddingLanguage (Scala) + DSL Framework (Delite)
DSL Polymorphic Embedding Staging Static Domain Specific Opt.
Infrastructure | Qe
Parallel Runtime (Delite RT, GRAMPS)
Dynamic Domain Spec. Opt. Task & Data Parallelism Locality Aware Scheduling
Heterogeneous
Hardware

Figure 2.2: Stanford pervasive parallelism research framework. Extracted from [PPL16].

Although the target date is 2020, they have provided many contributions in
all the framework layers. In addition to Delite, many DSLs were created on top of
the framework to support major important scientific applications [SLB*11, DJPT11,
HSWO14, Sujl4].

2.1. High-Level Parallelism 21

2.1.3| Discussion

In this section, we presented two distinct research projects that inspired our program-
ming framework for research (Section 3.2) and underlying DSL with support tools
for high-level stream parallelism. Although there are many differences in their design
goals and methods, these researchers share similar perspectives related to high-level
parallelism. We are aiming for an appropriate solution to achieve and provide simpler
programming environments as well as to productively and efficiently exploit parallelism
in a different manner.

In contrast to REPARA, whose annotations target general purpose parallelism
with closed semantics to support stream parallelism, we follow a domain-oriented and
compiler-based approach to introduce parallelism. In fact, REPARA is more concerned
with performance and energy efficiency through static and dynamic partitioning, which
are implemented based on the information of the annotated source code. Thus, the
attribute must be generic and capable of providing and retaining enough information
for the IR to enable sophisticated analysis and transformations. Also, their annotations
are integrated into a refactoring tool (IDE plugin), where the attributes are generated
by the partitioning tools (or, for the initial part of the project, by programmers), then
the IDE plugin tool re-factors the attributes to run-time calls (FastFlow Calls).

We can observe that REPARA and PPL projects seek to create runtime support
for heterogeneous devices such as reconfigurable and GPU accelerators. In contrast,
we aim to reuse these runtimes to elevate the abstraction level, providing better code
portability and productivity. Another similarity of these two projects is that they both
provide abstraction at parallel pattern level. Yet, we generate parallel code by using
generalized transformation rules that target parallel patterns.

Unlike from PPL, we are contributing to the C++ community by allowing non-
expert parallel programmers to take advantage of parallelism in different architectures.
Similarly to Delite, we create support tools to support C++ DSL designers with
a compiler-based infrastructure that can offer simpler abstractions and aggressive
source-to-source code transformations. Yet, even though PPL benefits from a high-level
productive language like Scala, parallelism is not delivered by using annotations as we
are providing for the DSL designers.

22 2. Related Work

C/C++ DSL Design Space

The DSL design space for C/C++ requires a compiler infrastructure or a framework able
to provide suitable features to extend languages and support an abstract representation
of the source, as presented in the compiler design [ALSU07]. Among several tools
available in the literature, we considered only the tools implementing the characteristics
related to the needs of our research. Also, we took into account open source projects
since proprietary tools are not compatible with our design goals. In this section, we
will discuss the aspects related to automatic source-to-source transformation as well
as compiler-based tools’ infrastructure.

2.2.1| Cetus

Cetus is a source-to-source compiler infrastructure for multi-core systems [DBM*09].
It targets automatic parallelization through C pragmas to support source-to-source
code transformations in C programs. The infrastructure is written in Java and uses
ANTRL [Par13] to provide an internal C parser. Currently, this project is maintained
by Purdue University and supported by the National Science Foundation [BML"12].

In general, Cetus provides features to implement parallelization techniques fo-
cusing on parallelism extraction though OpenMP directives. Cetus users may perform
analysis and transformations of data dependency, variable recognition/substitution, re-
duction recognition/transformation, scalar/array privatization, and loop parallelization.
Moreover, Cetus’ Internal Representation (IR) allows users to work with high-level
general passes such as symbolic analysis, alias analysis, and function inlining. However,
Cetus does not provide other general purpose tools for restructuring transformations.
Also, unlike traditional compilers, it provides an IR instead of AST, and users have
limited access to IR facilities to add new representations.

Figure 2.3 illustrates an overview of Cetus, presenting its architecture and
IR. In Figure 2.3(a), we identify how the infrastructure is designed in a stack of
layers. In fact, they use ANTRL to provide a symbol table to Cetus so that its IR
is created from standard C sources (see Figure 2.3(b)). There is also a API layer
available to the users to perform different kinds of activities such as parsing the IR,
transformations, analysis, and optimizations. The driver layer is the module where the
user has to implement source-to-source transformations, which is a Java class where
the programmer implements its transformations for Cetus to compile it with other
internal implementations.

2.2. C/C++ DSL Design Space 23

void function()
. & N
Driver int b;
Analysis, Transforms, const int *a;
and Optimizations el){
. . Parsers rmtf(b is positive”); »
Normalization (prnCols postive
> Expression
Utilities \
High-Level Interface (IR-API) [const Jint x| (Type Extender |
l Base Type
IR Symbol Table [:[:
> Modifier
(a) Cetus architecture. (b) Cetus IR of a program.

Figure 2.3: Cetus overview. Extracted from [JLF105].

An example of Cetus’ IR is given in Figure 2.3(b). Their tree abstracts several
standard C grammar constructions. There is a translation unit for each program
to represent the content of a source file and procedures which represent a individual
functions. The procedures include a list of simple or compound statements, while
the expressions represent operations over variables and variable assignments [JLF05].
Also, data types are divided into basic types, extender, and modifiers. Therefore,
providing this high-level abstraction, the developer may have less flexibility and have
to learn a new way to represent/parse the standard grammar.

To modify the program, Cetus has an annotation system (implemented through
a class) to simplify the insertion of comments, pragmas, and raw text as well as
low-level code insertion of new constructors in their IR tree. In fact, we can observe
that Cetus was primarily designed for simple source-to-source transformation, such as
the insertion of OpenMP directives based on compile-time analysis to automatically
exploit parallelism in multi-core systems. In the past, some experimental tests have
been performed targeting code generation from OpenMP to MPI code [BE05, BMEOT7],
but this feature seems to no longer be supported in the latest versions. Recently, Cetus
has also been used to exploit parallelism targeting GPU architectures by inserting
annotations [SLJT14].

2.2.2| PIPS

The research activities related to the PIPS (Parallelization Infrastructure for Parallel
Systems) compiler infrastructure started in 1988 at MINES Paris Tech. Initially,
PIPS provided automatic parallelization of Fortran code and since 1991 it began
supporting C language [IJT91]. Its key features are inter-procedural analysis and

24 2. Related Work

abstract interpretation on polyhedral lattices. The front-end includes Flex/Bison tools
to parse C and Fortran codes and implement the intermediate code representation
(IR). Moreover, PIPS only supports string transformations. Thus, the user has to: (1)
parse the IR, (2) find the regions in the IR to perform a transformation, (3) pretty
print code in a separate file, and (4) gather all the files to compile the code (assembling
source codes into machine code) [AACT11].

Figure 2.4 illustrates the PIPS infrastructure that is represented as a stack of
layers. On top, there are compiler tools that derive from the PIPS infrastructure. They
are user end tools to make automatic parallelization for vectorized instructions and
code optimizations. For transformations, the pass manager layer provides a set of APIs
useful to interact with the internal representation, which is a custom AST from the
source code [Guell]. Therefore, we can highlight that PIPS is a lower level compiler
source-to-source transformation when compared with Cetus. Although PIPS claims to
be used as a source-to-source compiler, it is also possible to generate machine code.
Moreover, most source-to-source compilers implement automatic code parallelization
using empirical methods, while PIPS uses a polyhedric approach [ATI91]. This method
consists of five compilation phases: (1) static checker; (2) building an array DataFlow
Graph (DFG), which is a kind of dependency graph; (3) creating a scheduling function
based on DFG; (4) computing a map function that places the code identifying physical
parallel machine resources; and (5) generating the parallel code.

Compilers & Tools
Par4ALL sac terapyps

Pass Managers

PypPs tpips
I Pipsmake Consistency Manager |
Passes Analyses
inlining, HCEFG (see 3.10), Pretty Printers
unrolling, DFG, array regions, C, Fortran
com. generation || transformers, preconditions XML ...

I Internal Representation I

Figure 2.4: PIPS infrastructure. Extracted from [AACT11].

PIPS’s research perspective aims to become an extensible workbench for analysis
and source-to-source transformations. Inter-procedural and polyhedral analysis are
mathematical approaches that allow the compiler to perform sophisticated analysis to
identify array privatization, control flow, dependencies, reduction detection, among
other techniques [AACT11]. Transformations (e.g., loop reductions, loop distribution,
coarse grain parallelization, and many others) and reconstructions (e.g., dead code
elimination, declaration cleaning, and many others) can eventually output Fortran/C
code annotated with OpenMP directives or MPI calls. In fact, PIPS generates MPI

2.2. C/C++ DSL Design Space 25

coarse grain parallelism from OpenMP annotated code [MMPSCO8]. Nonetheless,
recent PIPS efforts have been targeting heterogeneous machines mainly using the
inter-procedural technique to perform source-to-source transformations [Amil2].

2.2.3| GCC-Plugins

The GNU GCC compiler [GCC16a] is the default compiler for many open source
systems and is widely used by C/C++ communities [vHO06]. Since the GCC 4.5
version, there is a new feature called GCC-Plugins [GCC16b]. This allows developers
to implement research experiments and code analysis tools on the compiler without
changing the core of the compiler source code. Thus, programmers may extend
automatic optimizations and languages based on C pragmas and C/C++ attributes,
which are registered/executed in compile time when loading with the input code.

IPA optimization passes

O optimization passes
parsing pass gimplification O

SourceCode ____ GENERIC/ © ' GMPLE __ SSA ___ RTL

Tree IR
C.C++ Fortran...) Q final code generation J

) Target Assembly Code
lowering passes

&
simple gimple passes

(a) GCC passes.

VAR_DECL
TREE_TYPE() DECL NAME()
INTEGER_TYPE DECL_SIZE() IDENTIFIER NODE

TYPE_PRECISION() IDENTIFIER POINTER(

h &

TYPE_NAME()

IDENTIFIER_NODE

IDENTIFIER_POINTER()

(b) GCC generic tree example.

Figure 2.5: GCC internals overview. Extracted from [L614].

To better understand this technique, Figure 2.5 presents a general view of the
GCC internal representation, including the main passes (2.5(a)) and an example of the
AST (2.5(b)). As can be noted in Figure 2.5(a), GCC performs several modifications
(organized in passes) when compiling a program. When creating a new plugin it is
necessary to specify the passes that GCC will give access to the AST. At the front-end,
the parser is able to recognize different language grammars and build a generic tree
(known as AST) for each. During this process, many passes occur that are specific

26 2. Related Work

to the language to prepare the AST for the “gimpler”. Most of the passes that GCC
allows to access the plugin accessing are related to the GIMPLE (machine-independent
intermediate representation). Consequently, the only code generation is for gimple
intermediate language or SSA (Static Single Assignment) format.

In GCC-plugins, the programmer may parse the AST of a given C/C++ code.
Figure 2.5(b) illustrates an example where there is a tree for a variable declaration
(int var). This is a generic representation of the source code that is preserved in
different passes to be optimized until generating the RTL (Register Transfer Language)
code. GCC represents the code in a different way than the standard grammar. Other
drawbacks are poor documentation and constant changes for every new stable released
version, which will require a new version of the developed plugin. Although it is
possible to parse the AST, there is no support for performing modifications and attach
new nodes at the plugin level.

2.2.4| Clang

Clang is under the umbrella of the LLVM (Low-Level Virtual Machine) project. LLVM
is one of the most modern compiler infrastructures and it has been used by several
researchers to prototype new ideas in compiler design. Also, it has been successfully
used in industry by several companies, including Apple Inc. and Intel to implement
C-based language and commercial compilers [LA14]. Clang is the LLVM’s front-end
compiler that has been proven to be more efficient than the GNU GCC compiler when
compiling sequential programs.

Figure 2.6 illustrates the workflow of LLVM. Note that LLVM only interprets
intermediate representation language (LLVM IR) as a sort of GIMPLE of GNU GCC.
As such, LLVM is implemented as a virtual machine to support source-to-binary code
generation in other programming languages, while GCC is not modular. Moreover,

its infrastructure provides a set of tools to perform optimizations in the passes and
handle IR’s back and forth, from memory to disk [LA14].

At the front-end, Clang is constantly being improved to support users to create
standalone C++ tools by using its LibTooling library [Cla16]. Among the alternatives
is the static analyzer, which is a set of bug checks aimed to provide accurate warning
messages to find errors during software development. Another particularly interesting
characteristic of Clang (with respect to our research), is the possibility to create
source-to-source transformation and refactoring tools, which are loaded at the time of
compilation. This library facilitates implementation and AST navigation. However, its
AST represents the code in a more abstract way than the standard grammar describes
and it is not possible to perform code transformation directly on the AST.

2.2. C/C++ DSL Design Space 27

© 1 &

Figure 2.6: LLVM infrastructure. Extracted from [LA14].

2.2.5| ROSE

ROSE [ROS16] integrates a set of tools to simplify research on compiler design, code
analysis, optimizations, and source-to-source transformations. Since 2003, [SQO03]
when its architecture was proposed, many tools have been integrated into its core
framework. Figure 2.7 provides an overview of the architecture’s ideas and the current
infrastructure. The architecture is classified at the front-end, middle-end, and back-end.
The front-end was initially built using Flex and Bison tools and now integrates another
tool called EDG' to parse C/C++ code [QSYS04]. At the middle-end, ROSE creates
a high-level and generic IR to represent the source code with little specific language
syntax. This AST also stores attributes and annotations that may be used to perform
advanced analysis and optimizations. All transformations are made directly in the IR,
like the AST level to transform either into low-level IR LLVM code or into original
C/C++ code. Then, a vendor compiler (GCC or Clang) is reused to generate the
machine code.

In contrast to traditional compiler infrastructures, ROSE allows one to disassem-
ble binary code and represent it in their generic AST. In fact, it can perform an analysis
of a system that was previously compiled by another compiler. However, to perform
AST transformation for code optimizations and parallelization of vectorized code, the
AST needs to be from a source code. A fragmentation technique is used to successfully
perform transformations, which is explained in detail in [SQ03]. ROSE seems more
suitable for supporting internal compiler research for information extraction (e.g.,
data flow analysis) from source and binary code as well as easy loop parallelization
by inserting OpenMP directives into the source code. Moreover, for building new
language extensions, ROSE has proven to be quite hard because programmers need to
learn its customized IR as well as a set of non-standard tools.

thttps://www.edg.com/

28 2. Related Work

[ROSE-based tools]

(&

C/C++[Fortran
Source Code

Software
Binary

Transformed
Code

back-end

Data Dependence

ROSE compiler infrastructure

aaaaaaaaaaaaaaaa

(a) ROSE architecture. (b) ROSE infrastructure.

Figure 2.7: ROSE overview. Extracted from [SQ03, ROS16].

2.2.6 | Comparison

This section compares the tools previously discussed with our proposed support tool
named as CINCLE (Compiler Infrastructure for New C/C++ Language Extensions).
In order to highlight the differences and similarities, only the most important features
regarding the DSL design space are detailed in Table 2.1. Those are:

e C++11 Attr. Integrated: This characteristic reveals if the infrastructure
supports the implementation of the C++11 attribute mechanism.

e AST Transformations: This feature reveals if the infrastructure supports AST
to AST transformations.

e C++ Support: Demonstrates if the infrastructure is able to parse C++ pro-
grams.

e Documentation: Determines the amount of documentation available to learn
about the internal representation as well as language design.

e Source-to-Source: Reveals if the infrastructure can support source-to-source
code transformations.

e Recover Original File: Indicates if the tool is able to produce the original
source code again from its internal representation .

e Purpose: Describes the primary goal of the tools.

29

2.2. C/C++ DSL Design Space

‘oords uStsep TS ++D/D I10] SYIom paje[oy :1°Z el

sisATeue pue uoryeziprered
dryRIION® 10} S[00) jroddns

pue y1omowrely orduwo,) SO SO 100 SO SO ON HSOY
SISATeu®R
pue SUOI}RULIOJSURI)
90IN0S-03-90IN0S
10J s[00y j1oddns pue NATT
10} pus-juolq Iorduo)) SOX SO poox) SO ON SOX suer)
sonqryje pue sewserd
WO)S1D SUIPUIXO PUR
suoryezrurdo Suryuowedut sursnyq
10J SUIdN[J-DDD ON ON 1004 ON ON ON goI0)9)
SISATeue pue uorjezipdyered
oryewoine 10y sjooy jroddns
pue yromowreyj siduwo)) SO SO 1004 ON ON ON SdId
SISATeu® pue
uorjezip[ered osrpeuwojne
10} oanjonajseryur torduo)) SO SO 100 ON ON ON snje))
o[suorjewt poreisa)
[eUISLI) | 92aNn0g-0) uortjel poddng | -10jsuedy, | -Ul I3V
osodanJ JIOA0D9Y | -90IN0g |-UdWINOO(] ++D LSV IT++D s[oQq,

30 2. Related Work

In addition to the previous features, it is important to highlight that all tools face
the same problem: their internal code representation does not follow the standardization
for C/C++ sources. This is a drawback in learning and generality of the source-to-
source transformation algorithms. Most tools require users to learn the IR and compiler
passes. Our perspective of high-level DSLs relies on simplicity and standardization of
the source code representation. We believe that a generic standardized IR should be
provided. In CINCLE we proposed and implemented an AST that follows the C and
C++ standard grammar. Consequently, our compiler algorithms aim to be generalized

(based on the standard) as we expect the growth of similar tools like/derived from
CINCLE.

In Table 2.1, we can observe that none of the tools fulfill all the characteristics
implemented in CINCLE to support DSL developers in high-level parallelism design.
Unfortunately, the tools lack support for C++11 mechanisms and AST transformations.
While Clang may recognize custom attributes, ROSE provides a set of libraries to
navigate and transform their IR. In Clang, the user can modify a code by parsing the
AST and pretty printing the code into a new file. This technique is also present in
the other tools, but they do not support C++ (Cetus and PIPS). Although GCC-
Plugins can be loaded during C++ program compilation, there is no support. When
the respective passes are accessed now, the internal GCC AST representation loses
C++ grammar precision. Moreover, the C++ attributes are translated to GNU C
attributes.

Another drawback of GCC-Plugins is that users have to generate GIMPLE code
instead of C++4 code again. This requires learning a new language which is lower
level code. On the other hand, all others are able to produce the source code from
their AST again. However, this does make them suitable for our purpose, since we
already highlighted the learning curve drawback and in the table. Moreover, their
aims are different. Most of them are designed for static analysis, code optimization,
and automatic parallelization by inserting OpenMP directives. Consequently, they
contribute with compile-time techniques, methods, and algorithms to provide exe-
cutable code that is faster and more effective. In contrast, our purpose is to focus
on higher abstraction level concerns such as language extension design, high-level
parallelism ideas for productive programming, and aggressive source-to-source code
transformation.

pMB DParallel Programming Frameworks

In this section, we intend to provide an overview of the parallel programming frame-
works that were built on top of message passing and shared memory programming
models. We split them into three groups (stream-based, annotation-based, and

2.3. Parallel Programming Frameworks 31

general-purpose frameworks) to differentiate their primary characteristics. A detailed
description and discussion will be presented in the last section through a comparison.
These are the most important for this dissertation, because the focus is to provide
high-level abstraction for parallel programming.

2.3.1| Stream-Based

This section will only discuss stream-based parallel programming solutions that are
related to our approach.

2.3.1.1| FastFlow

FastFlow is an emergent parallel programming framework created in 2009 by researchers
at the University of Pisa and University of Turin in Italy [ADM*09, AMT10, Fas16].
It provides stream parallel abstractions from an algorithmic skeleton perspective. The
implementation is built on top of efficient fine grain lock-free communication queues
[ADK*11, ADK"12]. During the last three years new features were integrated for high-
level parallel programming for data parallel patterns (parallel “for”, Macro DataFlow,
stencil and pool evolution) [DT14, ADAT12, APD*15]. Also, other architectures have
been supported such as clusters and hardware accelerators (GPU, FPGA and DSPs)
[SUPT14].

The FastFlow programming interface provides a C++ template library whose
classes can be viewed as a set of building blocks. Although built for general-purpose
parallel programming, it provides suitable building blocks to exploit stream-oriented
parallelism in streaming applications that other frameworks do not. For instance,
it gives more freedom to the programmer to compose different parallel patterns
and build complex communication topologies in shared memory systems. Also, the
runtime support can operate in the blocking and non-blocking mode and enables the
programmer to attach their customized task scheduler [Fas16, ADKT14, DT15].

The runtime support has been tested in different applications and has been
shown to achieve a good trade-off between time-to-market, portability, efficiency, and
performance portability in various platforms [TDM*14, ATD*13, BGP14, DDST14,
Mis14, ADP*14, BDLT13, DK14]. Due to this, it has been quite a good C++ pro-
gramming environment that provides stable runtimes for several research projects
and researchers from different countries such as ParaPhrase, REPARA (both EU
FP7), and RePhrase (EU H2020) [Fas16]. More details about FastFlow will be given

32 2. Related Work

later (Section 6.4), since we have adopted it as our runtime for the proposed DSL for
high-level stream parallelism.

| 2.3.1.2 | Streamlt

Streamlt is a programming language for streaming applications [Str16]. It has been
developed for more than ten years at the Massachusetts Institute of Technology (MIT).
They have implemented different applications, targeting implicit parallelism in cluster
and multi-core systems [TA10]. Streamlt also provides a compiler infrastructure to
implement the programming language and to optimize code generation through the
implementation of DataFlow analysis techniques [Gor10].

The programming language is unique and independent of the target architecture.
The compiler can transform the code automatically for distinct hardware devices
[ZLRAO08, SGAT13]. Streamlt has been tested for many years and provided interesting
insights in stream parallelism research as well as excellent performance in streaming
applications [Thi09, Won12]. Streamlt is not considered a robust language, but it is
much more productive for exposing parallelism and communication than traditional
C/C++ libraries. It provides a straightforward and flexible structure that can be
composed to create complex graphs without requiring significant modifications to the
source code to change program behavior.

Streamlt applications are typically modeled as a composition of filter modules.
Each filter function must implement an initializer and worker function. Inside the
worker function, the filter can communicate through input and output channels,
which are FIFO queues. Also, users are supported by pop and push routines to
obtain and insert stream elements into the channels. Streamlt natively implements
stream parallelism without underlying parallel patterns. However, these applications’
structures are similar those in FastFlow. They mainly diverge only in name. For
instance, Streamlt offers three filter interconnection modes: pipeline, splitjoin, and
feedback loop [TKA02b, Thi09]. In contrast, FastFlow offers pipeline, farm, and
feedback parallel patterns through C++ templates. To the best of our knowledge,
activities on Streamlt stopped in 2013.

2.3.2| Annotation-Based

In this section we present the annotation-based APIs for parallel programming.
OpenMP is considered the “de-facto” standard for parallel programming targeting
shared memory systems. We also present other variants that have extended the

2.3. Parallel Programming Frameworks 33

OpenMP runtime. In fact, all of these annotation-based environments use C pragmas
as the main mechanism to express parallelism.

| 2.3.2.1 | OpenMP

The first version of OpenMP was released by the OpenMP Architecture Review Board
(ARB) in 1997 as a Fortran API. In 1998, they released the open specification for C and
C++ languages. Since 2000, all compilers started to integrate these specifications. The
first proposal was aimed to provide a new way to denote and express loop parallelism.
Later, they also started to introduce task parallelism, which officially happened with
the OpenMP 3.0 version (2007)[CJvdPO07]. Recently, OpenMP released its 4.5 version,
which offers rich support for heterogeneous systems like GPU, FPGA, DSP, and SIMD
constructions [Opel6]. Also, performance for data and task parallelism exploitation
has been improved. The newest feature is the possibility for specific task dependencies,
which may be used as “a kind of DataFlow” specification. Complete documentation
and an example of the programming interface is available at [Opel6].

Although OpenMP has been well accepted in the high-performance community,
it lacks suitable directives to naturally support stream parallelism exploitation. Con-
sequently, the programmer is obliged to deal with low-level implementation details
related to thread synchronization. In contrast, our work solves this problem by using
a different approach and annotation mechanism. The next section will present the
research work that has proposed to extend OpenMP directives to target different issues.
Our goal is to highlight what has been integrated in the OpenMP runtime, as well as
the challenges and limitations.

| 2.3.2.2 | OpenMP Extensions: OpenStream and ompSs

In the scientific community, there are also researches making progress and experiments
to extend the standard features of OpenMP. OpenStream is one of these extensions
designed to better exploit DataFlow parallelism. Authors [PC13] add other directives
in a GCC-based compiler targeting dynamically streaming programs that can exploit
pipeline, task, and data parallelism. They support these features along with pragma
annotations through a runtime library which provides two distinct mechanisms: a
pure data-flow and FIFO queue behaviors. Among their experiments, they have shown
significant performance improvement compared to other OpenMP extension (ompSs).
However, the limitations are from an older compiler version prototype and the lack
of support for C++ sources. In addition to the fact that only a limited set of small

34 2. Related Work

benchmarks were tested, there has been no software update or new experiments since
2012 [Pop12].

On the other hand, the ompSs studies are more active, releasing new versions each
year [Ompl6]. Most of the proposals are integrated with the standard OpenMP. For
example, the new feature in task parallelism including dependencies was first proposed
by ompSs. They have their own GCC-based compiler infrastructure to perform code
transformations and prototype pragma primitives. The group associated with ompSs
has developed different tools based on DataFlow parallelism for many years in the
Barcelona Supercomputer Center (BSC). Also, they have successfully translated task
(only) directives into MPI targeting cluster and GPU-Cluster [BMD"11, BPD"12]
environments as well as supported data and task parallelism for hardware accelerators
[PBAL13]. However, implicit calls regarding the programming model still has to be
given by the user in the code.

2.3.3| General-Purpose Frameworks

This section will present other general-purpose frameworks that target different pro-
gramming models and approaches to parallel programming. We provide a brief
discussion to highlight the most salient points.

| 2.3.3.1 | Cilk

Cilk is the result of research developed at MIT beginning in 1994 [BJK"95]. It was
initially released as a C language extension with the possibility to spawn a function
call/execution as well as a sync with executing thread terminations. Cilk is one of
the first parallel programming runtimes based on work stealing scheduling [Lei09].
Cilk is known for its simplicity in extending C with only three keywords (cilk_spawn,
cilk_sync and cilk_for), which allows one to exploit recursive parallelism. In
addition, to avoid race conditions caused by global variables, it has implemented
the reducer hyperobjects method in a lock-free manner [FHLLBO09]. Later, Intel Inc.
bought it and made it an open source project. Today, it is already integrated in the
standard grammar of C and C++ as well as in their compilers [Cil16].

During the past few years, Cilk has been tested and proven to be efficient in a
variety of parallel applications for multi-core systems. It has improved the support
by including features to detect race conditions and analyze program scalability. With
respect to the language, there is a new support tool to give the compiler permission for
vectorizing loops. Moreover, new experimental research is being conducted to support

2.3. Parallel Programming Frameworks 35

users when implementing pipe-while loops [LLS13]. However, its interface has not
been updated since the publication appeared. In fact, there is a raw environment using
macros to benefit from the compiler preprocessor. It claims that the runtime is for the
parallel pipeline construction of the TBB library (see Section 2.3.3.2).

| 2.3.3.2 | TBB

TBB (Threading Building Blocks) is another Intel tool for parallel programming
[TBB16]. TBB is a library for implementing high-performance applications in standard
C++ without requiring a special compiler for shared memory systems. It emphasizes
scalable and data parallel programming. The benefit is to completely abstract the
concept of threads by using tasks. TBB builds on C++ templates to offer common
parallel patterns (map, scan, parallel for, among others), equipped with a work
stealing scheduler similar to that in Cilk, which dynamically dequeues a stack of tasks
implemented in a FIFO-like order [Rei07].

As previously mentioned, TBB and FastFlow are quite similar in many aspects,
but the runtime and programming interface approaches are different regarding the
design patterns and algorithmic skeleton. In fact, the pipeline pattern is supported in
both of them which allows TBB to support stream parallelism exploitation. However,
it has presented some limitations when there is a complex scenario where one needs
to compose new patterns (e.g., introducing back communications by using feedback
patterns) [RCJ11]. Although its scheduler has been proven to achieve good performance
in several applications, TBB’s runtime does not allow one to attach a customized
scheduler. Another drawback is that it only targets multi-core systems.

2.3.4| Comparison

We could have mentioned many other parallel programming solutions, but they do not
provide significant contributions to our discussion. For instance, Charm++ [Chal6] is
an extension of the C++ language that implements parallelism on top of a message
passing programming model. Unlike other frameworks, the language is based on
object migration and programmers interact through asynchronous object invocations.
Another example is X10 [X1016], it is a completely new language based on Java on top
of an APGAS (Asynchronous Partitioned Global Address Space) programming model.
It offers a set of parallel constructions to deal with a single memory space. These are
examples of frameworks that follow completely different and unrelated approaches to
increase productivity in high-performance computing that are loosely related to our
work.

36 2. Related Work

In this section, we aim to compare important characteristics of our DSL with the
state-of-the-art frameworks. Therefore, we will discuss the following topics in detail:

e Programming Interface: It reveals the mechanism used to implement and
provide a programming interface for the users.

e Stream Parallelism: This item reveals if the framework supports stream
parallelism exploitation.

e Code Portability: This is when the programmer needs to recompile the pro-
gram to target other architectures.

e Support C++: This is about to support of the standard C++ language.
e Target Architecture: Describes the target architectures considered.

e Programming Model: Describes if the programming model’s shared memory
and message passing is abstract, explicit, or implicit to the users.

e Purpose: Describes the design goal of the framework.

Before comparing the frameworks, it is important to highlight that MPI and
OpenMP are the most well-known and widely used frameworks in parallel program-
ming. MPI provides a low-level network message communication library in cluster
environments. On the other hand, OpenMP provides higher level abstractions through
annotation. The compiler generates multi-threaded code for either multi-core or
accelerators hardware. In our case, because OpenMP is not suitable for the stream
parallelism exploitation, the FastFlow runtime library provides the appropriate func-
tionality, flexibility, efficiency, and facilities. This is similar to that offered by MPI in
distributed memory architectures.

In Table 2.2, we can observe that none of the frameworks fulfill all of the
characteristics implemented in SPar to provide high-level stream parallelism. Only
OpenMP and its extensions are annotation-based. Also, only TBB, FastFlow, and
Streamlt are able to support stream parallelism. Although it is called OpenStream, it
is designed to improve DataFlow parallelism in task regions. In OpenMP 4.5, this is
already supported.

Another important aspect in the table is code portability. Only Streamlt and
Spar can provide such features simply through recompilation. However, Streamlt is a
completely new language while SPar makes it possible to work with standard C+-+
sources. The drawback of using Streamlt is that C++ programmers need to learn a
new language and re-implement the source code.

We have already emphasized the importance of being compliant with standard
C++, where C pragma annotations are actually preprocessing directives. In fact, C++
compilers now support OpenMP directives, but new ones will require a dedicated
infrastructure similar to what researches from ompSs and OpenStream have used.

37

Parallel Programming Frameworks

2.3.

‘syjromeurery Surururerdold [ofrered paje[oy :g°g olqel

Ayranonpoad
pue Ajqejrod
apoo Surjadie) sIaIsn[H
pojuUSLIO-UIBI)S pue soINQqLIY
pue poseq-uoljejouuy’ 19RIISqVY 910 -T)MN Sox SOX Sox IT++D Tredqs
uorjyejrordxe
wistporered osodind-jerouss
puR JuoIdJo soyerduwa],
10} Areiqr[suroyyed uSIso(] yo1dxy 9I0)-1)NIN SO ON SO ++D q99.L
uorjelro[dxo UOISU9)Xo
wstered ssodimd-jeIouss o8ensue]
pu® JUILHH yordxy OI0D)TMN SOA ON ON ++0/0 O
wist[eIRd MO JRIe(]
[IIM S [[oM SR pIepur)s IL)sn[) pue
oY) M 9)RIOQR[[0D SI0)RIS[OIOY
09 PIedsal paseq-JNued Jo1dxy DI0D)-TYMIN SOA ON ON rwIseIJ) ggduwo
sononb O 1 suisn
uorjejrojdxe wstpo[reIed
MO JRYe(] JUSIIJo
0} uoIsua)xs JNuwed() Jo1dxry 9I0)-1)NIN ON ON ON rwseld) [esnguad(
SI0)RIS[AIDY
uoryejrordxe wste[eIed pue
YSk) puR vIRpP YUY yo1dxry 9I0))-TININ SOX ON ON rUISRIJ) dNuedO
uorjejrofdxs IL)sn[)) pue
wSTP[[RIR] WRDI)S JUSIDLYH 10RIISqY 9I0))-TININ ON SO SOX odengue moN | J[UIRLIIG
uorjejrordxe
wstpeIed jusroLe SIoIsSn[) pue
pue esodind-[eIouss 10y SI01RIS[EI0Y soyerduway,
ATeIqI] U0I9[eYS SISy Jo11dxT DI0) - NN SOA ON SO ++D Mo JI8eq
A wsTo]
[°POIN 9.IM309TYD ++D -[fqelrod -ered QVBLIU]
osodang SurwreIsold | -1y 108ae], | pIepuels opon weolls |Surwurea3odd s[oqq,

38 2. Related Work

Because C++ attributes are part of the C++ grammar, the compiler is able to
recognize custom annotations, which makes this mechanism more suitable to create
new embedded DSLs.

Turning to programming model features, we can observe that in most of the
frameworks, the user must explicitly parallelize the application code taking into account
the target architecture. Again, only Streamlt and Spar are able to abstract while taking
advantage of the parallelism in different parallel architectures, mainly in multi-core
and clusters that require very different programming models. We can also note that
other frameworks are still strongly dependent on hardware to achieve high-performance
code.

All of these contrasts may be justified by the distinct purpose of our work, which
is the design goals of each solution. We can see that the state-of-the-art frameworks
are still aiming to extract the maximum performance of the parallel architecture while
our work is focusing on raising the abstraction level to provide code portability and
productivity. Thus, the current frameworks are seen as potential runtimes for our
purpose.

Concluding Remarks

In this chapter, we provided a discussion on the state-of-the-art research for high-level
parallelism, C/C++ DSL design space, and parallel programming frameworks. As we
observed, our research is well positioned in the literature. We are adding interesting
contributions to the current high-level parallelism research, and this may open new
perspectives to achieve better code portability and productivity, mainly in streaming
applications. We also are starting with a higher level approach to design DSLs in C++
as well as to perform source-to-source code transformations. Moreover, our solution to
support stream parallelism tries to naturally integrate it into the standard language
to not be dependent on the programming model or architecture.

- Part | |

OOOOOOOOOOOO

OVERVIEW OF THE CONTRIBUTIONS

This chapter presents the main thesis contributions in a nutshell.

Contents
3.1 Introduction 42
3.2 The Programming Framework 42
3.3 A Compiler-Based Infrastructure 45
3.4 High-Level and Productive Stream Parallelism 46

3.5 Introducing Code Portability for Multi-Core and Clusters. . 47

42 3. Overview of the Contributions

Introduction

This chapter is included before the technical section to introduce the scope and
informally explain our contributions. The simplest description of this work is that it
is about supporting the development of many streaming applications such as image,
video, audio, and networking simpler and at the same time taking advantage of
different parallel architectures without worrying about their complexities to achieve
performance.

Two tools have also been created. CINCLE was designed to help create abstrac-
tions to make it easier to develop an application in other domains. Using CINCLE,
we successfully created our second tool that is a programming interface (named as
SPar) for streaming applications. Therefore, this chapter presents the programming
framework that defines our scope and the subsequent sections will informally present
the contributions.

R [he Programming Framework

The programming framework provides the main contributions of this dissertation.
Unlike what have been proposed in the literature, we aim to provide a framework that
is fully compiler-based and domain-oriented to support simple, high-level, productive,
portable, and modular programming interfaces for C/C++ applications. The challenge
is to enable high-performance code through high-level abstractions, as previously
discussed in the Preface and Introduction. This proposal builds on the background
acquired over the last four years of intensive studies in high-level parallel programming
and DSLs. Our idea is to shorten the path providing compiler-based abstractions in
different domain levels, where other researchers can benefit from what we have learned
and eventually included in this framework.

Figure 3.1 illustrates how the programming framework is designed. Our research
work can be divided into five domain-specific research fields that are specified on
the left side of the figure. The right side of the figure divides the research fields in
two groups to separate our target challenge and highlight the scope. Our original
contributions aim to empower the Domain-Specific Language Design (DSLD) group.
Moreover, the stack of blocks represents specific elements that are created and reused
for a given application domain. The picture also organizes the elements in the stack
from the lowest (bottom) to the highest (top) level. Starting from the low-level, the

3.2. The Programming Framework 43

Application GMaVis

Geospatial Map Visualization

Parallelism SP
, ar
DSL Generation CINCLE

Engine Compiler Infrastructure for New C/C++ Language Extensions
Parallelism

Exploitation
Computer Cluster

Architecture

Figure 3.1: The programming framework picture.

following topics will provide more details regarding the concepts and goals of each one
of the fields:

o Computer Architecture: Is the domain of the different parallel architectures
available in different devices. Currently, our targets are multi-cores (server and
workstation machines) and clusters (an agglomeration of machines connected
through a network). In the future, we plan to expand the support space to
include different types of architectures such as heterogeneous and hybrid. Note
that we do not intend to create new architectures, but instead to make the
software benefit from resources and capabilities of these different architectures.

e Parallelism Exploitation: Is the domain of current parallel programming frame-
works. Some of them provide higher level abstractions to exploit parallelism (this
is the case of FastFlow) and others are low-level programming models (this is the
case of MPI). They are suitable runtime and performance accelerators for parallel
computing. The idea is to reuse these tools to allow researchers to continuously
focus on better programming interfaces and performance exploitation. Firstly,
we aim to support code transformation targeting FastFlow on top of multi-core
and MPI on top of clusters.

e DSL Generation Engine: Is the domain supporting the generation of new
compiler-based C/C++ embedded DSLs. In this dissertation we proposed
the CINCLE infrastructure. It is the layer where we start to differentiate our
programming framework from the literature. Our goal is to generate a high-level
parallelism DSL (SPar) as well as an application level DSL (an example is
GMaVis [Led16]) that completely abstracts parallelism aspects by instantiating
SPar attributes. We contributed by designing CINCLE as our engine to support
DSL designers with simple and powerful mechanisms at the host language level.

44

3. Overview of the Contributions

Moreover, CINCLE was modularly structured so that different consolidated
state-of-the-art tools can be easily integrated to support more complex and
generalized code transformations.

Parallelism Annotation: Is the domain providing the user with high-level par-
allelism abstractions. Current compilers are still not able to automatically
parallelize instructions (that not vectorized) without any user intervention in
C++ programs. This is primarily due to the fact that at the compilation time
it is not possible to know whether a library call or a piece of code can run in
parallel. Our proposal is to make it easier for compiler and application devel-
opers, using annotations (C++ attributes) to provide an equilibrium between
abstraction for the compiler and user. Therefore, while the annotation properties
can enable efficient parallel code transformations, the annotation language seeks
to support the user with code productivity and portability. As a consequence,
we initially make a contribution in this layer through the C+4 embedded DSL
implementation for stream parallelism (SPar). This is an example of how we
simply annotate parallelism rather than exploiting it, where the responsibility
for exploitation is withf the DSL compiler targeting the multi-core and cluster
architectures.

Application: Is the domain that intends to improve abstractions for user applica-
tions. We envision a description language friendly to the domain and designated
for a particular purpose. As the parallelism annotation layer is more general
purpose supporting stream parallelism, we expect that an application’s DSL
compiler will generate robust C++ codes along with SPar annotations to enable
high-performance. Thus, an example and a vertical validation of our perspective
were created through GMaVis DSL [Led16]. Our initial goal was to support
users in geospatial data visualizations while taking advantage of the multi-core
architectures for fast processing and visualization of information.

With respect to Figure 3.1, this dissertation will make direct contributions to

the DSL generation engine and parallelism annotation domains. However, indirect

contributions will also be made by the use case in the application domain, where

GMaVis instantiates SPar to annotate the generated C+-+ code to take advantage
of multi-core parallelism. It is expected that new contributions similar to GMaVis

can be developed by improving current developed solutions (SPar and CINCLE) as

well as expanding the support and customization space. The following sections will

informally describe our desired contributions.

3.3. A Compiler-Based Infrastructure 45

A Compiler-Based Infrastructure

First of all, “Why are you providing a new compiler-based infrastructure in C4-+7"
Simply put, compiler-based tools are not new in the literature. The problem is that they
lack simplicity and do not support the implementation of aggressive source-to-source
transformations.

“And what do you mean by simplicity?” To make it easy to develop new DSLs
that require compiler-based techniques to provide a high-level and productive interface.
The current solutions do not offer a simple infrastructure to enable rapid prototyping
and require a significant learning curve to understand internal compiler implementation.
Another difficulty is that parsing the code is not easy because internal ASTs usually
are not standardized.

“What do you mean by not supporting aggressive source-to-source transforma-
tion?” Not being able to use state-of-the-art tools to perform transformation directly
on the AST. This feature is crucial when you are designing a tool that aims to perform
sophisticated source-to-source transformations. For example, when using a string
based technique (such as in Clang), you may have to re-parse your code several times
to come to the final transformation, while in AST you may implement it directly in
the tree.

“Why did you decide to build CINCLE?” This idea arose when we faced many
difficulties trying to prototype the DSL. During the last five years, we have been
intensively researching to provide high-level and productive parallelism. Our first DSL
compiler was manually implemented because it was simpler and faster to prototype
rather than using standard tools like Flex and Bison. The problem was that it lacked
modularity, the ability to add new functionalities to perform sophisticated analysis
and code generations. Later, we started to look for alternatives to integrate a C++
DSL directly into the GCC compiler. We found the same problems when we discovered
GCC plugins. Also, there was poor documentation, no support for aggressive code
transformations, no standard AST syntax, and other issues. We then tried to use Clang,
but the only advantage with respect to the GCC plugin was better documentation
and support to integrate DSLs. Consequently, we decided to design CINCLE to create
a simpler environment for creating C++ DSLs, provide more modularity, and support
AST to AST transformations.

“How do you describe CINCLE?” We see CINCLE as its abbreviation states: A
Compiler Infrastructure for New C/C++ Language Extensions. Of course, we cannot
compare it with the state-of-the-art compiler tools because it does not go into machine
code. Our goal is to focus on language design and source-to-source transformation.
Thus, CINCLE can be understood as a set of tools that are suitable for building C++

46 3. Overview of the Contributions

embedded DSLs mainly because this dissertation is focused on enabling high-level and

productive stream parallelism.

“How does CINCLE target modularity and other goals?” Figure 3.2 sketches the
compiler-based infrastructure. We separated it into three domains: Front-End, Middle-
End, and Back-End. Modularity isolates this compiler to let other people collaborate
with the improvement of CINCLE and generate tools to support the implementation
of new features. Also, the programmer does not need to deal with low-level compiler
aspects relative to the design when building an embedded DSL. Therefore, we created
a tool for source-to-source transformation so that the programmer can concentrate only
on the aspects that correspond to their domain. For instance, Front-End generates a
sophisticated parser to build an AST, while Middle-End and Back-End only deal with
AST visiting and transforming.

" iazAjeuy 15y

Jauliogsuel] 1Sy

Transformation
v
Assemble

Semantic
V
Optimization

Scanner
v
Parser

|

Joje|ndiuely 1Sy
Jojelausn apo)

12393y ++2
Joyaudimul 9pod
_Jo3eleusy 1Sy

Front-End Middle-End Back-End

Figure 3.2: The CINCLE Infrastructure

“Is CINCLE ready for robust systems?” Not yet. We recommend CINCLE for
research. It can be used to validate the algorithms for source-to-source transformation
as well as generating an experimental DSL compiler. Unfortunately, we do not have a
team/group working on the code. We still need to test and make complex validations
on the Front-End part that implements the latest standard C and C++ grammars.
Currently, CINCLE has been demonstrated to be sufficient to build a DSL for stream
parallelism.

High-Level and Productive Stream Parallelism

“What is high-level and productive stream parallelism?” High-level is a general term
and has been used for different levels of abstractions. In this dissertation, high-level
refers to parallelism abstractions that are only related to domain terms and prevent
users from being aware of the parallel architecture details. It allows users to avoid
rewriting the source code of the application and reduces the programming effort

required to support parallelism.

“What did we use to make it possible?” We believe that parallelism should
be annotated in C++ programs rather than exploited or expressed as has been
done during recent years. Pragma-based annotations have been well accepted in the

3.5. Introducing Code Portability for Multi-Core and Clusters 47

high-performance computing community through OpenMP, which is the “de-facto”
standard parallel programming interface for exploring parallelism in shared memory
systems. However, when we look at the level of language design, they are not in
the standard grammar because they are preprocessing directives. In turn, they are
strongly compiler-dependent when developing a DSL. In contrast, we adopted the
C++11 attributes mechanism that is part of the language grammar and more familiar
to the C++ community, because the “de-facto” C++ standard. Also, it provides us
more freedom to be compliant with the language syntax since it can be customized,
placed almost anywhere in C++ sentences, and associated with the AST. Finally,
we concentrated on a particular domain to elevate abstraction and cover the lack of
productivity in stream parallelism.

“What is lacking in the literature for stream parallelism?” Many things concern-
ing high-level abstraction and coding productivity are missing. For instance, current
parallel programming interfaces that support the parallelization of stream-oriented
computations are still architecture-dependent and lack code productivity (e.g., TBB
and FastFlow). Programmers have to modify their source code to exploit parallelism.
On the other hand, general-purpose programming interfaces like OpenMP are made
for implementing low-level parallelism exploitation. Yet, they are only productive
when there is an embarrassingly parallel computation.

“How do you address this?” We proposed a DSL that is called SPar for solving
this problem in the stream domain. It seeks to keep maintain the original source
code by only introducing annotations. The DSL also targets code portability through
recompilation of the program.

Introducing Code Portability for Multi-Core and Clusters

“Why is code portability important?” It allows us to be more productive since you do
not need to rethink or rewrite the SPar code that is running on a particular parallel
architecture to port it to another one.

“What is the problem?” The problem is that state-of-the-art parallel program-
ming tools are still too low-level and are designed to support high-performance code
that is strongly architecture-dependent. Consequently, code must be rewritten and par-
allelism strategies have to be rethought in order to continue providing high-performance
code in case the application needs more performance or vice versa.

“Does code portability make sense in our current scenario?” It does to us. It
may sound a little bit strange as we are proposing this for multi-core and clusters,
which sometimes are associated with dedicated supercomputer centers. However, there

48 3. Overview of the Contributions

are other parallel architectures and in the future will be more heterogeneous parallel
architectures (more domain-specific) that will certainly demand studies to provide code
portability with high-performance code. Also, it makes sense because many stream
applications may need an elastic performance to address different workloads. If code
portability is possible in a simple way, you may use it to save energy and money when
switching between the cluster and multi-core environments.

“How do we intend to introduce parallel code portability?” Now we need to
be realistic. We lack portability because it is a very complex goal. Therefore, we
introduce the challenge through generalized transformation rules along with a stream-
oriented and annotation-based interface. The decoupling “de-facto” implementing the
portability is mainly the level of the patterns. Our contributions to the state-of-the-art
are the transformation rules translating SPar annotations to parallel patterns. We
have made them independent of the target architecture so that the same code can be
compiled again to produce another code for another architecture.

CINCLE: A COMPILER
INFRASTRUCTURE FOR NEW C/CH+
LANGUAGE EXTENSIONS

This chapter presents a compiler infrastructure for generating new C/C++ embedded
DSLs. It is not a compiler, but a support tool that provides basic features and a simple
interface to enable AST transformations, semantic analysis and source-to-source code
generation. The main goal is to simplify the processes of creating high-level parallelism
abstractions by using the standard C++11 attribute mechanism.

Contents
4.1 Introduction 50
4.2 Original Contribution 51
4.3 Implementation Design Goals 52
4.4 The CINCLE Infrastructure 54
4.5 CINCLE Front-End00, 55
4.6 CINCLE Middle-End 56
4.7 CINCLE Back-End 000000, 57
4.8 Supporting New Language Extensions 59
49 RealUse Cases« v v v v v v v i bt it e et e e 60

4.10 SUMINATY « v v v v v v v v v v e v v e e e e e e e e e e e e e e e 63

4. CINCLE: A Compiler Infrastructure for New C/C++ Language
50 Extensions

VSN [ntroduction

C++ language extensions and DSL design and implementation are a challenge for a
single person or a typical research group due to the amount of work and knowledge
necessary to prototype compiler-based abstractions with the current alternatives.
From our experience in the last five years as well as the opinion of other scientists (as
presented in the related work), the implementation of DSLs in compiler-based tools is
difficult, complicated and usually requires a significant learning curve, which is even
more difficult for those who are not familiar with this area.

The motivation is therefore to simplify this path for other researchers (experts in
their domain) to implement high-level and productive interfaces with powerful and ag-
gressive source-to-source transformations. Our idea is that they can use their expertise
without having to enter low-level code and still provide an abstraction to their domain,
mainly for the parallel computing area. Despite the fact that the activities needed
for efficient parallelism exploitation also require significant expertise and represent a
notable challenge for people from other areas of computer science, our infrastructure
is an initiative to support experts in parallel programming while providing high-level
parallelism. Moreover, from the perspective of the programming framework, current
parallel programming environments are still on the level of parallelism exploitation,
which are good runtimes for high-level abstractions.

In order to move towards a mechanism to provide parallelism abstractions, the
C++11 attributes already present in the standard grammar have been proven to be
suitable for supporting powerful code transformations [I[SO11b, ISO14]. Attribute
recognition along with the other sentences in an AST (Abstract Syntax Tree) are one of
the central motivations for their usage. Moreover, the syntax is also integrated into the
language, unlike other annotation alternatives such as C pragmas that are rather than
preprocessing directives. Thus, to benefit from C' pragma features for implementing
parallelism abstractions, the runtimes have been integrated directly into the compiler
system. As a consequence, to create new features and conduct experiments, one has
to fully understand the compiler internals.

For instance, the implementation of new pragmas in GCC is done by using GCC
plugins. Although this approach abstracts many compiler complexities, it still requires
users to go into compiler source code. The same difficulty arises when using GCC
plugins for registering C++ attributes. In addition, C++ attributes are placed on
GCC AST as C attributes and transformations on the AST are not allowed during
the plugin call back. Another problem of GCC is that the provided AST is modified
during the callback, which loses parts of the original semantics of the C and C++

4.2. Original Contribution 51

grammar'. Such limitations make it even harder to benefit from C++ annotations
to provide a higher level programming interface directly on the GCC, reinforcing the
need for a tool such as CINCLE.

Although Clang, Cetus, and ROSE share common characteristics with CINCLE,
they were built for different purposes and do not support particular features necessary
for the programming framework developed within this thesis. In particular, we need
AST to AST transformations, C++11 attributes in the AST as specified in the ISO
standard as well as the possibility for generating new language extension to support
embedded DSLs. This chapter will present our original contributions, implementation
design goals, CINCLE infrastructure and simple algorithms as well as examples to
start a new project. Lastly, we will present some performance results and use cases.

WA Original Contribution

One of our contributions with respect to the state-of-the-art compiler-based tools
consists in a parser of C++ standard grammar (ISO/IEC 14882:2014 and 9899:2011)
[ISO11b, ISO14]. Although in principle there is no scientific innovation when using
standard tools like Bison and Flex, it nonetheless provides a simple interface for
supporting the implementation of new embedded C++ DSLs.

The parser implementation was particularly designed to support us in the process
of creating AST from actual C++ code. While building a full C++ parser is not a
trivial task, the standard compliance and the simple and handy AST representation
we produced, explicitly aimed at supporting AST transformations. Therefore, enabling
source-to-source transformations eventually results in an useful and practical support
for the development of different kind of language extensions, such as the one based on
the standard attributes we designed in this thesis.

In contrast to the state-of-the-art C++ tools, our infrastructure is created to
provide full access to AST. It gives more power to the user for transforming and
visiting ASTs. The advantage is that there is no need to go inside the source code
to make string transformations that can require re-parsing source code several times
and a huge amount of programming. CINCLE also provides several useful methods
that make it easier to many different activities such as: generating a new AST from a
string; check AST transformations; tree operations (insert, delete and replace) and
visualization.

IGCC makes such modifications more friendly with the intermediate language which is known as
GIMPLE.

52

4. CINCLE: A Compiler Infrastructure for New C/C++ Language
Extensions

Finally, CINCLE can generate again C++ code from the AST. This contribution

is fundamental because it proves to be effective for source-to-source translation.

Implementation Design Goals

There are various important non functional concerns when creating a new solution for

the scientific community such as performance, efficiency and portability. For the first

version of our compiler infrastructure, they are not considered first class requirements
to simplify tests and validations. However, this does not mean that during CINCLE’s

implementation necessary attention was not given to these concerns or that some

internal design choices cannot be improved in the future. The main design goals

considered are the following (and they will clarify some of these aspects):

e Modularity: Is an important issue for continuing to research and develop more

sophisticated capabilities and it is necessary to be compliant with domain-
oriented concerns of the thesis framework. Therefore, CINCLE is divided in
three modules: Front-End, Middle-End and Back-End. Also, each one has its
own submodules (see Figure 3.1). For example, this structure allows domain
experts on a low-level compiler (language recognition and parser algorithms) to
work on the Front-End and scientist experts of fast prototype algorithms for
source-to-source transformations can concentrate their efforts on the Back-End.
On the other hand, the Middle-End is a conversation bridge between the front
and Back-End modules as well as a research space for testing semantic and tree
optimization techniques. Since the idea is to support new embedded DSLs, this
modularity lets software designers concentrate only on the semantic analysis and
transformations while the Front-End provides the necessary features such as full
AST access needed to implement new C++ DSLs.

Extensibility: CINCLE offers a basic infrastructure for creating new compiler-
based tools. For example, in addition to extending DSLs, it enables the creation
of pattern matching, code auto-tuning, code analysis, tracing, and other tools
that can be a solution for C/C++ language. To achieve such extensibility,
CINCLE provides full access to AST and all modules of the infrastructure. The
environment must also be modular so that the extension of new capabilities on a
given designed tool will not affect the performance and system operation on the
rest of the system. Moreover, compliance with the standard language grammar
prevents misunderstanding and supports contributions from other research to
continue empowering and extending the tool’s capabilities.

Standard Grammar Compliance: Is an important aspect because it affects other
design goals. It impacts simplicity because people may have to deal with

4.3.

Implementation Design Goals 53

non-standard terms and concepts, which requires learning new terminology.
It increases the system extensibility by covering a wider community that can
contribute to improvements for the tool. One may have difficulties in the fast
prototyping of some code transformation rules if the AST does not address
the standard grammar. Similar to previous drawbacks, the lack of standard
compliance makes it difficult for other researchers to reuse algorithms and parts
of their software experiments. As a consequence, CINCLE’s infrastructure is
designed to preserve the representation of the standard grammar in the AST as
much as possible and changes are only made when there are conflicts between C
and C++ grammars.

Simplicity: CINCLE aims to make the creation of annotation-based DSLs easier.
Achieving other main design goals will provide a simpler programming environ-
ment for the infrastructure. However, CINCLE simplifies aims by supporting
direct AST transformations, the storage of relevant code information on AST
nodes, easy recursive top-down and bottom-up tree navigation, and a set of API
functions for recurrent actions in the AST. Thus, the rapid prototyping design
goal can benefit from simplicity because it reduces the amount of code needed.

Reusability: Is more than providing reusable features such as API and the
infrastructure code for generating new language extensions. The idea is to reuse
other consolidated software to simplify CINCLE’s implementation. For example,
reusing the GCC compiler for performing source code syntax and semantic
analysis. CINCLE avoids complex semantic and syntax analysis implementations.
Moreover, consolidated libraries and tools are integrated to provide more suitable
features, e.g., AST visualization, which helps users to learn more about the AST.

Rapid Prototyping Support: Is very difficult to achieve in other related tools.
This was an important goal when we began initial and experimental research on
language design and source-to-source code transformation. The central point is
to be simple enough to test new algorithms before starting to actually implement
the final solution. CINCLE’s infrastructure intends to automatically integrate
custom C++11 attributes, placing them along with other C++ sentences on the
AST. Since one is creating a new DSL, they will be aware of the semantics of its
annotations. Thus, for the fast prototyping of the transformation rules, one only
needs to concentrate on implementing the transformation rules by parsing the
AST, instead of doing other pre-implementations or adaptations which must be
done when using other tools.

4. CINCLE: A Compiler Infrastructure for New C/C++ Language
54 Extensions

YWl '[he CINCLE Infrastructure

CINCLE attempts to provide the most modular environment for creating new language
extensions as possible. Figure 4.1 demonstrates how the infrastructure is organized,
where the Front-End is split in two separate modules. The engine Front-End is where
CINCLE implements language recognition and parsing, and creates a representation of
the source on the AST. On the other hand, the Front-End interface provides a set of
capabilities for the DSL creator to perform transformations on the AST and customize
additional features.

Middle-end and Back-End are merged in a single group as they are provided
to the DSL creators, supported through a set of template modules. Each one has
a CINCLE internal routine that will be called during the compilation according to
the sequence illustrated in Figure 3.2. The engine subsequently loads the interface
Front-End, Middle-End and eventually the Back-End modules.

Front-End (engine)

core

scanner parser builder

Front-End (interface)

including/ developing

~
~—_
-~
~
~.

~
V | N\ - - // \\ ~~_F
s | AN
7 | N / \
e N i / \ _
node " | N internals assemble . Y transformation
. - -
- | - y _ayl
p H _ayl
S = ¢ L@ L&
interpreter s:) visualization optimization semantics

preprocessor

Figure 4.1: The environment of CINCLE infrastructure.

As it can be noted, CINCLE provides an entire infrastructure dedicated for
creating embedded C++ annotation-based DSLs. The only parts that have to be
implemented by the DSL creator are the modules inside the Middle-End and Back-End
group. The following sections will describe how the system was designed, demonstrating
how to deal with AST and code transformations through basic examples.

4.5. CINCLE Front-End 55

"%y CINCLE Front-End

The frond-end engine was implemented using Flex and Bison tools [Lev09]. They were
used to generate the parser and build the CINCLE AST. To deal with the grammar
ambiguities of the C++ language, the Generalized Left Righ (GLR) algorithm was
implemented by Bison. The tokens were recognized in the Flex runtime and integrated
with Bison. CINCLE also stores preprocessing directives on the AST as a single token
and comments are simply ignored.

On the other hand, the Front-End interface provides already implemented
modules to deal with node representation, internals AST operations, code interpretation,
preprocessing and AST visualization. These modules are instantiated by the engine
modules and can also be used when developing Middle-End and Back-End modules.
The interface simplifies AST manipulation and the implementation of source-to-source
code transformation.

The AST plays an important role in source-to-source transformations. It is
created by the parser at compile time, representing all tokens according to the standard
grammar specifications [I[SO11b, ISO14]. In CINCLE, a node is fulfilled with the
information illustrated in Figure 4.2. Therefore, each node of the tree will have its type
identified through a constant, which is also the name used in the standard grammar.
When the token is a literal or identifier, its content will be stored on the AST node.
Information about the token location are also stored, such as the coordinates of its
position in the source code. Finally, there is a pointer to its father (node__up) and to
a list of child nodes (node__down), also storing the number of children (childs_ n).

type
node_down content
nod start_line
ode_up tree node
start_column
end_column
childs_n end_line

Figure 4.2: CINCLE AST node.

Figure 4.3 illustrates how tree nodes are connected on the AST. Each node can
visit its father and child nodes through the dedicated pointer, simplifying the tree

4. CINCLE: A Compiler Infrastructure for New C/C++ Language
56 Extensions

navigation and access to information. Also, the tree is created from left to right and
there is no limit to the number of child nodes.

node_up
type
childs_n
node_down
e AN
/ N\
/ N\
Ve AN
/ AN
node_up ¥ N node_up
type type
childs_n childs_n
node_down node_down
7 N / kN
/ \ / N
/ \ / \
node_up node_up node_up node_up
type type type type
childs_n childs_n childs_n childs_n
node_down node_down node_down node_down

Figure 4.3: CINCLE AST representation.

CINCLE Middle-End

To implement a new language extension, users may have to implement the CINCLE
Middle-End modules. Semantic analysis and AST optimizations are not necessary to
perform source-to-source transformations, therefore this is an optional implementation.
The top-down tree navigation can be implemented using recursive functions (see
Algorithm 1) based on how the AST is built in the CINCLE environment. Searching
for a node type is a recurrent operation on all Middle-End and Back-End modules
when creating a DSL on the infrastructure’s environment (Figure 4.1). All algorithms
presented in this section are used to demonstrate how to manipulate the AST.

In principle, the top-down search algorithm should not be difficult to implement
through a recursive function. One way to implement it is an Algorithm 1, where it first
checks if the node is the type that intends to be searched. Second, it uses a loop for
navigating into the node child list, making a recursive call to each one of the children
and testing whether the returned node is the type that intends to be searched. Finally,
if the node was unsearchable, the function will return an empty value.

Another way to navigate on the tree is bottom-up. Again, it is possible to
implement this using a recursive function such as presented in Algorithm 2. Such an
algorithm needs to first check if it is an empty node because it could be the case the
root node has no father. Second, we can test if it is the node type that intends to

W N =

N o vk

N =

4.7. CINCLE Back-End 57

Algorithm 1: Recursive top-down navigation to search for a node type.

Function TopDownSearch (node,type)
if node is type then
| return node;

for all node child 7 do
nodex < TopDownSearch(node child i,type);
if nodex is type then
‘ return nodex;

return empty;

be found. Finally, we return the function call passing as an argument to the current
node’s father, since the node has a pointer to its father.

Algorithm 2: Recursive bottom-up navigation to search for a node type.

Function BottomUpSearch (node,type)
if node is empty then
L return empty;

else if node is type then
L return node;

return BottomUpSearch(node father,type);

When semantic analysis is needed, one has to traverse the whole AST. Algorithm
3 provides an example for traversing the CINCLE AST recursively to perform an
analysis. Assuming that a function will receive the tree root node as an argument, the
algorithm can implement a top-down navigation. Thus, inside the function, first we
have to check if the node is one of those intended to be analyzed. Then, if it is the
node type, we can apply another recursive function, using bottom-up and top-down
navigation. Second, we have to call the function for each one of the child nodes and
test whether it is a semantic error. Finally, if no error was found during this process,
the function will return true.

‘@ CINCLE Back-End

In the CINCLE Back-End, there are two modules: transformation and assemble. By
default, the assemble module calls the GCC compiler to generate source-to-binary.
However, one can simply integrate their favorite compiler or manually assemble
transformed source-to-source code. To illustrate how the transformation can be done
directly on CINCLE’s AST, a basic example of pattern matching is given in Algorithm

4. CINCLE: A Compiler Infrastructure for New C/C++ Language
58 Extensions

Algorithm 3: Traversing recursively for performing semantic analysis.

1 Function TraverseSemantic (root,type)
2 if root is type then

3 if analyze(root) is false then

4 L return false;

for i «— 0 to number of root child do
if TraverseSemantic(root child i,type) is false then
7 L return false;

8 return true;

4 and its corresponding real implementation for the transformation module in Listing
4.1.

This function follows the same recursive logical implementation to traverse the
entire AST. In the example, the goal is to transform all integer tokens into character
tokens. The implementation is also very simple for the real code implementation. We
only need a recursive call, node type checking and a token replacement.

Algorithm 4: A simple example for pattern matching transformation.

[y

Function Convertlnteger (root,type)

2 if root is integer then

3 ‘7 root <— type;

4 for i +— 0 to number of root child do
5 ‘7 ConvertlInteger(root child i,type);

void transform__int_token(cincle ::node #*root_node, int token){
if (root_node—>type = NODE_TYPE_int_token){
root_node—>type = token;

}

for (int i = 0; i < root_node—>childs_n; ++i){
transform__int_ token (root_node—>node_down[i], token);

}

}

Listing 4.1: The real C++ code implemented form Algorithm 4 on CINCLE.

Another alternative for generating source-to-source code on CINCLE’s AST is
to use a pretty printer. One way for implementing in the transformation module is to
use a recursive traverse function such as that presented in Algorithm 5. The printable
nodes are tokens, identifiers and literals, which are terminal nodes. Then, during the
recursive operation a check has to be done before printing the node content. Finally,
as in the previous algorithms, it is simple for one to perform AST or pretty print
transformations using the CINCLE infrastructure.

1
2
3

S~

4.8. Supporting New Language Extensions 59

Algorithm 5: Generating code recursively from AST.

Function TraversePrettyPrint (node)
if node is token or identifier or literal then
| print node content;

for i < 0 to number of node child do
L TraversePrettyPrint(node child i,type);

Supporting New Language Extensions

In addition to the infrastructure available to build new language extensions, CINCLE
also offers important features such as a set of APIs to manipulate the AST and generate
tree visualizations. Basic and useful routines are described in Table 4.1. These routines
were developed based on the previous algorithm examples.

Routines Description

insert_node_before(...) inserts a given node before another one

insert_node_after(...) inserts a given node after another one

replace_node(...) replaces a given node by another one

return_node_string(...) returns as a string the content of nodes like tokens,
identifier and literals

return_tree(...) returns a AST from a given piece of C/C++ code

delete_tree(...) erases a given tree node

verify_tree_structure(...) checks if the tree is correct accordingly the C/C++ gram-
mar

generate_visualization(...) | generates a visualization to a given tree node

return_decl_identifier(...) | return the pointer of the declaration node relative to a
given identifier node

return_tree_statement(...) return a tree statement type from a string

return_tree_expression(...) | return a tree expression type from a string

Table 4.1: Basic API functions.

The generate_visualization routine can be applied to specific AST nodes,
since it is called inside Middle-End and Back-End modules. It is used to quickly identify
how to navigate on the AST for specific sentences as well as where the transformations
should be performed. Also, it can be used to debug AST user transformations because
after load Front-End modules no more analysis is performed on the tree and the users
must manage their actions. The CINCLE APIs avoid incorrect transformations because
they check the node types before making an operation. Although AST provides much
more power to the DSL creator, one must be very careful when manipulating the tree
because these operations are dangerous and may affect the correctness of the produced
source code.

4. CINCLE: A Compiler Infrastructure for New C/C++ Language
60 Extensions

Two code examples (Listing 4.2 and 4.3) are used to illustrate how CINCLE
produces an AST and the minimal changes performed on the grammar allowing for
C and C++ attributes. There are preprocessing directives in the grammar, headers,
defines, and pragmas . However, CINCLE was designed to recognize them because
when generating source-to-source code they are important to maintain the correctness
of the original code. Also, another important modification to the original grammar
was to separate what is a C++ and a C attribute. As mentioned in Section 4.1, in the
GCC compiler they are treated as the same thing, which makes no sense because C
attributes are grammatically and syntactically different.

#include <stdio .h> #include <stdio.h>
int main () { [[test]] int main(){

} }

Listing 4.2: Code example for Listing 4.3: Code example using
AST visualization. C++ attribute.

When generating the AST visualization from Listing 4.2 and 4.3, we get repre-
sentations as demonstrated in Figure 4.4(a) and 4.4(b), respectively. These examples
were intentional in order to observe and highlight the pictures. These highlights are in
red, whereas terminator nodes are represented in orange and intermediate nodes in
blue. Also, each node has a number that identifies its creation order and their names
are the same as the standard grammar describes.

This visualization generation uses protovis library' and produces a JSON file.
The user can simply “open/close” (expand/collapse) nodes and there is an identification
of the visualization tree that is given as an argument in the routine (not present in
the pictures), enabling one to navigate between different tree visualizations.

Real Use Cases

7

In order to give an idea of the infrastructure’s efficiency, we generated an “empty
compiler to perform tests and provide results. Consequently, this compiler only
stresses the five compilation phases, which are check C++, code interpretation, AST
verification, code generation and code assemble. First, it will call the GNU GCC
compiler to check C++ code semantics and syntax (invoke the compiler so that it
stops before assembling the code). Second, the source code is parsed and an AST is

ihttp:/ /mbostock.github.io/protovis/

4.9. Real Use Cases

61

O root
(© 00001_translation_unit
©00002_declaration_seq
© 00003_declaration

© 00004 _preprocessing_file
@ 00005_header_declaration
© 00006_declaration
© 00007_function_definition
©00008_decl_specifier_seq
© 00009_decl_specifier
© 00010_type_specifier
© 00011 _trailing_type_specifier

©00012_simple_type_specifier
@ 00013 _int_token
©00014_declarator
© 00015 _ptr_declarator
© 00016_noptr_declarator
©00017_noptr_declarator
©00018_declarator_id
© 00019 _id_expression
© 00020_unqualified_id
@ 00021 _identifier
© 00022 _parameters_and_qualifiers
© 00023_op_token
@ 00024_parameter_declaration_clause
@ 00025_cp_token
© 00026_function_body
© 00027_compound_statement
@ 00028 _obraces_token
@ 00029 _cbraces_token

(a) Tree visualization of Listing 4.2.

Qroot
© 00001 _translation_unit
) 00002_declaration_seq
© 00003 _declaration

Q00004 _preprocessing_file
@ 00005_header_declaration
) 00006 _declaration
© 00007 _function_definition
©00008_attribute_specifier_seq
IO 00009 _cpp_attribute_specifier_seq I
© 00010 _attribute specifier
@ 00011 _|bracket_token
@ 00012_|bracket_token
© 00013_attribute_list
© 00014 _attribute
00015 _attribute_token
@ 00016 _identifier
@ 00017 _rbracket_token
@ 00018 _rbracket_token
©00019_decl_specifier_seq
© 00020_decl_specifier
© 00021 _type_specifier
© 00022 _trailing_type_specifier
© 00023 _simple_type_specifier
@00024_int_token

©00025_declarator
© 00026_ptr_declarator
© 00027 _noptr_declarator
© 00028_noptr_declarator
©00029_declarator_id
00030 _id_expression
© 00031 _unqualified_id
@ 00032 _identifier
© 00033_parameters_and_qualifiers
@ 00034 _op_token
@ 00035_parameter_declaration_clause
@ 00036_cp_token
©00037_function_body
© 00038_compound_statement
@ 00039 _obraces_token
@ 00040 _cbraces_token

(b) Tree visualization of Listing 4.3.

Figure 4.4: AST visualizations.

built (it invokes the Front-End implementation that uses Flex and Bison tools). Third,
the compiler verifies if the AST was created correctly (calling a function that tests the
correctness of the child nodes). Fourth, we generate from the AST C++ code (it is
a simple pretty-printer function). Finally, we call the GNU GCC compiler again to

assemble the code.

Figure 4.5 presents a performance comparison among GNU GCC, CINCLE
and Clang compilers. We benchmarked a set of simple applications that can test

distinct C++ constructions and grammar ambiguities .

The graph presents the

i Almost all the source code are taken from http://users.cis.fiv.edu/ weiss/adspc++2/code/, except
the SimpleRNG from http://www.johndcook.com/blog/cpp_random_ number_generation/

=== CINCLE

G+

mmmm Clang++

Extensions

Code Assemble(GNU GCC)

Code Generation
AST Verification

=xzz1 Code Interpretation
— Check C++(GNU GCC)

Comparison among CINCLE, G-++ and Clang++

A Compiler Infrastructure for New C/C++ Language

4. CINCLE

CINCLE Phases

Performance comparison (machine with SSD hard drive).

Figure 4.5

1200
1000

Clang performed the best, while Clang and GCC achieved a significant completion
time differently with respect to CINCLE. The reason is that CINCLE calls the GCC

bars, and the application names along with the size in bytes in the X axis. As expected,
compiler twice. Figure 4.6 explains this more clearly.

completion time on the Y axis, the standard deviation of 10 executions through error

62

Q
3
3

(sw) awiy uonnosxgy

[E101 JO %

Only SPar compiler performance (machine with SSD hard drive).

The graph in Figure 4.6 presents the total percentage relative to the completion

time for each one of the CINCLE compilation phases. In general, results of check C++

Figure 4.6
and code assemble phases are expected since both call the GNU GCC compiler. Among

the actual CINCLE phases, the check of AST correctness requires the greatest amount

4.10. Summary 63

of time as well as the code generation. Finally, little time is needed for interpreting
the code during the AST creation. Therefore, we can conclude that CINCLE does not
add significant overhead to the program compilation.

Other tests were made by compiling a set of applications that will be used later
for the SPar DSL evaluation, which was built on top of CINCLE infrastructure. We
summarized the amount of AST nodes necessary to represent the source code versions
on Table 4.2. It is important to highlight that the OpenMP version needs fewer
nodes than SPar because pragma annotations are placed on the tree as a single node
(they are similarly placed as a header declaration node highlighted in Figure 4.4(a)).
Consequently, this is one clear example showing the difference of preprocessing directive
compared to attributes that are placed along with the standard C++ grammar. While
pragmas are seen as a single string, attributes are represented as a tree.

App. Seq. SPar OpenMP FastFlow TBB
Filter Sobel (pipe) 21933 | 22244 (22533) | 21957 (21965) | 23417 (24768) | 24113 (25511)
Video OpenCV 4808 5151 n.a. 6354 6910
Mandelbrot Set 4890 5376 5037 8563 7702
Prime Number (loop) | 5391 5676 5394 6782 (5772) 7463 (5868)
K-Means 9901 10073 9910 10100 10045

Table 4.2: Statistics of CINCLE (number of nodes on the AST).

Summary

In this chapter, we introduced CINCLE, a new compiler-based infrastructure for
generating a C++ internal DSL. We demonstrated its contributions to the state-of-
the-art tools such as AST to AST transformations and AST compliance with the
standard C++ grammar. Also, through small algorithm examples, it was possible to
illustrate the simplicity and other essential features of modularity, extensibility and
rapid prototyping.

Moreover, we presented a set of features to support DSL designers performing
AST transformations by using API functions and AST visualization. During the
presentation of CINCLE, we discussed several algorithms for navigation and transfor-
mation, where simple pattern matching requires just a few lines of code. Real use cases
were also provided to demonstrate the efficiency and representativity of CINCLE. Its
robustness will be seen in the next chapters through the implementation of the SPar
compiler, which makes a source-to-source transformation to support high-performance
code.

SPAR: AN EMBEDDED C+-+4+ DSL FOR
STREAM PARALLELISM

This chapter presents an embedded C++ DSL for stream parallelism. SPar was built
using the standard C++ annotation mechanism and CINCLE infrastructure. The
goal is to provide high-level parallelism abstraction aiming for coding productivity in
streaming applications. A secondary goal is to be architecture-independent, using the
same interface to provide code portability.

Contents
5.1 Introduction, 66
5.2 Original Contributions 67
53 Design Goals i it 67
5.4 SPar DSL: Syntax and Semantics 69
5.4.1 ToStream 69
5.4.2 Stage 71
5.4.3 Input 72
5.4.4 Output 72
5.4.5 Replicate 73
5.5 Methodology Schema: How to Annotate 74
5.6 Examples and Good Practices 75
5.7 SPar Compiler i i i i i i ittt 81
5.8 SParInternals, 82
5.9 Annotation Statistics on Real Use Cases 83

5.10 SUMMATY .+« v v v v v v vt e e e e e e e e e e e e e e e e e e 84

66 5. SPar: an Embedded C++4 DSL for Stream Parallelism

Introduction

Stream-based applications represent several programs including video, networking,
audio, graphics processing, etc. Such programs may run on different kind of paral-
lel architectures (desktop, servers, cell phones, and supercomputers) and represent
significant workloads on our current computing systems. However, most of them
are still not parallelized, and when a new one has to be developed, programmers
have to face a trade-off between coding productivity, coding portability, and perfor-
mance. Unfortunately, the only suitable solutions to achieve efficient programs increase
programming effort, mainly source code rewriting and porting an application across
different architectures without modifying it (for example, a new compilation is needed
to take advantage of parallelism). In fact, parallel programming is still too low level
and complex, reserved just for experts in high-performance computing.

To solve this trade-off, we are providing a new DSL for stream parallelism aimed
to naturally/on-the-fly represent parallelism in stream-based applications that are
prevalent on our computing systems. The idea is to offer a set of attributes in an
annotation manner that preserves the source code of the program. In general, such
applications compute a sequence of distinct activities (stages) over the stream, where
each activity consumes (input) a stream element, computes, and produces another
one (output). This structure can be viewed as a graph of independent activities with
explicit communications and contiguous flow. Representing the computation in such
a way enables one to identify situations where it is possible to duplicate (replicate)
stateless operations since they can process different stream elements [TA10, ADKT14].
As a consequence, stream programs may fit on coarse- and fine-grained parallelism,
which is suitable for multi-core and cluster architectures. Thus, the stream properties
motivated us to present parallelism abstractions in a straightforward manner as well
as in generalized terms to achieve code portability and coding productivity through
annotations.

In this chapter, we will first describe our original contribution in respect to the
state-of-the-art. Second, our design goals and fundamental implementation choices will
be presented. Third, we will formally describe the attributes of the DSL along with
standard C+-+ grammar. Then, we create a methodology for guiding the developers
during the code annotation. After this, how to annotate using our method as well
as good practices for achieving efficient programs will be taught through examples.
Next we describe the compiler implementation in a nutshell. Then, the internal
representation of the attributes to be used for source-to-source code transformation is
given. Finally, a statistic of the attributes in real use cases highlights the simplicity of
this DSL.

5.2. Original Contributions 67

Original Contributions

One of the original contributions of this thesis is the design of standard attributes that
can eventually be adopted in the standard language for annotating stream parallelism.
Even though C++11 attributes have been available in the grammar since 2011, to the
best of our knowledge, we are the first to introduce stream parallelism by using this
mechanism as a DSL.

Our second contribution is to provide a methodology to help users to easily
find and annotate parallelism. This plays an important role as it gives a set of steps
(questions) to guide the programmer. Consequently, supported by such a methodology,
developers may simply concentrate on application specific features to annotate the
most efficient parallel solution.

Another contribution is that we provide a compiler able to parse these attributes
and perform the relative semantic analysis. This allows the user to simply compile the
program to produce a parallel code for multi-core or cluster, which is another contri-
bution of this thesis, described in Chapter 6. Moreover, the compiler implementation
is also a contribution to prove CINCLE’s robustness and efficiency.

Finally, to the best of our knowledge, we are the first in providing a high-
level interface for stream parallelism that preserves the sequential source code. We
also contribute to provide these attributes without being dependent on actual target
architecture features, which is not usually the case when using state-of-the-art tools.

Wl Design Goals

SPar’s design goals are described in these sections to justify the design choices and
principles of the present research. In general, they are greater than those possibly
achieved by the thesis as they also include plans for the future of the proposed
framework and programming interface. Accordingly, the main design goals are:

o High-Level Parallelism: SPar targets abstractions that prevent users from dealing
with low-level programming models, hardware-level performance optimizations,
scheduling policies implementation, load balancing, data and task level problem
decomposition, and parallelism strategies. Our goal is to support high-level
parallelism to work at the code annotation level rather than at the actual

'REPARA uses this kind of mechanism in a slightly different way that is not characterized as a
DSL, but as an internal processing of parallelism.

68

5. SPar: an Embedded C++ DSL for Stream Parallelism

exploitation level. When using annotations to exploit parallelism, the user is
simply indicating where there is a potential parallelism. To express parallelism,
the users are required to provide the appropriate parallelism strategy, learn
different programming models, study efficient ways to optimize performance, and
determine scheduling and load balancing implementations. This design goal is a
starting point motivation to achieve code portability and coding productivity
design goal.

Code Portability: It is still a big challenge in parallel computing because the ar-
chitectures require the use of different programming models in order to efficiently
use hardware resources. Thus, a software that was implemented for exploiting
parallelism on multi-core can not be simply used in a cluster architecture (and
vice versa) without using a different programming interface or rewriting the
code in some way. In order to support code portability in SPar, we propose the
creation of a unified stream-oriented interface, believing that it provides proper-
ties that are generic enough to perform automatic parallel code transformations
for both multi-core and clusters architectures. Thus, once the code has been
annotated, no more modifications need to be made for running an application
on different parallel architectures, they must only be recompiled.

Coding Productivity: Is related to programming effort, code rewriting/restruc-
turing and amount of code that a given application needs take advantage of
the architecture parallelism. We benefit from the standard interface and code
portability design goals to provide better coding productivity. For instance,
code portability will avoid code rewriting when running a given software on
different parallel architectures. However, the main aim here is to provide a
small annotation vocabulary, preserving the original sequential source code and
supporting on-the-fly stream parallelism.

Standard Interface: Does not require users to learn a new language syntax. Being
standard compliant with the host language syntax is the main motivation for
using the C++ annotation mechanism (also called C++11 attributes) to build
SPar as an internal DSL. At the implementation level, it is compliant with the
standard and provides suitable advantages with respect to other mechanism
such as pragmas (classified as a preprocessing language) for source-to-source
code transformations, which were previously discussed in Chapter 4. Also, the
C++ standardization allows the proposed research to target a wider community,
since C++ has been used for decades to create robust software infrastructures,
high-performance and critical applications.

Flexibility: Is an important aspect for SPar. The idea is to allow different ways
for annotating stream parallelism as well as alternatives to orchestrate parallel
executions of C++ statements. By default, C++11 attributes are flexible and
we will use them in such a way this flexibility is fully preserved. Consequently,

5.4. SPar DSL: Syntax and Semantics 69

flexibility is in conformity with other goals such as high-level parallelism, coding
productivity and code portability.

e Performance: Is our last priority in the design goal list as we intend to reuse
runtime libraries designed to exploit parallelism that has already been proven
efficient. However, performance is no less important than other properties listed
above and the main concern is to avoid significant performance degradation
while adding high-level abstractions. Therefore, good performance of the DSL
will depend on the transformation rules, runtime library, and the appropriate
usage of SPar annotation for a given application.

SPar DSL: Syntax and Semantics

C++ attributes originated from GNU C attributes (__attribute__((<name>))).
Since C++11 up to the most recent version, a new way to provide annotation was
included in the standard C++ language, namely the [[attr-1ist]] style syntax
[IMWO08, ISO11a]. The syntax of the attributes was improved as well as the interface
to support C++ features. A great advantage over the pragma-based annotation is the
possibility to introduce annotations almost anywhere in a program. However, each
attribute implementation will determine where the different attributes may be actually
used (e.g., to annotate types, classes, code blocks, etc.).

This section introduces the domain-specific language syntax used to meet our
design goals. SPar maintains the standard C++ attributes’ syntax [MWO08] to intro-
duce code annotations. However, limitations are imposed to ensure correct parallel
code transformation. Also, SPar classifies the attribute in identifiers (ID) and auxil-
iary (AUX). Such a distinction was made to provide the appropriate meaning when
annotating the code. In the following, ToStream and Stage are 1D, while the others
will be AUX.

5.4.1| ToStream

The ToStream attribute is intended to be used to denote that a given C++ program
region is going to provide stream parallelism. The DSL grammar for this attribute
uses and extends the same syntax used to describe the grammar in the International
Standard [ISO14]. When possible, standard names are used. To distinguish from the
terms defined and used in the standard, our specific terms will be written in blue from
NOW On.

70 5. SPar: an Embedded C++ DSL for Stream Parallelism

A tostream_ specifier is only used to annotate in front of a compound statement
or iteration statement. Due to the fact that SPar requires that inside an annotated
region must be at least one stage, compound statements and iteration statement
grammar productions are re-defined as follows:

tostream__specifier:
tostream, _attr tostream__compound__statement

tostream__attr tostream_ iteration statement

tostream__compound__statement:
{ tostream__statement }
tostream__iteration_statement:
while (condition) tostream statement
do tostream._ statement while (expression) ;

for (for_init_statement ;) tostream statement

for (for_init_statement ; expression) tostream statement

for (for_init_statement condition ;) tostream statement

for (for_init_statement condition ; expression) tostream statement
for (for_range_ declaration : for_range_initializer) tostream statement

Another modification needed was to characterize tostream statement in such a
way it is possible to define which are the legal syntax entities in a ToStream clause.

tostream__statement:

statement__seq stage specifier seq
stage__specifier _seq

Finally, the clauses relative to tostream. atir may be defined as follows:

tostream__attr:

[[tostream__token]]

[[tostream__token aux__attr list |]
aux__attr list:

, input__specifier

, output_ specifier

, replicate__specifier

, input__specifier , output specifier

, output__specifier , input__specifier

, input__specifier , replicate__specifier

, output__specifier , replicate_specifier

, replicate__specifier , input__specifier

, replicate__specifier , output_specifier

, replicate__specifier | input_specifier , output__specifier
, replicate__specifier , output_specifier , input__specifier

5.4. SPar DSL: Syntax and Semantics 71

, input__specifier , output specifier , replicate_specifier
, output__specifier , input_specifier , replicate__specifier
, input__specifier | replicate__specifier , output _specifier
, output__specifier , replicate_specifier , input__specifier
tostream__token:
tostream__scoped__token
tostream__scoped__token:
attribute__namespace :: ToStream
attribute__namespace:
spar

NOTE: as in the standard grammar, the auxiliary attributes (aux attr list)

are not necessary ordered. Restrictions are only made for ID attributes to identify a
region in the stream parallelism.

5.4.2| Stage

As the name indicates, Stage is used to annotate a phase where operations are
computed over the stream items. If we imagine that we are in an assembly line, Stage
is a workstation in the production line. Inside a ToStream region, SPar supports any
number of Stage. The relative grammar clauses are represented as follows:

stage__specifier _seq:
stage__specifier
stage__specifier stage__specifier _seq
stage__specifier:
stage attr compound__statement
stage _attr iteration__statement
stage__attr:
[[stage_token][]
[[stage__token aux__attr_list J]
stage__token:
stage__scoped__token
stage__scoped__token:
attribute__namespace :: Stage
attribute__namespace:
spar

72 5. SPar: an Embedded C++4 DSL for Stream Parallelism

NOTE: by default ToStream and Stage attributes may have arguments, which
are not supported in current version of SPar.

5.4.3| Input

The Input attribute represents an important property of stream parallelism. In SPar,
the programmer should use this keyword to express the input data format of the
stream for both ID attribute annotations. Its arguments will be parsed to build the
stream of tasks (data items) that will flow inside the ToStream region. Using the
assembly line example, input denotes the items “consumed” by each workstation. The
relative grammar may be described as follows:

input__specifier:
input attr attribute__argument__clause
mput__attr:
input__token
mput__token:
input__scoped_ token
input__scoped__token:
attribute__namespace :: Input
attribute__namespace:
spar

NOTE: Semantically, when using Input attribute at least one argument should
be given. This argument could also be a variable derived from a data type. Literals are
not accepted.

5.4.4| Output

The Owutput attribute also represents another important property of stream parallelism:
the programmer should use it to express the output data format of the stream for both
ID attribute annotations. Its arguments will be used to build the stream that will
flow inside the ToStream region. Using the assembly line example, output is what
ID attribute will produce for the next workstation. The Output grammar clause are
therefore described as follows:

output__specifier:
output _attr attribute__argument__clause

5.4. SPar DSL: Syntax and Semantics 73

output _atir:
output_token
output_token:
output _scoped__token
output__scoped_ token:
attribute__namespace :: Output
attribute__namespace:
spar

NOTE: Semantically, when using Output attribute at least one argument
should be given. This arqument could also be a variable derived from a data type.
Literals are not accepted.

5.4.5| Replicate

The Replicate attribute is used to model another important propriety of stream
parallelism. Again, drawing from the assembly line example, it is important to balance
the load in a single workstation and accelerate the production line by implementing
several replicas of the workstation in place of a single one. When adding replicas to a
stage, one is replicating the relative region as many times as denoted by the number
of worker’s parameter.

replicate__specifier:
replicate attr attribute _argument clause
replicate__attr:
replicate_token
replicate__token:
replicate__scoped__token
replicate _scoped__token:
attribute__namespace :: Replicate
attribute__namespace:
spar

NOTE: Semantically, no more than one argument is accepted to represent the
number of workers in a given stage. This argument can be an integer literal or an
integer variable. If no argument is passed, SPar gets the number of workers from the
SPAR_NUM_WORKERS environment variable.

NOTE: Syntactically, Replicate can be part of the ToStream attribute list,
but currently SPar simply ignores it when associated to the ToStream attribute list.

74 5. SPar: an Embedded C++4 DSL for Stream Parallelism

Methodology Schema: How to Annotate

This section introduces a methodology to annotate stream parallelism using SPar
attributes. Figure 5.1 presents five questions that one should ask themselves to
annotate source code. The methodology intends to instruct the programmer on how
to annotate by answering these questions. Following the order, the first thing to do
is to discover where the stream region is. Usually, a stream region can be associated
with the assembly line. In a program, we can identify and visualize the stream region
as the most time consuming piece of code.

In most cases, the stream computation will be inside a loop, which generates
a new stream element per iteration. In all other cases, the stream will come from
an external source and the developer should pay attention to identify the relevant
code section gathering the stream items and computing results out of them. Once the
stream region has been identified and properly annotated, we have to look inside the
region searching for what the region consumes and produces. The idea behind this
is to fill, when necessary, the Input and Output auxiliary attributes for the stream
region.

Can I replicate a stage?

__/"’51--3%\

L

S S

|
——

A
|
|
|
|
|
|
I

}

Figure 5.1: Annotation methodology schema.

The third question helps to identify the assembly line’s workstations. In the
program, they are inside the stream region already annotated in the previous steps of
our methodology. To answer the question, the suggestion is to look for the operation
sequence and annotate as many stage regions as necessary, respecting the SPar syntax

5.6. Examples and Good Practices 75

and semantics. Then, it is important to specify what will be consumed and produced
by each one of the stages by using Imput and Output attributes, answering the fourth
question.

In the assembly line, we can only assign more workers in a given workstation
when the computations relative to different task are independent. The same rule applies
to SPar when answering the fifth question. In the program it means that each worker
can get a new stream element and compute independently from other stream elements.
To be sure this property holds, the developer may use the Replicate attribute to
improve the performance of the stream region. The next section will demonstrate
some code examples and our best practices for speeding up the performance.

Wl [xamples and Good Practices

This section discusses simple examples that can be used in range of real applications.
The goal is to demonstrate through real code the usage of SPar attributes guided
by the methodology presented previously. First, Figure 5.2 illustrates four activity
graphs to represent stream parallelism abstractly. The idea is to highlight one of the
graphs when discussing an example. As the methodology implicitly recommends, a
good practice is to start with simple and move towards more complex graphs (from
left to right in Figure 5.2). In terms of performance, we can not make any assumptions
because it depends on the application features (e.g.,throughput, latency, memory usage
and parallelism degree).

Al A2 A3 A4

NIV VAN VAN

N/ T]

Figure 5.2: Activity graphs on SPar.

Listings 5.1, 5.2, 5.3 and 5.4 are relative to the same application achieving different
activity graphs through SPar annotations. The code is an example of typical and
recurrent situations in stream parallelism. In this application, we clearly characterized

76 5. SPar: an Embedded C++4 DSL for Stream Parallelism

the stream format, which is a string. The stream region is the loop block and stream
comes from an external source that is a file. For each iteration a new stream element
is read and a sequence of operations is performed. A similar code may be used if the
stream comes from the network or any other external source and the programmer may
not know the length of the stream. Consequently, the programmer has to check or
decide whether the program should stop or not. This stream operation can be seen on
line 4, which is actually checking the end-of-stream condition (the end of the file, in
this case). When stream comes from the network there is no end, making it necessary
to filter the stream content to create a stop condition.

With these issues in mind, we can start to put the annotations in the code.
Following the methodology recommendation, we should start with Listing 5.1. We add
a ToStream annotation in front of the while loop because it is the stream region.
No input is needed since the stream comes from an external source and produces each
stream item inside the stream region. Also, no output specification is required because
nothing is produced inside the stream region that will be used outside. Now, we have
to find the stream operations and annotate them by using the stage attribute. We
identify them as: 1) read stream element (line 3), 2)check end of the stream (line 4),

3) compute the stream element (line 6) and 4) write the result in an output source
(line 8).

Note that semantically we cannot annotate the end of a stream checker operation
as a stage, because ToStream performs the initial computation. The problem is that
the ToStream region will never know when to stop because SPar performs on-the-fly
(there are no back communications, it always is forward). Therefore, we leave the
checker and reader operations for the ToStream and annotate the compute and write
operations as stages. As a consequence, SPar will produce the Al activity graph from
Figure 5.2.

[[spar:: ToStream]] while(1){
std :: string stream_ element;
read_in(stream_ element) ;
if (stream_in.eof()) break;
[[spar::Stage,spar::Input(stream_element) ,spar:: Output(stream_element)
]
{ compute(stream element); }
[[spar::Stage,spar::Input(stream_element) |]
{ write_out (stream_element); }

}

Listing 5.1: Stream computations in SPar producing Al.

The last step recommended in the methodology schema is to find the stages that
can be replicated. Before adding the Replicate attribute, the programmer must be
sure that operations can operate independently in different stream elements. Listing
5.2 exemplifies such an implementation for the A2 activity graph of Figure 5.2. Note

5.6. Examples and Good Practices 77

that no significant changes to the source code were made with respect to the Listing
5.1 to introduce a different version of stream parallelism.

[[spar::ToStream]] while(1){
std::string stream_ element;

[

read_in (stream__element) ;

A if (stream_in.eof ()) break;

[[spar::Stage,spar::Input(stream_element) spar::Output(stream_element)
,spar :: Replicate(4)]]

s/ { compute(stream_element); }

7 [[spar::Stage,spar:: Input(stream_element) |]

s { write_out(stream__element); }

o[}

Listing 5.2: Stream computations in SPar producing A2.

Listing 5.3 demonstrates how to produce the A3 activity graph from Figure 5.2.
However, in this application such annotation will produce incorrect results because
we can not put it inside a stateful stage. Consequently, another SPar lesson which
demonstrates that it is up to the user identify whether replication can be done without
side effects. The advantage in SPar is that one can test different combinations without
significant effort.

[[spar::ToStream]] while(1){

2 std::string stream_ element;

read in(stream_element);

if (stream_in.eof ()) break;

[[spar::Stage,spar::Input(stream_element) ,spar:: Output(stream_element)
,spar :: Replicate(2)]]

{ compute(stream_element); }

7 [[spar::Stage,spar:: Input(stream_element) ,spar:: Replicate (2)]]

s { write_out(stream_element); }

o[}

Listing 5.3: Stream computations in SPar producing A3.

Since we discussed in Listing 5.3 that the write operation can not be done
independently, Listing 5.4 will also produce incorrect results. Thus, it only illustrates
how to achieve A4 activity graph from Figure 5.2.

[[spar::ToStream]] while(1){
std::string stream_ element;

[

read_in (stream__element) ;
1 if (stream_in.eof ()) break;
[[spar::Stage,spar::Input(stream_element) ,spar:: Replicate(4)]]

{ compute(stream_element);
7 write_out (stream__element); }

Listing 5.4: Stream computations in SPar producing A4.

78 5. SPar: an Embedded C++4 DSL for Stream Parallelism

In principle, stream parallelism can be used to express other kinds of parallelism.
For example, Listing 5.5 lists code relative to a simple reactive computation. The stream
comes from the user command line arguments asking to compute the multipliers of a
given digit up to 10. SPar is generic enough to support suitable annotation modeling
the parallel structure of the code. The stream region is the while loop block and
the operation in each stream element (which are integers) are made by reading from
terminal (line 4) and calculating the multipliers of the stream element (between line 5
and 7). We do not need to specify Output and Input for the ToStream attribute
by the same reason of the previous examples. Listing 5.5 is typical way to annotate
stream region, where we put one Stage annotation in front the for loop leveraging
the possibility provided by the SPar grammar to reuse constructions of the loop
statements.

[[spar::ToStream]] while(1){
int stream_source;
std ::cout << "Enter a digit: ";
std::cin >> stream_ source;

[[spar::Stage,spar::Input(stream_source)|] for (int i = 1; i < 11; i
++){
std :: cout << stream_ sourcexi << std::endl;

}

Listing 5.5: Reactive computations in SPar producing Al.

As in previous examples, the stream comes from an external source, but in this
case, there is no stop criteria implemented. This means that the stream may never
end since the code filters each stream element and does not implement any protocol
for finalizing the stream. Also, unlike the previous application, reactive computation
has different objectives, namely latency instead of throughput. Thus, it is important
to find the most appropriate annotation schema to target latency, which could be
difficult without testing different alternatives. SPar makes this process easier, because
it supports alternative structure evaluations without requiring the user to modify the
sequential code.

In addition to Listing 5.5 and 5.6, we could have annotated the same sequential
code in at least five different ways. With respect to Listing 5.5, we could have used
the Replicate attribute (line 5), included a stage for getting the stream elements
(line 4) and combined this solution including, or not, the Replicate attribute on
the multiplier stage (line 5). From a part of Listing 5.6, we could have omitted the
Replicate attribute. This demonstrates the flexibility and capability of SPar also for
annotating parallelism in other domains derived from the stream paradigm.

To conclude the discussion of Listing 5.5, we can easily translate this pattern
into a real world application. As an example, consider a social network service for
counting the number of subscriptions. Instead of reading from the user command line,

5.6. Examples and Good Practices 79

the application reads requests from the network and instead of making multipliers, the
operation will be the sum of the subscriptions. Also, we can follow the methodology
suggestion of putting a Replicate attribute because it is possible to compute each
stream element independently. Adding the Replicate attribute may represent a
significant performance improvement in the social network service to guarantee latency
and throughput when there are many client requests. Finally, Listing 5.5 produces Al
activity graph, but adding the Replicate attribute it will produce A4 from Figure
5.2.

[[spar:: ToStream]] while(1){
int stream_ source;
std :: cout << "Enter a digit: ";
std :: cin >> stream_ source;
for (int i = 1; i < 11; i++){
[[spar::Stage,spar::Input(i,stream_source) ,spar:: Replicate(10)]]
{std :: cout << stream_sourcexi << std::endl;}
}
}

Listing 5.6: Reactive computations in SPar producing A4.

Another way to annotate this particular application is to reduce the granularity
by putting the stage inside for loop (line 6) such as in Listing 5.6. Also in this case,
we can add a Replicate attribute leveraging on the fact that for each stream element
the multiplier can be computed independently. Moreover, by specifying the number
of replicas, we can precisely assign a worker to each one of the multiplier operations.
Therefore, this stream region will behave like the A4 activity graph from Figure 5.2.

[[spar::ToStream]] for (int i = 0; i < NREGION; ++i){
int xpersons = new int [NPERSON];
load (persons) ;
[[spar::Stage,spar::Input(i,persons)]]

{regions_min[i] = min(persons);}
[[spar:: Stage,spar::Input(i,persons)]]
{regions_max[i] = max(persons);}

}

Listing 5.7: DataFlow computations in SPar producing Al.

DataFlow is also a stream-based paradigm, but it represent a different approach
with respect to SPar. However, we can use SPar attributes to implement DataFlow
computations as well (see Listing 5.7, 5.8, and 5.9). The program in Listing 5.7
calculates the minimum and maximum age for a set of people in a given number of
regions. From the SPar point of view, the stream region starts on the “for” loop that
iterates for each one of people region’s vector, loading the people and finding the
minimum and maximum age. Also, the stream source are the people vector and the
for index because it will be used for navigating on the vectors that will eventually
store the age results.

80 5. SPar: an Embedded C++4 DSL for Stream Parallelism

Listing 5.7 shows one of the alternative ways we have to annotate the code,
producing the activity graph Al from Figure 5.2. Since the stream source is internally
produced in the stream region, no input was specified. Also, no output is specified
because nothing will be produced to be used outside. We annotated each one of the
search operations (min and max) to be a stage, and only the data they will consume is
annotated using the Imput attribute. Both operations will process as input the same
people’s ages vector and the result vector index.

In SPar, we can observe that DataFlow-like parallelism can be annotated, but not
exploited due to the fact that the present version only focuses on stream parallelism. By
extending the previous example and responding the last question of the methodology,
we can add Replicate attributes on the stages due to the fact the stream operations
can act independently. Then, the annotation code will be 5.8, producing A3 from
Figure 5.2.

[[spar::ToStream]] for (int i = 0; i < NREGION; ++i){
int xpersons = new int [NPERSON];
load (persons);
[[spar:: Stage,spar::Input(i,persons),spar:: Replicate(2)]]

{regions_ min[i] = min(persons);}
[[spar::Stage,spar::Input(i,persons) ,spar:: Replicate(2)]]
{regions_max[i] = max(persons);}

}

Listing 5.8: DataFlow computations in SPar producing A3.

Listing 5.9 presents another annotation schema for this DataFlow computation.
In this case, we merge both stream operations at a single stage so that another activity
graph is produced, which is A4 from Figure 5.2.

[[spar::ToStream]] for (int i = 0; i < NREGION; ++i){
int *persons = new int [NPERSON];
load (persons);
[[spar::Stage,spar::Input(i,persons) , spar:: Replicate(4)]]
{regions_min[i] = min(persons);
regions_max[i] = max(persons);}

}

Listing 5.9: DataFlow computations in SPar Producing A4 .

Finally, to illustrate the applicability of SPar for data parallel computations,
Listing 5.10 sketches matrix multiplication algorithm. In SPar, we can model a stream
out of the first for loop index that ranges over the matrix lines. Since inside the
second for loop (line 4) the multiplication of lines by columns is performed, we can
annotate it as a stage operation. Also, due to the fact that all the multiplications can
be performed independently, we can add Replicate attribute and produce an activity
graph such as A4 on Figure 5.2,

5.7. SPar Compiler 81

[[spar :: ToStream]]
for (long int i=0; i<MX; i++){
[[spar::Stage,spar::Input(i), spar:: Replicate(4)]]
for (long int j=0; j<MX; j++){
for (long int k=0; k<MX; k++){
matrix [i][j] += (matrix1[i][k] * matrix2[k][j]);
}
}
}

Listing 5.10: Data parallel computations in SPar

These examples demonstrated SPar’s usage in stream and other domain applica-
tions. Different applications will be discussed in Chapter 7, presenting their respective
performance results. Moreover, it is worth pointing out that in all of the examples
shown, the number of replicated stages may be simply changed varying the replica
parameter. As a consequence, the programmer may easily experiment with different
degrees of parallelism to find the one that is most suitable for the computation (code
and input task) at the hand.

SPar Compiler

The compiler we designed to handle SPar DSL uses the CINCLE infrastructure
previously described in Chapter 4. In order to highlight what was implemented to
generate the DSL compiler and what CINCLE already offered, in Figure 5.3 the boxes
in orange show the CINCLE related modules and the SPar implementations are in
cyan. The picture clearly outlines that by using CINCLE’s infrastructure it becomes
much more simple to build SPar, since the only missing parts (w.r.t. CINCLE) are
actually the semantic analysis and the AST transformations.

Front-End AST Middle-End and Back-End
Tokens A : AST
@ Narmes [Symbols| AN Semantics Transform Code Code
> [—> C) (D) —= Analysis > ansto ~—>» Generator —» Assemble

5
Scanner Parser E/ \ I@I AN ey
F 000

/3
BIG

Figure 5.3: SPar Compiler.

When compiling a program using the SPar compiler, the system calls the GCC
compiler before invoking the scanner to perform the semantic and syntax analysis
of the C++ code. Next, the scanner gets the tokens produced from the original
code and delivers them to the parser to create the AST that will be the interface for

82 5. SPar: an Embedded C++4 DSL for Stream Parallelism

implementing the middle-end and back-end. Only then, the semantic analysis of SPar
annotations can rely on annotation correctness so that AST transformations can be
actually implemented to enable stream parallelism. The final step of the compiler
is relative to the generation of the parallel code, directly represented in the AST.
Subsequently, the GCC compiler is called again to produce the binary code.

Even though many work has been avoided by using CINCLE, the internal
implementation of semantics requires a good understanding of the C++ grammar.
Similar knowledge is required to perform AST transformations, because expertise
in parallel programming and runtime interface are required. Therefore, SPar was
also a case study for CINCLE that demonstrated the simplicity and usability of the
designed infrastructure. Also, the CINCLE infrastructure enabled the DSL creator
to only concentrate on the parallelism related aspects. The automatic parallel code
transformations will be detailed in the following Chapters.

SPar Internals

After the semantic analysis, we traversed the whole CINCLE AST and built the
SPar AST that includes the representation of the annotations in the code. It is used
to implement the source-to-source code transformation needed to target multi-core
and clusters architectures. Figure 5.4 exemplifies how the attributes are represented
in the SPar tree. Each attribute is interpreted as a node of the tree that stores
information about the arguments and a pointer to its attribute_specifier_seq
node. In addition to that, ToStream (T) have a function definition node (F'D) as
father, list of auxiliary attributes (AUX) that can be Input (I), Output (O) and
Replicate (R) as child nodes and identifier node (I D) of stages. The Stage node (.5)
has only one child node that is a list of auxiliary attributes. For this version, we do
not allow for explicit nesting so that new constructions of ToStream are not enabled
inside stage regions.

The SPar AST was designed to simplify the applicability of the transformation
rules as well as to support the internal CINCLE AST transformation by storing relevant
information. Therefore, when prototyping the rules, the system can look separately at
the two representations (CINCLE and SPar ASTs) and precisely perform the changes
in the CINCLE AST to allow the runtime to exploit the parallelism of the target
architecture.

5.9. Annotation Statistics on Real Use Cases 83

FD

Vs
D / \AUX

ANVAN
\

AUX

|/\o

Figure 5.4: SPar AST.

GRIE Annotation Statistics on Real Use Cases

In order to demonstrate the applicability of SPar in real use cases, Table 5.1 provides
the annotation statistics relative to the set of applications that will be used later
in the result section. These applications were used to investigate code portability,
performance and productivity. Therefore, the amount of attributes needed to annotate
the parallelism was accounted for in each. Observing the data, we can see that it is
possible to solve different problems with a few attributes. Also, auxiliary attributes are
always present even if they are not syntactically necessary. Moreover, Input attribute
is the most frequently used attribute in our applications.

Attribute | Filter Filter Sobel | Video Mandelbrot | Prime K-
Sobel (pipe) OpenCV | Set Number Means
ToStream | 1 1 1 1 1 2
Stage | 1 2 2 2 2 2 (1/1)
Tnput | 2 3 3 3 3 1(2)2)
Output | 1 2 1 1 2 2 (1/1)
Replicate | 1 1 1 1 1 2 (1/1)

Table 5.1: Statistics of SPar annotations on the experiment.

This table demonstrates that our simple examples and good practices men-
tioned /used in the previous sections actually reflect what will eventually happen when
dealing with real use cases. For instance, the Replicate attribute is needed to increase
performance. Thus, it is supposed to be present on all application that aims for high
performance. As semantically expected, note that there will be also at least one Stage
per ToStream and Replicate should not be necessary present in each one of the
stages, but it was at least in one of them.

84 5. SPar: an Embedded C++4 DSL for Stream Parallelism

Summary

This chapter has provided an overall illustration of SPar and it usage for enabling
productive stream parallelism in C++ programs. We can highlight that it demonstrated
SPar is a straightforward and high-level interface as well as friendly to the domain
and capable of annotating other kinds of parallelism (e.g.,data parallelism). Also,
through a small set of attributes, it was able to achieve the necessary flexibility when
implementing different versions of the applications at hand without requiring any
source code rewriting. Such benefit should be evident since the DSL has actually
no dependence/relationship with the target architecture features. In the following
chapters more evidence will be provided concerning these contributions.

INTRODUCING CODE PORTABILITY
FOR MULTI-CORE AND CLUSTER

This section will present how code portability is achieved and source-to-source transfor-
mations are made for multi-core and cluster.

Contents
6.1 Introduction 0o i 86
6.2 Original Contribution, 86
6.3 Parallel Patterns in a Nutshell 87
6.4 Multi-Core Runtime (FastFlow) 89
6.5 Cluster Runtime (MPI Boost) 91
6.5.1 Farm 91
6.5.2 Pipelineo 92
6.5.3 Pattern Compositions, 93
6.6 Generalized Transformation Rules 94
6.7 Source-to-Source Transformations Use Cases 98
6.7.1 Transformations for Multi-Core 98
6.7.2 Transformations for Cluster 100

6.8 SUMIMATY . . v v v v v v v ot v e s et e e e e e e e e e 102

86 6. Introducing Code Portability for Multi-Core and Cluster

Introduction

Code portability with high-performance code is a challenge in parallel programming.
The state-of-the-art frameworks are still too low-level and closely tied to the architec-
ture programming model. Unfortunately, this drawback may result in several different
implementations of the same software to meet different application constraints such as
scalability, energy, memory, latency, etc. Consequently, code portability significantly
impacts productivity as well. To solve this problem, our goal is to create generalized
transformation rules from SPar’s annotations as a step towards achieving automatic par-
allel code generation for multi-core and cluster systems. Our scope is transformations
targeting parallel patterns that support the stream-oriented paradigm.

In this chapter, we first introduce our original contributions. Second, a brief
introduction to parallel patterns, FastFlow and MPI runtime will be given. Next, we
present our transformation rules along with their formalization. Lastly, we demonstrate
through a real case how the same annotation sentences are transformed automatically
by the compiler into FastFlow (targeting multi-cores) and manually generated by using
MPI runtime (targeting clusters).

WA Original Contribution

Our original contributions are the generalized transformation rules for SPar sentences.
These rules can be applied when targeting different parallel architectures as well as
different pattern-based runtimes.

In addition, we demonstrate how code portability is achieved by SPar at the
annotation level. This is made possible by using the generalized transformation rules
and the high-level interface provided by SPar in Chapter 5. Therefore, it is only a
matter of compiling again for the program to execute on another parallel architecture.

Since in MPI we have to implement everything including pattern-based construc-
tions, synchronization and scheduling, we also contribute by creating an intermediate
interface to allow MPI to exploit stream parallelism with the round robin scheduler.

6.3. Parallel Patterns in a Nutshell 87

(MW DParallel Patterns in a Nutshell

Parallel patterns have a long history from two distinct research communities. After
the original definition of the Algorithmic Skeletons as proposed by Murray Cole
[Col89], they were proposed as high-order functions modeling common parallelism
exploitation patterns and providing parallel building blocks for parallel application
programmers. Since then, several researchers from the parallel computing community
[Col04, AD07, GVL10] started to create parallel programming frameworks providing
skeletons, investigating and designing new ones. Later, design patterns for parallel
programming [MSMO05] were designed by the software engineering community inspired
by design patterns [GHJV02]. Unlike skeletons, they were proposed as a methodology
for recurrent patterns to exploit parallelism in applications. Also, the methodology
seeks to be more general in targeting different programming models, since each pattern
includes a description of its name, problem, solution, context, forces and examples,
which are all independent of the target programming model.

In conclusion, both approaches have produced similar results, differing only
in the name used to represent the pattern. For instance, the farm can produce a
Master/Slave or Master/Worker while MapReduce results from the combination of
map and reduce skeletons. Currently, both approaches converge into a single term for
structured parallel programming [MRR12]. As an example, TBB is a framework that
comes from design patterns and FastFlow from algorithmic skeletons. At the present
moment both frameworks use parallel patterns to represent their parallelism strategies
and library constructions. As we are only interested in the strategy aspects, during
the thesis they will be called parallel patterns.

Theoretically, a pattern either exploits task or data parallelism. Task and data
parallel patterns can be composed to produce other more complex patterns or skeletons.
A set of well-known patterns are presented in Figure 6.1 to give an overall idea of
the amount and diversity of parallel patterns. Almost all of these structures can
be used to explore data parallelism which makes these strategies not appropriate
for our domain. Most of them are implemented in standard frameworks like TBB
(pipeline, map, reduce, scan). Although FastFlow originated from the task-based and
stream-oriented perspective through classical stream parallel patterns (pipeline and
farms), it also implements data parallel patterns (map, reduce and stencil).

Figure 6.2 presents a set of task-based parallel patterns that are suitable for
exploiting stream parallelism. They can also be composed and produce new more
complex stream parallel patterns. Essentially, Master/Worker is structured by a master
activity with NV number of worker activities. Communication with the worker can
be synchronous and asynchronous, where the initiative may be from both activity

88 6. Introducing Code Portability for Multi-Core and Cluster

Superscalar sequence Map Geometric decomposition Gather Reduction

Dooo0oo0o0o| 21234567 00000000
coolodooo 0BPOB@E02@a)
00000000
00000000
000l000oQ| Scater
50000000
00ob0oog 9e#0sBOoesceeE 0000000
Speculative selection Partit Category reduction Recurrence
Elolalolalolale) _+ + + +
88880888 DD
. D00DDOOD |
00000000 |HPODODDD
00000000
Fork—join Pipeline 0000 O 000 - -
® |50600000 ©
@? 00000000 lbolb)

Legend

Task Data Fork Join Dependency

O e« O |

Figure 6.1: Overview of different parallel patterns. Extracted from [MRR12].

entities of the pattern. A feedback pattern may be applied to any stream parallel
pattern. A condition node decides whether to route back a result to the pattern input
or to deliver it to the output stream. The pipeline consists of a sequence of stage
activities that communicates synchronously and each stage computes the results that
were computed by predecessor stage. Finally, the farm includes an emitter activity, N
worker activities and possibly a collector activity. Semantically, the farm computes a
given function in all items of the input stream.

Master/Worker pipeline pipeline + feedback

E farm + feedback

feedback
Figure 6.2: A set of task-based parallel patterns for stream parallelism.

farm

In stream parallelism, each one of the activities processes distinct stream elements
sequentially (this can also be seen as tasks). For instance, each stage of the pipeline
processes a task and sends it to the next one until all tasks are completed. In the farm
pattern, the emitter is the entity that generates the stream items and sends it to the
workers while the collector gathers all results from the workers. Moreover, people in
the algorithmic skeleton community have provided a formalism to represent stream
parallelism along with farm and pipeline patterns [ADO07], modeling,composition, and

6.4. Multi-Core Runtime (FastFlow) 89

nesting.

G Multi-Core Runtime (FastFlow)

FastFlow is an open source parallel programming framework that originated from
algorithmic skeleton and structured programming approaches. It is a research project
that has been developed at the University of Pisa and Torino since 2008 and has
been used in several research projects. The main goal is to provide an efficient and
portable runtime library targeting different kinds of heterogeneous parallel architectures
[ADKT14, DT15]. FastFlow builds on top of Pthreads!, providing a suitable parallel
programming abstraction algorithmic skeleton for streaming applications, it can exploit
fine-grain parallelism in cache-coherent shared memory platforms and heterogeneous
systems.

Conceptually, FastFlow is designed as a stack of layers that looks like those
in Figure 6.3. There is a clear access separation of the layers with respect to the
application level. The lowest programming levels are the building blocks, supporting
different queue implementations, extensible and configurable schedulers, and thread
and processes C+-+-like containers. Internally, the shared memory support implements
the runtime using a lock-free mechanism [ADK*11, ADK™12]. The distributed runtime
is zero-copy message [SUPT14]. Finally, the GPGPU exploits asynchronous parallelism
[ADKT12].

Parallel Applications
efficient and portable

Core Patterns

plpelme farm, feedback
Building Blocks

queues, ff_node, .

High-Level Patterns
parallel_for, parallel_reduce

Multi-Core and Many-Core Platforms

Clusters of multi-core + many-cores

Figure 6.3: FastFlow Architecture. Adapted from [DT15].

At the low-level of FastFlow the queues are the fundamentals for creating new
skeleton topologies and compositions in shared memory environments. A representation

tAlthough any other thread library may be used.

90 6. Introducing Code Portability for Multi-Core and Cluster

of the runtime implementation of typical parallel structures and behavior can be found
in Figure 6.4. There is a clear view of the node connections that are made using
Single Producer and Single Consumer (SPSC) lock-free queues. For each new node a
new queue will be created. When communication patterns such as Multiple Producer
and Single Consumer (MPSC) or Single Producer and Multiple Consumer (SPMC)
are needed, in FastFlow they are implemented by using SPSC channels and an extra
thread to enforce the correct serialization for consumers and producers.

—im—
SPSC Lock-free

o amcy

Two Stage Pipeline Arbitrary Network

Figure 6.4: FastFlow Queues. Adapted from [Fasl6].

FastFlow’s intermediate programming level is called the core patterns layer. In
this layer, the programmer has access to the other patterns like pipeline and farm that
can be possible extended with feedback channels. These patterns are the core used to
build and compose other skeletons. Unlike the traditional frameworks, the FastFlow
runtime is lock-free, which is important for implementing efficient fine grain streaming
applications. Thus, from the implementation’ point of view, computations are modeled
inside nodes (C++ classes) that will become a process/thread. Also, communications
are performed using channels that represent stream data dependency between nodes.
The nodes behave as infinite loops to get a task from the input channel (actually a
pointer), perform the computation of an internal method provided by the end user,
and put the computed results in the output channel [ADKT14, DT15].

pipe

farm + feedback
farm pipe + feedback

Figure 6.5: FastFlow skeletons from the core pattern layer.

In FastFlow, the farm skeleton is made up of an emitter, one or more workers,
and a collector node. The emitter is implemented by the farm scheduler, the workers
implement the stream element operations and the collector gathers the stream elements

6.5. Cluster Runtime (MPI Boost) 91

to be delivered to the output stream. On the other hand, the pipeline skeleton only
includes stage nodes. Figures 6.5 illustrate some possible skeleton compositions of
pipeline and farm.

At the high-level patterns’ layer, FastFlow implements data parallel skeletons such
as parallel “for” loops with and without reduce operations [DT14], macro DataFlow
[ADA"12], stencil [APD*15] and pool evolution [ACD*15]. These patterns can be
used by themselves or together (e.g., as stages of a pipeline or workers in a farm).

Source-to-source code transformation in SPar will benefit from farm and pipeline
core patterns. Their level of abstraction provides the flexibility and capabilities
necessary to support automatic exploitation of parallelism in multi-cores from SPar
annotations. Moreover, FastFlow provides suitable interfaces to tune and optimize
performance by supporting customized scheduling implementation, queue access at the
building block level, and the possibility of choosing between blocking and non-blocking
implementation of communication primitives . More information about FastFlow
usage and parallel programming can be found on the web page tutoriall, which is well
documented.

(B Cluster Runtime (MPI Boost)

We chose MPI Boost instead of FastFlow as our runtime to target clusters because
MPI is the “de-facto” standard for message passing in parallel programming systems
and FastFlow didn’t work as well on cluster as on multi-core at that time. However,
when using MPI to target the cluster environment, we need to implement the farm
and pipeline patterns representing the output of our SPar transformation rules.

Boost is a set of libraries based on the C++ standard aimed to increase produc-
tivity [Sch14, Kar05]. We used a subset of Boost to support MPI data serialization. In
terms of implementation, it provides us better abstractions and suitable mechanisms to
design parallel patterns. In the following sections, we describe how were implemented
the pipeline and farm patterns on top of MPI in such a way that they may be used as
the output of the SPar transformation rules.

iThe blocking mode implement communication channels as non-blocking mode.
lihttp: / /calvados.di.unipi.it /storage/tutorial /html/tutorial.html

92 6. Introducing Code Portability for Multi-Core and Cluster

6.5.1| Farm

Here we discuss how we implemented the farm pattern in MPI. Initially, we implemented
the farm conceptually similar to that in FastFlow so that the transformation rules
target cluster can be mostly left unchanged in respect to those target multi-cores.
However, instead of working with threads and shared memory message queues, we used
processes running in distributed machines communicating through message passing.

Figure 6.6 illustrates two typical activity graphs implemented using MPI. As in
FastFlow, there will be three kinds of nodes in our MPI farm, which are the Emitter
(E), Worker (W), and Collector (C). The emitter is the stream element scheduler that
will distribute each element to the workers. Before sending, it serializes each stream
item. Then the serialized items are sent in a round robin fashion to workers. When
the stream ends, the emitter will broadcast the special end of the stream message used
to implement termination.

The worker only receives stream elements and performs sequential operations
over them. The results are then sent to the collector, if necessary. Therefore, after
receiving a message, the worker will deserialize it and will perform data serialization
before sending results to the collector.

The collector is able to gather stream elements from all workers. Consequently, it
needs to deserialize stream elements after receiving them in such a way that sequential
operations can be computed in the stream items.

N
ST N

Figure 6.6: MPI farm implementation (circle represents process and arrows represent
communications).

Each pattern implementation works with at least one process that is chosen as
the root process. To guarantee this occurs, we must control the number of processes
from the MPI launcher argument and implement an algorithm to assign the process
to different pattern nodes. Therefore, each node will have three “pids” vectors (its,
before and after) for implementing the node’s connections and control the number of
process per node. This is also a general approach for the pipeline and the composition
of patterns that we will be referred to later in the text.

6.5. Cluster Runtime (MPI Boost) 93

6.5.2| Pipeline

In the pipeline, the first stage is responsible for streaming elements to the other stages.
The last stage simply receives results of the pipeline computation and the middle stages
receive items from previous stages and send intermediate results to the next stages.
Therefore, the first stage only marshals the stream items while the last only deserializes,
and middle stages have to both deserialize and serialize items and results.

S S S

Figure 6.7: MPI pipeline implementation (circle represents process and arrows represent
communications).

Unlike farm, in pipeline there will be only one node type, which will be classified
as first, middle and last stage. Also, each node can only have a single processes that
will communicate with the next one, except in the last stage.

6.5.3| Pattern Compositions

The possibility to compose new parallel patterns is very important in stream parallelism
and for the Spar transformations. In FastFlow, the composition is simpler and
integrated in the library as previously described in Section 6.4. The option to include
feedback channels in a pattern that further improves the possibility to implement more
complex patterns. For the current version of SPar, such features are not necessary
and will be taken into account in future work. Figure 6.8 illustrates possible parallel
patterns obtained by composing pipelines and farms.

The persistent nesting of patterns allows us to build more com-
plex topologies [BCO05]. For instance, those on top of Figure 6.8
(pipe(farm(E,W,C), farm(E, W, C))) implement the combination of a pipeline with
two farm stages. Internally, the arrows (representing the communication in the figure)
are implemented through our runtime support based on the “pids” vector described
previously. Two other examples are at the bottom of Figures 6.8. The example
of pipe(S, farm(E,W)) is a pipeline with one sequential stage and a farm stage.
pipe(farm(E,W,C),S) is a pipeline where the first stage is a farm and last is a
sequential stage. As can be observed, we initially focused mostly on creating pattern

94

6. Introducing Code Portability for Multi-Core and Cluster

pipe(farm(E,W,C),farm(E,W,C)) (w

e N
N N
st~ LT

Figure 6.8: MPI skeleton compositions.

S

variants in such a way that the pipeline is combined with farms. This is a consequence

of transformation rules demands that will be discussed on the next section.

m Generalized Transformation Rules

First of all, we introduce some notations that are useful to express SPar semantics:

T;4: is a ToStream annotation region associated with an integer variable identifier

(id)-

Siq: 1s a Stage annotation region associated with an integer variable identifier

(id)-

O;4: is a block containing one or more statements, where each block is associated
with an integer identifier (;4).

I;: denotes Input auxiliary attribute, where ; is an argument list that represents
one or more variables with the same or different data types.

O;: denotes Output auxiliary attribute, where ; is an argument list that represents
one or more variables with the same or different data types.

R,: denotes Replicate auxiliary attribute, where ,, represents the number of
replicas that correspond to an integer variable.

[[...]]: denotes an annotation that may have a list of attributes.

{}: denotes the scope of the sentence.

6.6. Generalized Transformation Rules 95

The transformation rules use farm and pipeline parallel patterns to introduce
parallelism as presented in Section 6.3. We can represent these patterns by using a
functional style as follows:

farm(): accepts one to three arguments. One argument is the emitter (£),
which is the task scheduler. There is also a worker (W) that performs replicas of
a given 0. Then, it is possible the collector (C'), which is a representation of the
gather implementation. Each one of the three elements only accepts a single O,; as an
argument and only W can be used as a single farm.

pipe(): accepts from two or more arguments, where each argument is 04 or
farm() and represents a stage of the pipeline.

The transformation rules from SPar to parallel patterns are based on the following
definitions:

Definition-0: when the last O is annotated with S that contains in its attribute
list R, and O;, an extra O is necessary to gather the results. To differentiate from the
typical ones, we denoted it as 1.

Definition-1: when the O is annotated with S that does not contain in the
attribute list R,,, or O appears alone, the O can be the argument of pipe, E, or C.

Definition-2: when O is annotated with S that contains in the attribute
list R,,, the O can only be translated to an argument of W. Then, if possible with
Definition-1, the predecessor is E and successor is C' so that they are arguments of
the farm with W.

Definition-3: T is only transformed directly into a farm when the first S
annotation in the SPar sentence is the only one of a maximum two S annotations that
contains R,, in the attribute list.

Definition-4: T is only transformed directly into a pipe when in a sentence of
SPar the first S in its attribute list does not have R,, of maximum two .S, or when
there are more than two Ss.

Definition-5: farm is a stage inside a pipe when Definition-3 cannot be
applied and O is annotated with .S that contains in the attribute list R,,.

A rule must respect all of the previous definitions. In ascending order of
the definitions, transformation rules will be created to translate SPar annotation to
parallel patterns. The rules’ syntax presents the annotation schema with corresponding
transformations.

First, we perform three transformation rules where a T" region will be transformed
directly into a farm (rules 6.1, 6.2, 6.3). Rule 6.1 is for the [[T]]{Do, [[So, Rn)]{D1}}
sentence. We can transform into a farm that has an emitter (which receives Oy) with

96 6. Introducing Code Portability for Multi-Core and Cluster

worker replicas of O; because we induce through definitions 1, 2 and 3. Rule 6.1 can
therefore be represented as follows:

[[To]{ B0, [[So, Rn]{O1}}
[} (6.1)
farm(E(Qy), W(0O1));

Rule 6.2 handles an annotation sentence with [[7o]]{Do, [[So, Os, R,]]{01}}. The
relative transformation produces first C' that receives ¢ (by Definition-0), £ have
O (inductively by Definition-1), and Oy assigned to W (inductively by Definition-
2). Therefore induced by Definition-3, our transformation can be made a farm as
follows:

[[76]{ Do, [[So, Os, Ra] {01 }}
U (6.2)
farm(E(DO)a W<D1)7 C(@/))),

Another possible sentence of SPar is [[Ty]]{Do, [[So, Ra]]{01}, [[S1]]{O2}}. Rule
6.3 states that we can transform it into a farm (inductively by Definition-3) where
the E receives Oy (inductively by Definition-1), W is Oy (inductively by Definition-2)
and C' is the Oy (inductive by Definition-1). The rule can therefore be written as:

[To]{ B0, [[So, Ra]I{B1}, [[S1]{B2}}
[} (6.3)
farm(E(DO)v W<D1)7 C(D2));

A sentence like [[To][{ 0o, [[So]][{O1}} will be directly transform in a pipe induc-
tively by Definition-4 if the first .S from the 7T region does not include any R,. Rule
6.4 is therefore represented as follows:

[To]{ B0, [[Sol {B1}}
Y (6.4)

pipe(Qo, O1);

The next rules are more complex sentences that we can induce through Definition-
4 to become a pipe and Definition-5 a farm to become a stage in the pipeline. For
example, in Rule 6.5 we know that it will be a pipeline because of Sy and a farm will be-
come a stage by Definition-5, as S is followed by R,. As we can induce E by Definition-
1 and W by Definition-2, our rule for the [[Tp]]{Do, [[So]]{O1}, [[S1, Rn]]{O2}} SPar
sentence is therefore represented as:

6.6. Generalized Transformation Rules 97

([To] {80, [[S][{O1}, [[S1, Rn]l{D2} }
Il (6.5)

pipe(Qo, farm(E(Oy), W(02)));

For the [[To][{0o, [[So]l{T1}, [[S1, Os, Ry|]{02}} sentence we will use the same
definition of Rule 6.5 due to the Sy and S;. Yet, we have to generate 1 to make it
an argument of C' because there is O; along with R,, in the last S (induction from
Definition-0). The resulting transformation is therefore Rule 6.6.

[[To]{ D0, [[So]{B1}, [[S1, Oi; Ru]l{Ba}}
\’ (6.6)

pipe(Bo, farm(E(D1), W(02), C(¥)));

Rule 6.7 presents another common sentence in SPar for stream parallelism.
The transformation is induced by Definition-4 to become a pipe and Definition-5 to
make a farm as an argument of pipe. Thus, farm is derived from Definition-1 and
Definition-2.

[[T6]{ Do, [[Sol][{ 01}, [[S1, Ra]{Oa}, [S2]{O3}}
\ (6.7)
pipe(Bo, farm(E(O;), W(O,), C(03)));

Sentence [[To]]{Do, [[So, Rx]]{O1}, [[S1]]{Ba2}, [S2, Os, R,]]{Os}} is another com-
plex situation. We have more than two Ss that can be induced by Definition-4 to
become a pipe. Also, we have to generate 1) due to Definition-0. Consequently, two
equivalent rules may be produced by the induction of Definition-5 (Rule 6.8 and 6.9).
In Rule 6.8, the farm stages are built from the first R,, looking for the predecessor
and successor since it is inductively by Definition-2 and then the second ones such as
follows:

[[To]1{B0, [[So, Bu] {B1}, [[S1]1{B2}, [[S2, O, Ral[{Bs}}
4 (6.8)
pipe(farm(E(Dg), W(0,), C(B)), farm(W (Bs), C(¥)));

On the other hand, if we start from the last R,, looking for the predecessor and
successor as states in Definition-2, we represent our equivalent transformation rule
(Rule 6.9) as follows:

[[To]I{Bo, [[So, Ru]{B1}, [[S1]{ D2}, [[S2, O, Bu][{Ds}}
\ (6.9)
pipe(farm(E(Do), W(D4)), farm(E(D,), W(0O3), C(¢)));

98 6. Introducing Code Portability for Multi-Core and Cluster

Because SPar semantics impose few restrictions, its sentences may be eventually
combined in many ways. Even though not all of the possibilities are illustrated, our
definitions allow one to implement new and different transformation rules. In this
section, we have shown how transformation rules are built from SPar sentences to
parallel patterns according to the respective definitions and functional semantics.
Therefore, an algorithm that intends to perform new transformation rules must meet
our definitions and decide between two equivalents to be applied in the system. In case,
the SPar compiler implements such an algorithm to meet all possible transformation
rules.

To prototype these rules one must take into account the following notes:

1. We are assuming that the parallel patterns details like communication and syn-
chronization are already dealt with in the target runtime.

2. A stream element is derived from O; and I; arguments.

3. Optimizations must be implemented at the level of the runtime such as load
balancing and scheduling.

Al Source-to-Source Transformations Use Cases

In order to illustrate how source-to-source code is generated and code portability is
achieved, this section will present and discuss the aspects related to multi-core and
cluster targeting through our transformation rules. The idea is to present a real code
example where rules are used to map the SPar code into the parallel code.

6.7.1| Transformations for Multi-Core

During the implementation of the SPar compiler, in addition to the transformation
rules, we also have the support of the SPar AST previously described in Section 5.8.
Figure 6.9 uses the prime number application to illustrate the transformations in six
steps and map where original code is after the code is generated by the SPar compiler.
On top of the figure we put the annotated code using SPar attributes with blocks
labeled as SPar steps.

First of all, the compiler algorithm starts analyzing the SPar AST, looking for
the input and output dependencies so that the data structure inside of the @ step
block can be built. We process the input and output specifications to represent each
stream element in a generic way. Then, pieces of the source code and annotation blocks

6.7. Source-to-Source Transformations Use Cases 99

are transformed according to the transformation rule 6.3. Therefore, we produced
the first stage and subsequently the second stage. Note that inside blocks @ and

@ we must manage data, during this kind of transformation it is necessary to look

for the input and output dependencies. Then, we build the block @ for the stream
region that will be used as the emitter. In addition, we must manage when to send
the stream elements and control the end-of-stream. Lastly, right after the function
definition, the whole structure of the farm is initialized (block @) Also, as a result
of the transformation in place of the original ToStream annotation block, we produced
block @ and update input and output values. We also call the FastFlow runtime
actually executing the farm skeleton.

[int prime_number(int n){|
int total = 0;]

[[ToStream(), Input(n)]]
for (int i = 2; i <= n; i++){
‘ int prime = 1;
[[Stage(), Input(i,prime), Output(prime), Replicate(workers)]]
for (int j = 2; j < i; j++){
if (1i%j==0){
prime = 0; ‘

break;
}

+
[[Stage(),Input(prime),Output(total)]] |
{ total = total + prime; } |

—
1} |
| return total;‘

1}

ff_node_t < struct_spar® >{

struct ToStream spar0 :
int n;
struct_spar® * svc(struct _spar® * Input_spar) {

| for(int i = 2; i <= n;i++){

| int prime = 1;
struct_spar@ * stream_spar = new struct_spar0 (i,prime);

#include <ff/pipeline.hpp>

#include <ff/farm.hpp>

using namespace ff;

struct struct_spar0{
struct_spar0(int i,int prime) :
int i;

i(i),prime(prime) {};

~>int prime_number (int n){|

ToStream_spar® ToStream_spar@_call;

ff_Farm < struct_spar0 > Stage_spar@@_call(Stage_spar00,workers);
Stage_spar@0_call.add_emitter(ToStream spar®_call);
Collector_spar@l Collector spar6l call;
Stage_spar@0_call.add_collector(Collector_spar@l_call); @
int total = 0;

ToStream_spar0_call.n = n;
Collector_spar@l_call.total = total;

 ff_send_out (stream_spar); int prime;
444444 >} b '
return EOS; struct_spar0 * Stage_spar0@(struct spar® * Input spar,ff_node *const){
} @ for(int j = 2; j < Input_spar -> i;j++){

if (Input_spar -> i%j == 0){
Input_spar -> prime = 0;

}

break; ‘
I3
return Input_spar; ®

struct Collector_spar0l :
int total;
struct spar@ * svc(struct spar® * Input spar) {

ff_node_t < struct_spar® >{

if(Stage_spar@0_call.run_and_wait_end() < 0){

total = total+Input spar -> prime;} }
error("Running farm\n"); L P! p P T

delete Input_spar;
return (struct_spar® *)GO_ON;

@ };} @

exit(1);

}
total = Collector spar0l call.total;
return total;‘

=

Figure 6.9: Mapping the transformations to FastFlow generated code.

The transformation flow detailed above is the same as other applications, though
the transformation rule used may vary. FastFlow supports us with an interface suitable
to make stream parallelism possible in SPar, but it does not prevent us from dealing
with data management and other C++ low-level aspects such as pointers. On the other
hand, it prevents us from creating several different algorithms to allow for different
scheduler and stream ordering. For instance, when one sets the spar_ondemand
optimization flag, we only need to add at the end of the block @, a routine that sets
the on-demand scheduler without changing the rest of the structure. Similarly, the
spar_ordered does not require changes since the only thing to do is to use a different
method to initialize the farm. The implementation of the spar_blocking optimization
is even simpler, because it is achieved by adding an extra flag when assembling the
code with GCC. The meanings of these optimization flags are as follows:

100 6. Introducing Code Portability for Multi-Core and Cluster

e spar_ondemand: used to generate the on-demand scheduler.
e spar_blocking: used to activate the FastFlow blocking mode.

e spar_ordered: used to say that output stream elements must be delivered
respecting the input order.

We implemented these optimization flags along with the default transformations
to speed up different kinds of applications. In the future, we expect to have more
possibilities to optimize the code during compilation. Later in Chapter 7, we evaluate
the impact of these optimization flags on the performance, when used alone or in
conjunction with each other.

6.7.2| Transformations for Cluster

Some technical reasons did not allow us to use FastFlow for the runtime in the cluster
environment: no stable version, few documentation, and no available launcher. We
also had a greater motivation for using a different runtime to target clusters which
was an evaluation of the generality of the proposed transformation rules including
possible challenges that we would face with a runtime which does not primitively
support stream parallelism. Consequently, the first challenge given was to prepare an
intermediate interface for the farm and pipeline patterns, implement the scheduler and
data serialization.

Unlike the multi-core transformations, we are still in the process of completing
the implementation of the cluster support (we plan to enable it simply by using
spar_cluster compilation flag). The code shown has been hand generated from the
rules presented in Section 6.6, as we still have not completed the tools to generate it
automatically.

To demonstrate the differences between cluster and multi-core code generation
as well as how we eventually achieved code portability, Figure 6.10 uses the same
prime number application. The annotated code can be found at the top of the figure
and we organized the generated code in blocks labeling the step sequence. Because we
wanted to concentrate only on the essential parts, some blocks of code are hidden and
represented through white boxes.

Similar to the compiler algorithm for multi-core generation, the first step was
to build the stream structure by looking for the data dependencies through the SPar
AST. We produced the first block understanding the input and output specification of
the stages. Also, since it is necessary to send data through the network, we used the
Boost library to implement data serialization. Therefore, only standard C++ types are
easily handled by Boost, while pointer and other complex structures require manual

6.7. Source-to-Source Transformations Use Cases 101

|{int prime_number(int n){
| int total = 0;
[[ToStream(), Input(n)l] ‘
for (int i = 2; 1 <= n; i++){
‘ int prime = 1;
[[Stage(), Input(i,prime), Output(prime), Replicate(workers)]]
for (int j = 2; j < i; j++){
if (i%j==0){

prime = 0;
break; ‘

I3
[[Stage(),Input(prime),Output(total)]] |

_{ total = total + prime; } J
1) |
#include <boost/mpi.hpp> | return total;
#include <boost/serialization/serialization.hpp> i
namespace boost{
namespace serialization{

class Stage_spar00{

struct struct_sparo{ pmt;::egé region=1;
struct_spard(bool EO0S):EO0S(EO0S){}; public: '

bool EOS;

template <class Archives void spar_operator(boost::mpi::communicator world,

: S : : : : std::vector<int> recv_v, std::vector<int> this v, std::vector<int> send v){
. yold serialize (Archive &ar, const unsigned int version); boost: :serialization::struct spar@ spar msg(false);
%": i std::vector<int>::const iterator id=send v.begin():
. int prime; while(1){
world.recv(id region-1, SPAR WORKER TAG, spar msg);

template<class Archive > if (spar_msg.E0S) break;

void struct_spar®::serialize (Archive & ar , const unsigned int version){

(Block of code that performs the serialization of the stream struct

for (int j = 2; j < spar_msg.i; j++){
if (spar msg.i % j == 0){
} ¥ spar_msg.prime = 0;
break;

} @ L)
class ToStream sparo{ world.send(id_region+1, SPAR_WORKER_TAG, spar_msg);
protected:

int id region=0; world.send(id_region+1l, SPAR_WORKER TAG, spar_msg);
public: }

int n; } @

void spar_operator(boost::mpi::communicator world,
std::vector<int> recv v, std::vector<int> this v, std::vector<int> send v){
boost::serialization::struct spar® spar msg(false);
std::vector<int>::const iterator id=send v.begin();
[for (int i = 2; i <= n; i++){

| int prime = 1; class Stage_spar@l{
— Block of code that implements the round robin scheduler protected:
3 int id_region=2;
boost::serialization::struct spar® spar msg end(true); void struct_gather(boost::mpi::communicator world,
for (id=send v.begin(); id!=send v.end(); id++){ std::vector<int> recv v, std::vector<int> this v, std::vector<int> send v){
) world.send((*id), SPAR WORKER TAG, spar msg end); (Block of code that implements the gather)
}
} void spar_job(boost::mpi::communicator world,
}; @ std::vector<int> recv_v, std::vector<int> this_v, std::vector<int> send_v){
boost::serialization::struct_spar@ spar_msg(false);
ﬁ)int prime_number (int n){ while(1){
int total = 0; world.recv(id_region, SPAR_SCHE TAG, spar_msg);
. boost::mpi::environment env; if (spar_msg.E0S) break;
boost::mpi::communicator world; [total = total + spar_msg.prime; }«
int myrank = world.rank(); if (world.rank() == id_region) break;
int np size=world.size(); }
Block of code that implements the processess vector }
if (spar::is_myregion(ToStream_spar®_vec,myrank)){ public:
spar::ToStream_spar® TSO; int total;
TS0.n = n; void spar_operator(boost::mpi::communicator world,
TSO.spar_operator(world, ToStream_spar0_vec,ToStream_spar0_vec,Stage_spar@@_vec); std::vector<int> recv_v, std::vector<int> this_v, std::vector<int> send v){
if (world.rank() == id_region){
if (spar::is_myregion(Stage_spar@0_vec,myrank)){ struct_gather(world,recv_v,this_v,send v);
spar::Stage_spar0@ SO; }else{
S0.spar_operator(world,ToStream_spar@_vec,Stage_spar00_vec,Stage_spar@l_vec); spar_job(world, recv_v,this_v,send_v);
}
if (spar::is_myregion(Stage_spar@l_vec,myrank)){ }
spar::Stage_spar@l S1; }; @

Sl.total = total;
S1.spar_operator(world,Stage_spar00_vec,Stage_spar@l_vec,Stage_spar0l_vec);
total = Sl.total;

}
return total;
> ‘

5)

Figure 6.10: Mapping the transformations to MPI generated code.

implementation of the serializations. This type of verification must be done internally
when analyzing the data types of the input and output on the AST.

The next step is to apply the corresponding transformation rule (Rule 6.3). As
a consequence, we transform the first stage (step @) and then the subsequent stage
(step @) The first stage will be replicated so that it becomes a worker. The last one
must generate a gather function and implement a generalized protocol to read from
all replicas each one of the stream elements, becoming a collector. In contrast, the
first stage must only manage the data like in multi-core and generate the intermediate
interface with the support of the MPI Boost library.

The fourth step produced the emitter that originates from the stream region.
This generation requires two special tasks: sending the stream elements in a round
robin fashion and controlling the end-of-the-stream. The difference with respect to

102 6. Introducing Code Portability for Multi-Core and Cluster

FastFlow runtime is the generation of the scheduler. The last step is to transform the
compound statement of the function definition that was annotated by SPar. It will
generate all the MPI code, an algorithm to fill the “pids” vector and call all generated
methods. This vector is necessary for indicating which process will run in a given
region as well as for implementing the relevant communication protocol.

During the presentation of this illustrative example we can highlight that it
requires significant effort to prepare a compatible interface using the MPI library
runtime for implementing stream parallelism in cluster environments. However, we
were able to generate code based on the transformation rules. In the experiments,
we give performance insights addressing functionality and performance. The most
important factor is that code portability is possible through recompilation of the
program. No modification or additional attributes are needed in the source code.

m Summary

This chapter introduced essential features of the used (FastFlow) and developed
runtime (created on top of MPI) as well as parallel patterns. We provided a new
contribution with the generalized transformation rules aiming at code portability.
They were formulated in such a way we can translate the code by hand, integrating
the rules into the compiler algorithm. We demonstrated through the real use cases
that the whole process not only works, but it is also straightforward. Moreover, due
to the higher abstraction FastFlow presents for developers and the fact that it already
provides farm and pipeline patterns, targeting FastFlow has been demonstrated to be
much easier than targeting MPI.

- Part 1108

EEEEEEEEEE

RESULTS

This chapter present the results of the experiments for evaluating and comparing
performance and coding productivity.

Contents

106 7. Results

7.1 Introduction 107
7.2 Experimental Methodology 107
7.2.1 Benchmarking Setup, 107
7.2.2 Tests Environment Lo o000 108
7.2.3 Performance Evaluation 109
7.2.4 Coding Productivity Instrumentation 110

7.3 Multi-Core Environment 0000, 111
7.3.1 Sobel Filter 111
7.3.1.1 SPar Performance 113

7.3.1.2 Productivity Comparison 119

7.3.1.3 Performance Comparison 120

7.3.1.4 Summary . ..o ... 125

7.3.2 Video OpenCV e 126
7.3.2.1 SPar Performance 127

7.3.2.2 Productivity Comparison 129

7.3.2.3 Performance Comparison 130

7.3.24 Summaryo 132

7.3.3 Mandelbrot Set 133
7.3.3.1 SPar Performance 134

7.3.3.2 Productivity Comparison 136

7.3.3.3 Performance Comparison 137

7.3.3.4 Summaryo 140

7.3.4 Prime Numbers 140
7.3.4.1 SPar Performance 142

7.3.4.2 Productivity Comparison 144

7.3.4.3 Performance Comparison 145

7.3.4.4 Summary Lo e 147

7.3.5 K-Means e 148
7.3.5.1 SPar Performance 150

7.3.5.2 Productivity Comparison 152

7.3.5.3 Performance Comparison 153

7.3.5.4 Summaryo o e e e 155

7.4 Cluster Environment, 156
7.4.1 Sobel Filter 156
7.4.2 Prime Number, 157

7.5 SUMMATY + v v v v v v v vt et v et e et e e e e e e e e e e 159

7.1. Introduction 107

Introduction

This chapter will introduce a set of experiments relative to five carefully chosen appli-
cations (described in Section 7.2.1) aimed at evaluating and comparing productivity,
performance and code portability. Firstly, we will describe our methodology for the
experiments. Then, performance and productivity are tested in the multi-core envi-
ronment. We also perform a comparison with state-of-the-art parallel programming
frameworks (OpenMP, TBB, FastFlow and eventually Pthreads). Subsequently, we
present the results of two applications (already tested on Multi-core) derived from the
same annotated source code and targeting MPI runtime.

Experimental Methodology

This section presents the methodology used to conduct the experiments.

7.2.1| Benchmarking Setup

Our criteria for choosing the applications were diversity and real world applicability.
Consequently, the suite of applications we picked are as follows:

e Sobel Filter: Applying filters over a set of images is a recurrent operation in
image processing applications. It can be used as a representative example of
real world applications for evaluating expressiveness, parallelism exploitation
and performance. Also, due to its well defined structure, it allows us to repro-
duce different versions of implementation to test the programming frameworks’
flexibility as well as different workload performances.

e Video OpenCV: We intentionally implemented this application using OpenCV
library because it is widely used in video streaming processing while demonstrates
that SPar may be used in conjunction with standard libraries. The program
structure is representative of other real world stream applications such as those
commonly found in the networking domain. The very same schema used to
implement video operation applications, may be used to implement network
package analysis.

108

7. Results

e Mandelbrot Set: This provides an interesting problem to be solved using stream

parallelism, because it is originally designed to be a data parallel computation. In
fact, it is an scientific application, where iterative screen visualization is used to
support the scientist to follow the results. A similar pattern is present in medicine
and biology applications, where in case, the scientists could be interested in
following the DNA results on the screen while computing more samples.

Prime Numbers: This is a mathematical algorithm used in the scientific com-
munity and real world cryptography applications. It is also a well know problem
in the parallel programing field for testing the performance of the programming
framework, especially as far as load balancing is concerned. Although it is
not a stream application, it allows us to evaluate SPar’s expressiveness and
performance compared to the state-of-the-art tools.

K-Means: One motivation for using K-Means is justified by the significant
current research effort spent to achieve quick insights from big data. K-Means
algorithm is recurrently applied in data analysis to classify data. Secondly, it is
a challenge because it requires SPar to implement stream and data parallelism
at the same time.

7.2.2| Tests Environment

In order to evaluate the performance of the applications, we used two different ma-

chine architectures. Table 7.1 describes the characteristics of the Pianosau machine

environment, used to run the multi-core experiments. On the other hand, Table 7.2

presents Dodge cluster machines’ configurations, composed of four identical nodes that

has been used to run our “cluster” experiments.

Characteristic Description

Processor model Intel(R) Xeon(R) CPU E5-2650.

Processor performance | Two CPU sockets, each one with 8 cores and 16

threads with frequency base of 2.00GHz.

Memory settings NUMA DDR3 32GB and smart cache of 20MB.

Disk capacity local hard driver 385GB
Network Two Intel Corporation 1350 Gigabit Network Con-
nection
Operating System CentOS release 6.3 (64 bits).
Compiler GCC 5.3.0 with -O3 optimization flag.
Runtime FastFlow library (version 2.1.0)

Table 7.1: The Pianosau machine configurations.

7.2. Experimental Methodology 109

Characteristic Description
Processor model Intel(R) Xeon(R) CPU X5560.
Processor performance | one CPU with 4 cores and 8 threads with frequency
base of 2.80GHz.
Memory settings DDR3 24GB and smart cache of 8MB.

Disk capacity local hard driver 657GB and more 657G in the NFS
Network Two Intel Corporation 82574L Gigabit Network
Connection.
Operating System Ubuntu 14.04.3 LTS (64 bits).
Compiler GCC 5.3.0 with -O3 optimization flag.
Runtime Boost library (version 1.6.0).

Table 7.2: The Dodge cluster machines’ configuration (total of 4 nodes).

7.2.3| Performance Evaluation

The experiments in performance evaluation take into account different metrics that
are listed below:

e Completion time: Is the time that an application takes to start and finish its
computations. It will be used to calculate subsequent metrics. We obtain the
time before starting the stream region and after it ends, then we subtract the
end by start time to get the completion time.

e Latency: Is the response time in milliseconds to process each stream element
[Grel4].

e Throughput: Is relative to the amount of stream elements that the application
is able to process in a given time, which is also called the rate of work [Grel4].
The throughput is the inverse of service time that is based on Little’'s Law,
dividing the completion by the number of elements processed in this period
[Gus11].

e Speedup: This metric is based on Amdhal’s law to represent the scalability of
the application [MRR12]. In this case, we measured the throughput speedup
relative to the number of replicas (parallelism degree).

e Efficiency: This is also based on the Amdhal’s law to represent how efficiently
the application uses machine resources. In this case, we provide this metric as
it is usually presented in HPC, by first calculating the speedup relative to the
completion time and then dividing the resultingt speedup by the amount of
replicas used.

110 7. Results

e Energy consumption: This is the energy used by the application in a specific
interval of time. It is expressed in Joules and given through the integral of power
over time. In this case, we used the Intel RAPL (Running Average Power Limit)
driver which read from Linux hardware counters.

e Memory usage: This is the amount of memory that an application used during
its execution. This metric is collected by reading the process event files (for
example, the metric can be extracted from /proc/pid/status).

e Cache misses: These occur when thread or processes try to read on cache and
do not find data, which then requires them to go to the main memory. The
amount of times this happens during the program execution is called the cache
miss rate [HP11]. They are collected through the Linux performance library .

Each application is executed 10 times for each number of replicas (parallelism
degree) tested in order to calculate the arithmetic mean of these values. Also, the
standard deviation was calculated based on 10 executions.

7.2.4| Coding Productivity Instrumentation

The applications used to test productivity are the same ones used for performance
evaluation. There are many measurements we could have used for evaluate productivity
[SS96], but we evaluated coding productivity by measuring the physical source lines
of code, which in its simplicity already provide an indirect measurement of the
amount of time needed to develop the code. Therefore, the applications were carefully
implemented, modifying only the parts of the code that had to be parallelized. To
ignore comments and count only the real code line, we used SLOCCount tool'™.

Because the number of lines is only a quantitative metric, we also analyzed
the source code implementation and parallelism modeling. This evaluation is a
comparative way looking for the programming model and associating if there is low-
level programming and code rewriting. The idea is to demonstrate the drawbacks and
advantages of SPar with respect to the state-of-the-art parallel programming tools.

thttps://01.org/rapl-power-meter
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
ihttp: / /www.dwheeler.com /sloccount /

7.3. Multi-Core Environment 111

(@Bl MNulti-Core Environment

This section performs the experiments in the multi-core environment to evaluate and
compare of SPar’s performance and coding productivity.

7.3.1| Sobel Filter

Applying a filter over images is a recurring task in the image processing field. To
represent these types of applications, we benchmark the Sobel filter. Listing 7.1
presents a pseudo-code application. It is possible to observe that the program is
reading all files from a given directory and applying the Sobel filter over bitmap images
only. Using SPar’s methodology, the recommendation is to first identify the stream
region. Therefore, we start from the “while loop”, obtaining a new file descriptor
iteration by iteration until the directory is empty. After this, we can simply identify
what will be consumed and produced by this region, specifying input and output
attributes with the respective variables as annotated in line 5.

Inside the ToStream region, there are three stream operations that are read,
filter and write, which configures three stages. Before starting the stream operations,
each file is preprocessed to get its name and extension. Then, files that are not bitmap
extensions are ignored so that it is possible to count how many images were read.
When reading a bitmap file, the program stores image information (e.g., image size,
height, and width) and loads all image bytes in the memory. Next it applies the Sobel
filter and writes the results on the disk.

Even though SPar allows us to annotate this application in different ways, we
demonstrate the two most efficient alternatives in Listing 7.1 and 7.2. In the first we
annotate the filter and write operation regions as stages and let the stream region to
read and produce for the other stages. Consequently, our stream will be different from
what ToStream was consuming because it is producing another stream inside that are
image information and the buffer containing all image bytes. Therefore, we can easily
identify and annotate the input and output. Moreover, as the most time-consuming
part is to apply the Sobel filter and it can operate independently for each new stream
element (image), the Replicate attribute can be assigned to speedup performance.
Note that we could also put the replicate attribute in the last stage because it could
operate independently, but this second version may add extra overhead because the
application is also reading from the disk. In contrast, when there is a sophisticated
storage architecture, adding the replicate at the last stage may improve performance.

112 7. Results

Thus, this is one example that we can use to illustrate the importance of SPar’s
flexibility for taking advantage of the hardware resources.

int main(int argc, char xargv][]){

DIR xdptr = opendir (...);

struct dirent xdfptr;

[[spar:: ToStream,spar :: Input (dptr ,dfptr ,tot_img,tot_not), spar::Output
(tot_img,tot_mnot)]] while((dfptr = readdir(dptr)) != NULL){

if (file_extension = "bmp"){

tot__img++;

image = read (name, height , width);

[[spar::Stage, spar::Input(height ,width, image) spar::Output(
new_image) , spar:: Replicate(workers)]]{

new_image=sobel (image , height , width) ;

}

[[spar::Stage, spar::Input(newname, height ,width ,new_image)]]{

write (newname,new_image, height , width) ;

}
telse{

tot_not++;

}
}

return 0;

}

Listing 7.1: Sobel Filter using SPar (pipe-like).

Listing 7.2 represents a slightly different version of Listing 7.1. It demonstrates
SPar’s flexibility ad expressiveness which allows to perform minimal changes in the
sequential code to produce different annotation schemes and activity graphs (see on
Section 5.6 on Figure 5.2). The only changes consist in commenting out lines 14 and
16 of Listing 7.1 and putting the stage annotation before the read operations. Also,
we updated the input and output attributes because ToStream now produces only the
“name” (original file name) and “newname” (result file name) during the preprocessing.
Finally, since nothing needs to be produced inside the stage to survive the stream
region, the output attribute is not necessary any more.

In the next sections we will first present the performance experiment results
relative to the original application and applications obtained annotating the original
code with SPar attributes. Subsequently, producing parallel code targeting multi-cores
through our transformation rules described in Chapter 6.6, which were implemented
in the SPar compiler. After, we evaluate coding productivity as well as compare
performance with state-of-the-art frameworks, where SPar is actually generating

7.3. Multi-Core Environment 113

FastFlow code. Therefore, plain FastFlow implementations may benefit from the very
same optimizations implemented by SPar flags, which are stressed in Section 7.3.1.1.

int main(int argc, char xargv][]){

DIR xdptr = opendir (...) ;

struct dirent xdfptr;

[[spar :: ToStream,spar :: Input (dptr ,dfptr ,tot_img,tot_not), spar::Output
(tot_img,tot_mnot)]] while((dfptr = readdir(dptr)) != NULL){

if (file_extension = "bmp"){

tot__img+-+;

[[spar::Stage, spar::Input(name,newname), spar:: Replicate(workers)
1

image = read (name, height , width);
new_image=sobel (image , height , width);

write (newname,new_image, height ,width) ;

}
telse{

tot_not++4;

}
}

return 0;

}

Listing 7.2: Sobel Filter using SPar (farm-like).

7.3.1.1| SPar Performance

We differentiate the previous versions of the Sobel filter application by using the word
“pipe” when referring to Listing 7.1 and not using “pipe” term when referring to Listing
7.2. We put in the graphs an abbreviation of the compilation flags used to differentiate
from generated source-to-source code such as follows:

e spar_blocking (blk): used to activate the FastFlow blocking mode.

e spar_ondemand (ond): used to generate the on-demand scheduler.

Therefore, the syntax of the legend in the graphs is spar-[version/-[compiler flag].
Moreover, the Y axis always is relative to the performance metric and X axis is relative
to the number of replicas instantiated for testing the application behavior. Replica
0 represents the source code (sequential). All metrics are exclusively related to the

114 7. Results

stream region from its start to its end. The machine used for these experiments was
Pianosau, which was previously described in Section 7.2.2.

We setup two kinds of workloads to stress the application. For the balanced
workload 320 images with 3000x2250 resolution were used. On the other hand, the
unbalanced workload was composed of 1280 images and four different resolutions were
selected (800x600, 1024x768, 1600x1200 and 3000x2250).

Figure 7.1 and 7.2 shows the performance results concerning the metric com-
pletion time (a) and latency per image (b). Considering completion time, it is not
possible to significantly distinguish the best optimization flag used in the both versions
due the standard deviation illustrated in the graphs (using error bars), which are
overlapping.

When comparing both versions, we can see that adding more stages significantly
impacts latency when more replicates are instantiated in this application. This occurs
specifically from 16 replicas that coincide with the start of the hyper threading facilities
of this machine. However, we can observe that the application performs better if it
uses more stages when there are enough resources available. Due to the pipeline, even
performing a single replica can significantly reduce latency and completion time with
respect to Listing 7.2’s version.

spar-pipe spar-pipe-blk —*— spar-pipe spar-pipe-blk —*—
spar-pipe—ond —*— spar—pipe-blk-ond —&— spar-pipe-ond —*— spar-pipe-blk-ond —&—

Sobel (Time) Sobel (Stream Performance)

@

2

N B
S S
—

Seconds

Latency(milliseconds)
5]
3
A—

6 = 80
3 i o
%&!ﬁi\s“ﬁb—'w#ﬁp i385 %’7‘% 60

) 2

8 i i 20 i i
01234567 8 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas

(a) Sobel Filter execution times. (b) Sobel Filter latency.

Figure 7.1: Time performance using balanced workload (Listing 7.1)

Another important metric in stream parallelism is the throughput that is pre-
sented in Figure 7.3 and 7.4. Graph (a) illustrates the throughput and graph (b) the
throughput speedup. These results demonstrate how many images the application is
able to process at a given time that can be associated with Figure 7.1 and 7.2. Unlike
the time and latency metrics, throughput shows a significant difference among the
versions implemented using SPar. For instance, picking up the highest throughput
rate of both versions, Listing 7.2’s version is able to process 10 more images (with 32
replicas). However, Listing 7.1’s version requires less replicas to achieve its highest
throughput rate (with 11 replicas).

7.3. Multi-Core Environment 115

spar spar-ond —<— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—
Sobel (Time) Sobel (Stream Performance)
64 200
180
32 160 \
é 140
8 g \
5 120
216 E \
@ = §100
5 g]
Sags s NSY iy e
8 60
40
RS === =
4 20 i i i i i
012345678 9101112131415161718192021222324 2526272829 303132 01234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Sobel Filter execution times. (b) Sobel Filter latency.
Figure 7.2: Time performance using balanced workload (Listing 7.2)
spar-pipe spar-pipe-blk —— spar-pipe spar-pipe-blk —x—
spar—pipe—ond —*— spar—pipe-blk-ond —&— spar-pipe—ond —*— spar-pipe-blk-ond —&—
Sobel (Stream Performance) Sobel (Speedup Throughput)
30 T T 55 T T T T T
5 -
.
" =™ <t/ Rar Yo ey
?4 = S e 45
8 NS . \
520 3 g
5
:; §3.5
g @ 3
E15
25
10 2 /
15
50 1234567 8 91011121314151617181920212223242526272829303132 10 1234567 8 9101112131415161718192021222324 252627 2829303132
Number of Replicas Number of Replicas
(a) Sobel Filter throughput. (b) Sobel Filter throughput speed-up.

Figure 7.3: Stream performance using balanced workload (Listing 7.1)

spar spar-ond —*— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—

Sobel (Stream Performance) Sobel (Speedup Throughput)

IS
S
©

I v
Y
o

©
=3
o

%25 > z o2 ?5 A ii
'% ZQ@Q T % o = 54 s
E 20 4

a
©

10 2
50 1234567 8 91011121314151617181920212223242526272829303132 10 1234567 8 91011121314151617 18192021 222324252627 2829 30 3132
Number of Replicas Number of Replicas
(a) Sobel Filter throughput. (b) Sobel Filter throughput speed-up.

Figure 7.4: Stream performance using balanced workload (Listing 7.2)

High-Performance Computing (HPC) performance concerns more on CPU ef-
ficiency and energy consumption of the application. In both versions in Figure 7.5

116 7. Results

and 7.6, (a) represents efficiency and (b) demonstrates the energy consumption only
concerning the CPU cores V. We can observe that this application does not present
an efficient usage of the CPU starting from 5 replicas up to 32. In fact, it decreases to
20 percent for the Listing 7.2’s version and even more for Listing 7.1’s version. These
results are due to the fact that the disk is a bottleneck for this application, since two
of the three stream operations are performed primarily on the disk (read and write).

When analyzing the energy spent to achieve efficiency, it is again evident that the
second version provides the best balance between effectiveness and power consumption.
On the other hand, when looking at the optimization flags, the results show that when
an spar_ondemand flag is added, the application consumes more energy than in case
we use standard or different kinds of flags.

spar—pipe-blk —*—

spar-pipe spar-pipe-blk —*— spar-pipe
spar-pipe-ond —*— spar-pipe-blk-ond —&— spar-pipe-ond —*— spar-pipe-blk-ond —&—
Sobel (HPC Performance) Sobel (energy-cores)
14 1024 —
¥
f\
12 e\
i\
[\
1 A
\ 512 H
> |
208 3 [N
g 3
bl S
¥ A g
0.6 \\ "!\ 1
~ 256 ™ i
04 -5 —
N m H "
s RN = =S NNy
02 o = iﬁ‘\i/ Baze®
HH&?:G
0 128 . i
01234567 891011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Sobel Filter HPC efficiency. (b) Sobel Filter CPU cores energy consumption.

Figure 7.5: HPC performance using balanced workload (Listing 7.1)

spar spar-ond —=— spar-blk —»— spar-blk-ond —&— spar spar-ond —— spar-blk —»— spar-blk-ond —&—
Sobel (HPC Performance) Sobel (energy-cores)
1.1 —: T 1024
1 ﬁ* i
09 l \\\
08 ‘g‘ \
512
go7 " I
s 8 I
%—’ 06 3]
i\ﬁb\ B
0.5 §‘§
&\K 256 = 2 -
0.4 s & /%4 —
Ny RacsSacas - i?% 1
03 S STaE e SN
=~
02 ﬁy\ﬁéﬁ?ﬁ%&hﬁ
0.10 1234567 8 9101112131415161718192021222324252627 2829303132 1280 1234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Sobel Filter HPC efficiency. (b) Sobel Filter CPU cores energy consumption.

Figure 7.6: HPC performance using balanced workload (Listing 7.2)

Figures 7.7 and 7.8 shows the HPC metrics: cache misses (graph a) and the
energy consumption from the entire CPU socket (graph b), which includes the cache

VThis metric was collected by using hardware counters.

7.3. Multi-Core Environment 117

memory. When comparing the versions, Listing 7.2 had less cache misses, but the
energy consumption of the CPU socket was higher because it provides better efficiency
(Figure 7.6(a)).

Analyzing the optimization flags, we can observe that cache misses were not
significantly different. Also, energy consumption does not present significant differ-
ences as before (Figure 7.6(b) and 7.5(b)) when we were only looking at the CPU
core consumption. The spar_ondemand optimization flag result is a consequence of
generating code that stresses the CPU more than other resources from the energy
consumption perspective, yet efficiency and cache miss are not significantly affected.

spar-pipe spar-pipe-blk —— spar-pipe spar-pipe-blk —»—

spar-pipe_ond —— spar-pipe-bik.ond —s— spar-pipe-ond —%— spar-pipe-blk.ond —=—
Sobel (cache-miss) Sobel (energy-pkg)
4.1943e+06 2048
1.04858e+06 /\
\
\
262144 1024 |
e \ £
65536 \ S \
16384 512 =
N
iy b %
- i\i 3 = 5k &
4096 - kiﬁ\“:l %‘5
1024 256 L L
01234567 8 91011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Sobel Filter cache misses. (b) Sobel Filter socket energy consumption (cache
and CPUs).

Figure 7.7: CPU Socket performance using balanced workload (Listing 7.1)

spar spar-ond —— spar-blk —»— spar-blk-ond —&— spar spar-ond —— spar-blk —— spar-blk-ond —&—
Sobel (cache-miss) Sobel (energy-pkg)
4.1943e+06 2048
//“‘
1.04858e+06
1024 Fo\.
262144
\ { \
i} °
< 65536 § 512 S
| i
A
16384 1 3 %S;é%g;@;‘"i‘
256
4096
1024 128
01234567 891011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Sobel Filter cache misses. (b) Sobel Filter socket energy consumption (cache
and CPUs).

Figure 7.8: CPU Socket performance using balanced workload (Listing 7.2)

The last resource that we analyzed was memory. Memory efficiency is essential
for avoiding unnecessary traffic due to the memory swaps that will eventually lead
to performance losses. Increasing memory usage is normal since we add replicas to a

118 7. Results

code region during parallelization. Figure 7.9 and 7.10 illustrate memory usage (graph
a) and energy consumption (graph b).

There are significant differences in memory usage when the results of the appli-
cation versions are compared. While Listing 7.2 version increases linearly and uses
less memory to exploit parallelism, Listing 7.1 version starts with much memory and
increases until it becomes stable, using more memory to exploit parallelism. This is a
consequence of adding one more stage contributing to pipeline parallelization in the
application. However, the results of energy consumption do not reflect such results as
memory usage does not seem to affect power consumption in this case.

Next we compare the effect of using different optimization flags. Only Figure
7.9(a) the spar_blocking flag revealed a significant impact. In this case, from
beginning up to 14 replicas much more memory is used. This result is a consequence
of the round robin scheduler that combined with the blocking mode that requires the
use of much more memory for the FastFlow queues.

spar-pipe spar-pipe-blk —*— spar-pipe spar-pipe-blk —*—
spar-pipe-ond —*— spar-pipe-blk-ond —&— spar-pipe-ond —*— spar-pipe-blk-ond —&—

Sobel (Memory) Sobel (energy-ram)
2.09715e+06 1024
HHHH HS
—
o anl
1.04858e+06
512
524288
8
e =
262144 } S 256
131072
-
128
i ki = 4
65536
32768 64 i
01234567 891011121314151617181920212223242526272829303132 01234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Sobel Filter memory usage. (b) Sobel Filter memory energy consumption.

Figure 7.9: Memory performance using balanced workload (Listing 7.1)

spar spar-ond —*— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—

Sobel (Memory) Sobel (energy-ram)
2.09715€+06 1024
1.04858e+06
.AP"’“’"’M
o 512
et
524288 o
¥ ol 2
o ve 8
S
262144 S 256
I/I
131072 \
128 =4
= =
- R NG
32768 = 64 i
012345678 91011121314151617181920212223242526272829303132 01234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Sobel Filter memory usage. (b) Sobel Filter memory energy consumption.

Figure 7.10: Memory performance using balanced workload (Listing 7.2)

7.3. Multi-Core Environment 119

The results regarding unbalanced workloads can be found in the Appendix
chapter in Section A.1.1. In general, they do not present many contrasts when
comparing all of the metrics of the previously balanced workload to an unbalanced
workload. Latency and throughput were expected to be lower and higher respectively
because smaller image sizes were used. However, the throughput speedup was lower
for Listing 7.2 (compare Figure 7.4(b) than the A.13(b)) version as well as the HPC
efficiency due to scheduling and disk overhead. With respect to the optimization flags,
the spar_ondemand demonstrated better speedup and efficiency in the most cases.
This result was also expected because on demand scheduling performs better with
unbalanced workloads.

| 7.3.1.2 | Productivity Comparison

In this section, we will compare code productivity with other alternatives for parallel
programming. One way to look for productivity is to evaluate the physical Source Line
of Code (SLOC) that was necessary to support parallelism in the application. Figure
7.11 plots the percentage difference with respect to the sequential version (considering
the whole application’s code). The implemented versions using SPar (spar), OpenMP
(omp), TBB (tbb), and FastFlow (ff). We can observe that programming frameworks
designated to stream parallelism (TBB and FastFlow) require much more code intrusion.
Even though OpenMP is not particularly suitable to support stream parallelism, this
application provides specific characteristics that enable implementation by using task
parallelism. Consequently, it produces more code intrusion than when parallelizing
data parallel computations. As SPar builds on the standard grammar, it allows us to
reuse C++ iteration statements when annotating a stream region or stage. In turn,
this enables us to achieve better productivity than OpenMP.

Source Line of Code (Filter Sobel)
25% T T T T T

21788

19.45

15.70

15% [~ 12.77

Percentage Difference
2
B
T

5% [2.74 365

000 030 061
L L 1

Se, Sp, Sp, 7 (7 a Fp, g %y,
9 o e, o P e P

Djoe
Figure 7.11: Source line of code for filter Sobel application.
In addition to SLOCs, it is important to analyze the conceptual productivity

concerning implementation details and particular characteristics from the programming
framework that need to be understood. For instance, OpenMP is not designed to

120 7. Results

implement stream parallelism. Therefore, it is necessary to understand more about
its API and low-level programming model. Listing A.1 implements a comparable
pseudo code version of Listing 7.2, where OpenMP uses terms like single, parallel, and
task that are considered low-level parallelism exploitation directives and not stream
domain friendly terms. It will influence code productivity because developers have to
learn terms and programming models that are not friendly to their domain. Moreover,
OpenMP was able to produce a kind of pipeline-like implementation because stages
can operate in a DataFlow graph mode. The resulting pseudo code version is presented
in Listing A.2, which in principle can be compared with Listing 7.1. Thus, users must
again deal with low-level terms and explicitly define data dependency.

The comparison between SPar, FastFlow and TBB implementations (Listings
A3, A4, A5, and A.6), reveals that two (FastFlow and TBB) provide less productivity
because the original code must be restructured and more code is needed. However,
unlike OpenMP, FastFlow and TBB terms are more friendly to the domain user as
well as their interface.

| 7.3.1.3 | Performance Comparison

A performance comparison is a way to identify if the rules for source-to-source trans-
formation are efficient with respect to the state-of-the-art tools. Therefore, all other
compared versions are implemented in an optimal way, while in SPar we plot the
default version without any optimization flag. Experiments used a balanced workload
as discussed in the previous section (Section 7.3.1.1). Figures 7.12 and 7.13 present the
two implementation versions, comparing the completion time (graph a) and the latency
(graph b). In summary, the results of Figure 7.12 demonstrate that SPar achieved
similar completion time and latency with respect to state-of-the-art stream parallelism
tools (FastFlow and TBB). However, SPar outperforms OpenMP up to the point we
start using the hyper threading resources of the machine. After that point, it loses
against OpenMP (out against TBB and FastFlow too). Note that the OpenMP error
bars present a higher standard deviation when running on hyper threading facilities.

In the second version (Figure 7.13), there is an equilibrium among the pro-
gramming frameworks in completion time and latency. Note that OpenMP has the
same results in Figure 7.12 even when different annotations are used. Consequently,
OpenMP would not benefit from a pipeline parallelism such as SPar when there
are enough machine resources (2 up to 15 replicas). The disadvantage of OpenMP
in this application is that expressiveness is not reflected in performance, because it
requires more replicas to achieve better performance than SPar in the pipeline-like
implementation version.

7.3. Multi-Core Environment 121

spar—pipe ff-pipe —<— tbb-pipe —*— omp-pipe —&— spar-pipe ff-pipe —=— tbb-pipe —*— omp-pipe —&—
Sobel (Time) Sobel (Stream Performance)

64 200

180

32 160
w

2140
Ll

L] I

2 i~ 2420
316 E

@ <P i i 3 = 100
e 2
ﬁ’b’SEHK) 3 <P]
e e N 3

g] 80

8
60 u!
© S s SERUENERPERENR o
— - W G g
4 20 ! |
012345678 9101112131415161718192021222324 2526272829 303132 01234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Sobel Filter execution times. (b) Sobel Filter latency.

Figure 7.12: Time performance comparison using balanced workload (Listing 7.1)

spar ff —<— tbb —«— omp —=— spar ff —<— tbb —=— omp —=—
Sobel (Time) Sobel (Stream Performance)
64 200
180
32 A160 \
é 140
K 2120
£100
b e £
E4 G
?’js‘é&%?’ﬁ%%? ~ 80
8 60
40 e
40 1234567 8 91011121314151617181920212223242526272829303132 200 1234567 8 9101112131415161718192021222324 252627 2829303132
Number of Replicas Number of Replicas
(a) Sobel Filter execution times. (b) Sobel Filter latency.
Figure 7.13: Time performance comparison using balanced workload (Listing 7.2)
spar-pipe ff-pipe —*— tbb-pipe —*— omp-pipe —&— spar-pipe ff-pipe —*— tbb-pipe —*— omp-pipe —&—
Sobel (Stream Performance) Sobel (Speedup Throughput)
40 8
35 7
54
N
30 6
5 A i " . }/H\EH
525 F e P ¥ =" $5 e
5 k] e
_g * . ., Z R - § - /;7-4.@ o 4\(/@4 oI S
g s / -
=20 4 ..
IS
15 3
10 2
50 1234567 8 91011121314151617181920212223 24252627 2829303132 10 1234567 8 91011121314151617 181920212223 242526272829 303132
Number of Replicas Number of Replicas
(a) Sobel Filter throughput. (b) Sobel Filter throughput speed-up.

Figure 7.14: Stream performance comparison using balanced workload (Listing 7.1)

When we look for the stream throughput metric, the difference is more evident
in Figure 7.14 and 7.15. We can conclude that DataFlow parallelism (OpenMP) has

122 7. Results

spar ff —%— tbb —%— omp —&— spar ff —<— tob —%— omp —&—

Sobel (Stream Performance) Sobel (Speedup Throughput)

IS
S
@

35 /! \\ 7 ;
30 E L : 6 R \
8 = > Y
Ll st 7Y : e Y

4 H &

gzo 4 “4 ?”Q

o
©

o
n

5 1
012345678 91011121314151617181920212223242526272829303132 01234567 8 9101112131415161718 192021222324 2526272829303132
Number of Replicas Number of Replicas

(a) Sobel Filter throughput. (b) Sobel Filter throughput speed-up.
Figure 7.15: Stream performance comparison using balanced workload (Listing 7.2)

higher throughput rates compared to stream parallelism in Figure 7.14’s version. This
is primarily due to the fact that the first and last stages are not able to process fast
enough to maintain the pipeline full. One way to address this performance behavior
would be replicate the last stage, such as OpenMP dues with DataFlow. Hence, with
a lower number of replicas the application can not perform better than when using
OpenMP, while SPar allows the users to choose the version that fits their design goals
regarding performance. For instance, in the version presented in Figure 7.15, SPar
achieved the highest speedup and throughput rate as well as similar performance to
the highest OpenMP in Figure 7.14.

spar-pipe ff-pipe —— tbb-pipe —*— omp-pipe —&— spar-pipe fi-pipe —<— tbb-pipe —*— omp-pipe —&—

Sobel (HPC Performance) Sobel (energy-cores)
14 T T 1024

ks

Efficiency
o o
> ®
i
Joules
a
I

x—x

256
0.4 ’i‘ Eﬁ\] S k% g]
=8 P TR L B S=T S
0z i;{\’;f&,gi\a—s_{ B Sl 1 =% \/]
= Y ’\%‘E e A
00 123456789 101112131415161718192021222324252‘62728293031 32 1280 123456789 10111213141516171‘81920212223242526272829303132
Number of Replicas Number of Replicas
(a) Sobel Filter HPC efficiency. (b) Sobel Filter CPU cores energy consumption.

Figure 7.16: HPC performance comparison using balanced workload (Listing 7.1)

Figure 7.16 shows the results of completion time on the efficiency for this
version, where stream-based parallelism interfaces perform better up to the point
hyper threading facilities are used. However, this difference was not that significant if
compared with the throughput graph, estimating better efficiency to SPar concerning
the number of replicas needed. On the other hand, it consumes much more energy
than OpenMP. As presented in Figure 7.5(b), SPar allows users to achieve less energy

7.3. Multi-Core Environment 123

spar ff —<— tbb —— omp —&— spar ff —<— tbb —%— omp —&—

Sobel (HPC Performance) Sobel (energy-cores)
1.1 T 1024
g
1
0.9
|
0.8
512
307 »
s E
206 3
i}
-~
0.5 \
04 - 256 -
5% =
_ 4 - S8

03 e AN >s$%;’$?'\z%\%< =S 2

0.2 w ~ ”

0.1 i i i 128 i i

01234567 891011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Sobel Filter HPC efficiency. (b) Sobel Filter CPU cores energy consumption.

Figure 7.17: HPC performance comparison using balanced workload (Listing 7.2)

consumption by adding the spar_blocking optimization flag, being competitive with
the other frameworks. Regarding Figure 7.17, we can observe that efficiency was not
significantly different among the programming framework while energy consumption
was worst in FastFlow and SPar. This result could be improved in SPar by adding the
spar_blocking optimization flag during the compilation of the program.

Another analysis of HPC is relative to the cache misses, which were significantly
better in SPar and hand written FastFlow in both implementation versions (see Figures
7.18 and 7.19). Also, even though SPar demonstrates more energy consumption
considering the whole CPU socket, it can be competitive if an optimization flag is
used.

spar—pipe ff-pipe —<— tbb-pipe —*— omp-pipe —&— spar-pipe ff-pipe —=— tbb-pipe —*— omp-pipe —&—

Sobel (cache-miss) Sobel (energy-pkg)

1.677726+07 2048
4.1943e+06 é&
g T e 1024
1.04858¢+06 B o0
L g
262144 &]
e o g 3
3 512 7
65536 = B - } /
QﬁﬁﬁggwwzajH PN
235 5 -
16384 BN 4
256
o
4096 ke T I
%% F—%
1024 L i 128
01234567 891011121314151617181920212223242526272829303132 01234567 89101112131415161718192021 2223242526 272829303132
Number of Replicas Number of Replicas
(a) Sobel Filter cache misses. (b) Sobel Filter socket energy consumption (cache

and CPUs).
Figure 7.18: CPU Socket performance comparison using balanced workload (Listing 7.1)

Finally, SPar only uses much more memory when compared to TBB in Figure
7.20. This is because SPar builds on top of FastFlow, which uses queues to communicate
and by default it uses round robin scheduling. However, SPar is flexible enough to

124 7. Results

spar ff —%— tbb —%— omp —&— spar ff —<— tob —%— omp —&—

Sobel (cache-miss) Sobel (energy-pkg)

4.1943e+06 2048
S
1.04858e+06
—
ey
262144 . 1024
\ - ”
2 £
< 65536 \ i
16384 512 =
\&SF -
, b ihg L TR = ><
0% SESSE S shhiind T V%F*% ﬁw&ﬁbﬂﬁ g &giﬁﬁg%";fﬁ?
1024 ‘ 255 ‘ N ‘
01234567 891011121314151617181920212223242526272829303132 01234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Sobel Filter cache misses. (b) Sobel Filter socket energy consumption (cache

and CPUs).
Figure 7.19: CPU Socket performance comparison using balanced workload (Listing 7.2)

allow the user to improve memory usage by adding a spar_ondemand optimization
flag (which was presented in Figure 7.9(a)), with a version of the code competitive
with TBB.

spar—pipe ff-pipe —*— tbb-pipe —*— omp-pipe —&— spar—pipe ff—pipe —*— tbb-pipe —*— omp-pipe —&—

Sobel (Memory) Sobel (energy-ram)

419430408 1024
5g
2.097150+06
-+ KT A = -
SEES ol 512
1.04858¢+06 ¥
= \
- \
@ 524288 8
g £
3 256
262144 ’
131072 s xlg -
= SEE EEE e =
seass s S SERE b d [
65536 g
L
32768 2 64
012345678 91011121314151617181920212223242526272629303132 012345678 091011121314151617 18192021 222324252627 2629303132
Number of Replicas Number of Replicas
(a) Sobel Filter memory usage. (b) Sobel Filter memory energy consumption.

Figure 7.20: Memory performance comparison using balanced workload (Listing 7.1)

The results using unbalanced workloads presented only significant differences
compared to experiments with balanced workloads in the pipeline-like version. This
can be view in the Appendix, specifically in Section A.1.2. Starting from the execution
time and latency, they were even better up to and after using hyper threading facilities.
The highest rates of SPar and OpenMP throughput were close to each other, as can
be seen in Figure A.13. Consequently, the efficiency of the application was also more
competitive with the OpenMP results (Figure A.15). However, energy consumption
and other metrics do not present significant changes when compared to unbalanced
and balanced workload results. Therefore, we can conclude that fine grained and
high-frequency streams significantly affect the performance of the OpenMP in the
pipeline-like computation, while stream-oriented runtime and SPar maintain the same

7.3. Multi-Core Environment 125

spar ff —<— tbb —— omp —&— spar ff —<— tbb —%— omp —&—

Sobel (Memory) Sobel (energy-ram)
2.09715e+06 1024

1.04858e+06

524288

KB
Joules

262144

.
131072 / \

128

65536 ARRERRRE ﬁk%%ﬁ%?ﬁﬁ?ﬁ

32768

64 i i i i
01234567 891011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas

(a) Sobel Filter memory usage. (b) Sobel Filter memory energy consumption.

Figure 7.21: Memory performance comparison using balanced workload (Listing 7.2)

performance.

| 7.3.1.4 | Summary

In the Sobel filter application, we can highlight that flexibility does not affect SPar’s
productivity and provides more opportunities for improving machine resource usage and
accomplishing the application constraints. Also, we demonstrated that optimization
flag allows us to fine tune performance and provide more options to the user for energy
consumption and memory usage constraints.

For this application, code productivity was not significantly affected by using
SPar annotations, representing less than one percent on physical SLOCs. Also, SPar
keywords proved to be more suitable for the domain than the primitives provided by
OpenMP. On the other hand, when compared to TBB and FastFlow, the productiv-
ity was significantly better. In general, SPar does not add significant performance
degradation and in some cases it outperforms the state-of-the-art tools.

126 7. Results

7.3.2| Video OpenCV

Video applications represent a classic example of stream parallelism. Video streams can
come from different sources (network, local and camera) and it is hard to determine the
end of the stream. Real world video streaming operations have body or face tracking
and filtering. One of the most commonly used C++ libraries in this area is OpenCV
[KB16]. Therefore, we decided to use it as a benchmark. Listing 7.3 presents only the
stream region of the application, which was taken from OpenCV examples. Instead of
reading from the camera, we had it read from a video file, applying common video
computations on each ovideo frame.

Hence, it aims to extract a specific RGB channel, apply a Gaussian filter, make a
Weighted screen operation (commonly used in film production [Wril0]) and apply the
Sobel filter on each video frame. Before entering into the stream region, the application
opens the input and output video files. Inside the infinite loop, the application reads
frame by frame (line 4 in the listing below), tests if it is empty (line 5), performs a
sequence of video operations (between line 7 and 17) and writes the results in the
output file (line 20). Following SPar’s methodology, we can clearly identify the stream
region and what it will consume from preprocessing the source code. Also different
ways to annotate stages may be used. For example, one can introduce more stages to
fragment the stream operations. However, Listing 7.3 provides an annotation schema
that will be evaluated later in performance and productivity.

[[spar:: ToStream, spar::Input(res,channel src,S)]|] for (;;){
total frames++;
inputVideo >> src;
if (src.empty()) break;
[[spar::Stage, spar::Input(res,channel,src,S), spar::Output(res), spar
:: Replicate ()]]{
vector <Mat> spl;
split (src, spl);
for (int i =0; i < 3; 4++i){
if (i != channel){
spl[i] = Mat::zeros (S, spl[0].type());
}
}
merge (spl, res);
cv:: GaussianBlur(res, res, cv::Size(0, 0), 3);
cv::addWeighted (res, 1.5, res, —0.5, 0, res);
Sobel (res,res,—1,1,0,3);

}
[[spar::Stage, spar::Input(res)]]
{ outputVideo << res; }

}

Listing 7.3: Video OpenCV using SPar.

7.3. Multi-Core Environment 127

7.3.2.1| SPar Performance

The experiments for evaluating the performance of this application were conducted
on a Pianosau machine, using an AVI video file with a duration of 1.53 minutes,
640x480 resolution and containing 2626 frames. This section will evaluate only
SPar’s performance when using the optimization flags. Figure 7.22 demonstrates the
completion time results (left) and latency (right). We can observe that adding the
spar_ondemand flag significantly affects the completion time as well as the latency of
the application from 7 up to 15 replicas. In Figure 7.23 we can see how much this
difference will represent in throughput, were this flag allows the application to process
about fifty frames less per replica time.

spar spar-ond —*— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—

Video_OpenCV (Time) Video_OpenCV (Stream Performance)
128

©
=3

N
o

64

Seconds
@
N
Latency(milliseconds)
= 8
—

e
Ve
B

o

\n\i o -

4 0
012345678 91011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas

(a) Video OpenCV execution times. (b) Video OpenCV latency.
Figure 7.22: Time performance (Video OpenCV)

Figure 7.23 shows that the application scalability is at max 9.5 replicas. This
result is due to the same reason we already verified in the Sobel filter application:
the disk becomes a bottleneck. In contrast, this application achieved the highest
speedup rates because there are more stream operations not banded by the disk
performance. Also, this application cannot work in a farm-like composition because
write operations cannot operate independently and require the use of the spar_ordered
flag to guarantee that elements are processed in order. Thus, although the video and
image application share similar characteristics, they also present different constraints.
Yet, the flexibility of SPar can address them both and provide good performance.

The previous results also reflect more CPU efficiency if the optimization flags
are not used and less energy consumption, as presented in Figure 7.24. However, the
FastFlow runtime is able to avoid different cache misses as can be seen in Figure
7.25(a). Since the spar_ondemand compiler flag creates more energy consumption on
CPU cores, the energy consumption will be different when measuring the entire CPU
socket (Figure 7.24(b)).

128 7. Results

spar spar-ond —— spar-blk —*— spar-blk-ond —&— spar spar-ond —%— spar-blk —*— spar-blk-ond —&—
Video_OpenCV (Stream Performance) Video_OpenCV (Speedup Throughput)
350 T T 10 T T
e e
9
300 -£: = ‘*\
s 5=
©250 \
a8 =) 7 = s,
g 5 Nyt
2200 56
5
3 8
2 &
2150 5
£
=
4
100
3
50 [2
0 1
01234567 891011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829 303132
Number of Replicas Number of Replicas
(a) Video OpenCV throughput. (b) Video OpenCV throughput speed-up.
. .
Figure 7.23: Stream performance (Video OpenCV)
spar spar-ond —— spar-blk —*— spar-blk-ond —&— spar spar-ond —%— spar-blk —*— spar-blk-ond —&—
Video_OpenCV (HPC Performance) Video_OpenCV (energy—cores)
1.2 - T 2048
-
B
1
1024
7A
0.8 \
5 N
5 8
2 S
u%’ 06 N 3 512
.,
"~ =
0.4 e /
“ii‘"ﬂkﬂ_ﬁﬁgg 256 m; s - " W,
- .
02 BN Ba= e
0 128 I
01234567 891011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Video OpenCV HPC efficiency. (b) Video OpenCV CPU cores energy consump-
tion.

Figure 7.24: HPC performance (Video OpenCV)

spar spar-ond —— spar-blk —»— spar-blk-ond —&— spar spar-ond —— spar-blk —»— spar-blk-ond —&—
Video_OpenCV (cache—miss) Video_OpenCV (energy—pkg)
6.71089e+07 2048
G
1.67772e+07 \‘\
\
4.1943e+06
1024
1.04858e+06
8
o \ g
262144 \ 3
65536 \ —
512 /
-
16384 N O -]
\5: e =< aeil
2 "M
4
096 S 3
1024 256 i i I
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Video OpenCV cache misses. (b) Video OpenCV socket energy consumption

(cache and CPUs).
Figure 7.25: CPU Socket performance (Video OpenCV)

7.3. Multi-Core Environment 129

The last metric is memory usage, which is plotted in Figure 7.26. This reveals
energy consumption. Once more the usage of the optimization flag makes the difference.
It requires less memory because on-demand scheduling stores only one element per
FastFlow queue, while round robin by default stores 512 stream elements, which

explains these results.

spar spar-ond —*— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—

Video_OpenCV (Memory) Video_OpenCV (energy-ram)
2.09715€+06 FERREREESCE s Ty - 1024
HP‘HMHH -
AT
1.04858e+06
" 512
524288 ”
@ 2
s
4 S 256
262144
128
131072
ot \,\1 =
.
e
65536 64 L
01234567 8 91011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Video OpenCV memory usage. (b) Video OpenCV memory energy consumption.

Figure 7.26: Memory performance (Video OpenCV)

During the discussion of the results of this section, we can highlight that SPar’s
optimization flag can affect the performance of the application in some cases. The
advantage is that the user can easily switch the optimizations on or off without source

code intervention.

| 7.3.2.2 | Productivity Comparison

Source Line of Code (Video OpenCV) 69.15

70% T T

60% [~ 53.19
@
o
$50% [~
g
0 40% [
(9]
(=]
£30% [
f=y
@
<4
© 20% [~
o

10% [~ 319

0.00
I
0%
s@q o, i b

Figure 7.27: Source line of code for Video OpenCV application.

Before discussing coding productivity, it is important to highlight that OpenMP
is not able to naturally parallelize this application. Since code refactoring is needed to
parallelize in the application with OpenMP as it does not provide suitable annotations

130 7. Results

to stream parallelism and therefore we do not have a comparison with it. Figure 7.27
provides a statistic of the physical SLOC needed by the programming frameworks. We
observe that SPar is significantly more productive in comparison with state-of-the-art

tools, fifty percent more than FastFlow and about sixty-five percent better than
TBB.

We can also observe better productivity not only with respect to SLOC, but
also regarding source code maintainability. While in SPar only code annotations are
needed, FastFlow and TBB require the developer to restructure the application such
as demonstrated in their respective pseudo codes in the Appendix Listings A.7 and
A.8. In FastFlow, it is necessary to program the emitter, worker, and collector classes
by implementing the svc method as well as the stream through a data structure V.
Similarly, the TBB version was implemented to allow parallelism in this application.

| 7.3.2.3 | Performance Comparison

In this section, a performance comparison is made to evaluate if SPar transformations
are efficient according to hand-written state-of-the-art tools TBB and FastFlow. We
used the same video to stress the application and compare the results for all metrics.
Figure 7.28 plots the graphic results of the execution time and latency. We can see
that SPar presents the same latency and completion time as FastFlow and better
results than TBB.

spar ff —<— thb —*— spar ff —— thb —%—

Video_OpenCV (Time) Video_OpenCV (Stream Performance)
128

@
S

T

64 \

I
S

32

Seconds

Latency(milliseconds)
=
—

1

o

¥ HHS:;;./# -4

e

4 0 i
01234567 891011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas

(a) Video OpenCV execution times. (b) Video OpenCV latency.
Figure 7.28: Time performance comparison (Video OpenCV)

In Figure 7.29, we can see how SPar’s throughput rate is better than TBB’s,
enabling about fifty frames more per replica to a given completion time. A similar

YThe most recent version of FastFlow actually requires less SLOCs leveraging the new features
provided by C++411(14). As an example, pipeline stages may be provided as closures, rather than
svn methods in a £f-node object.

7.3. Multi-Core Environment 131

difference was found in Figure 7.23 when comparing SPar’s optimization flag. Con-
sequently, we can judge that TBB’s work stealing scheduler adds extra overhead to
this application. Thus, for each frame a thread will communicate with the scheduler,
asking for another job. Since this is how TBB behaves, there is no alternative to
improve TBB’s throughput rate.

spar ff —<— tbb —¥— spar ff —<— tbhb —*—

Video_OpenCV (Stream Performance) Video_OpenCV (Speedup Throughput)
350 T T T 10 T T T
e 9 =
300 %
/ 8
ek
ks
©250) = TN
& - 7
@ [o H‘?"’dl"“\)(éitf —_— -
5
5200 g6
2 ?
£ @ —
4 &
2150 5
£
IS
4
100
3
50
[2
0 1
012345678 91011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Video OpenCV throughput. (b) Video OpenCV throughput speed-up.

Figure 7.29: Stream performance comparison (Video OpenCV)

To confirm the previous assumptions and results, Figure 7.30 demonstrates the
application’s efficiency and energy consumption. SPar and FastFlow are more efficient
than TBB. As SPar uses/stresses more the CPU to achieving this level of performance,
it is natural that it consumes more energy on the CPU cores (as shown in the graph).

spar ff —<— tbb —x— spar ff —<— thb —*—

Video_OpenCV (HPC Performance) Video_OpenCV (energy—cores)
1.2 T T 1024

. \
\
0.8 512 -
z @
s :
2 g
E 0.6 5 i
w
04 256 . S = &
= *— —
&)\,\)NNN +F] _ =S
i SR
02 =
0 128
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Video OpenCV HPC efficiency. (b) Video OpenCV CPU cores energy consump-

tion.

Figure 7.30: HPC performance comparison (Video OpenCV)

A subtle difference between SPar and FastFlow regarding cache misses can be
observed in Figure 7.31(a). Yet, this is not considered significant because of the
standard deviation. However, it does indicate that SPar code generation can impact
cache misses. Again, SPar and FastFlow significantly outperform TBB.

132 7. Results

spar ff —x— tbb —x— spar ff —— thb —x—
Video_OpenCV (cache-miss) Video_OpenCV (energy-pkg)
6.71089e+07 2048
=
1677726407 T
s
419436406 A T 4
1024
1.04858e+06
3 \
¢ | :
262144 \ 3
65536
512
16384 _ L o et o MY
=
F\s\i’k%*‘;’/"%" — A
4096 S e = = R _— T
P T A 256 i i
01234567 891011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Video OpenCV cache misses. (b) Video OpenCV socket energy consumption

(cache and CPUs).
Figure 7.31: CPU Socket performance comparison (Video OpenCV)

Unfortunately, SPar and FastFlow use much more memory than TBB due to
the queue communication. However, in case the user has memory constraints, the use
of optimization flags enables SPar to achieve a version that is competitive with TBB
in memory usage. For example, specifying the spar_ondemand flag.

spar ff —<— tbhb —*— spar ff —<— thb —*—
Video_OpenCV (Memory) Video_OpenCV (energy-ram)
2.09715e+06 1024
- VEVEMEVEMIVEMIVSS S s = N
1.04858e+06 -
512 5\
524288 2
o 8
¢
* 3 256
262144
g
e U S S = 128
131072 g T r/ﬁ?gzj e
g/«x—eaeae/"“’ ¥ Kﬁ?—aeapar*"? ki
et
65536 64 e
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Video OpenCV memory usage. (b) Video OpenCV memory energy consumption.

Figure 7.32: Memory performance comparison (Video OpenCV)

| 7.3.2.4 | Summary

After experimenting with our video OpenCV application, we concluded that SPar’s
annotations were simple, high-level and suitable to provide efficient parallelization.
We can highlight that SPar significantly improved productivity on Video OpenCV
applications when compared to the state-of-the-art tools. Also, SPar does not add
extra overhead when compared to hand-written FastFlow and performed better than

7.3. Multi-Core Environment 133

TBB. However, the optimization flags were not synonymous with speeding up the
application’s performance. Moreover, this experiment revealed the benefit of the
stream-oriented runtime (FastFlow) in cache efficiency, where TBB cannot achieve
good performance due to the work stealing scheduling implementation that adds extra
overhead in streaming and fine grained applications.

7.3.3| Mandelbrot Set

The Mandelbrot set is a mathematical application that aims to create a fractal image
from a set of complex numbers [DMO06]. It is very well known in the mathematical
field, and different algorithms are available in the literature. Our application was
taken from FastFlow examples repository*. This is not a stream application, but can
be implemented as such. Listing 7.4 presents the stream region of the application. For
a given dimension, the program computes the value of each one of the pixels until a
line of the image is completed (between lines 7 and 20) so that it can be printed on an
interactive screen (between lines 23 and 24).

.

,

2 }
,

[[spar:: ToStream, spar::Input(dim,init_b step,init_a ,niter)]]

3| for (int i=0;i<dim;i++) {

unsigned char M = (unsigned char x) malloc(dim);
double im=init_b+(stepx*i);
[[spar::Stage,spar::Input(M,i,im,niter ,init_a ,step ,dim), spar::Output(
M, i) ,spar:: Replicate()]]{
double a,b,a2,b2,cr k;
for (int j=0;j<dim;j++){
a=cr=init__a+stepx*j;
b=im ;
k=0;
for (k=0;k<niter ;k++){
a2=ax*a;
b2=bxb;
if ((a2+b2)>4.0) break;
b=2xaxb-+m;
a=a2—b2+cr;
}
M[j]= (unsigned char) 255—((k*255/niter));
}
}
[[spar::Stage,spar::Input(i,dim ,M)]]{
ShowLine (M, dim , i) ;
free (M) ;
}

Vihttps:/ /sourceforge.net /p/me-fastflow /code/HEAD /tree/examples /simple_ mandelbrot /

134 7. Results

Listing 7.4: Mandelbrot using SPar.

Since we intend to evaluate the performance later, just the most efficient anno-
tation schema is demonstrated in Listing 7.4. When interpreting this application in a
stream parallelism fashion, we have to look what the stream region is consuming from
outside the region to annotate the input variables. The same attention must be paid
when annotating the stage regions. Hence, we define the computation part and print
as stages. Because each line of the resultant image can operate independently, we
can replicate the computing stage (line 6). Note that last stage can not be replicated
because printing lines in parallel will produce an incorrect image in the Mandelbrot
set (it is a state-full stage).

7.3.3.1| SPar Performance

To evaluate SPar’s compiler optimization flags performance, we configured the Mandel-
brot set application to compute (-2.125+-1.5) to (0.875+1.5), iterate 1,024 times and
produce an image of 400,000,000 pixels. The experiments were run on the Pianosau
machine and standard deviations were plotted on the graphs through error bars.

spar spar-ond —<— spar-blk —— spar-blk-ond —&— spar spar-ond —x— spar-blk —*— spar-blk-ond —&—

Mandelbrot (Time) Mandelbrot (Stream Performance)
256 0.00045

- 0.0004

0.00035 \

0.0003

0.00025

0.0002

Latency(milliseconds)

0.00015

8 - - .
ey 50-05 B

-
'\“\14.\,:&&\ 0.0001

i o N

4 L 0
01234567 891011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas

(a) Mandelbrot execution times. (b) Mandelbrot latency.
Figure 7.33: Time performance (Mandelbrot)

The completion times and latency for this application are in Figure 7.33. As
can be observed, all options achieved similar results up to 16 replicas. We also had
significant completion time reduction as well as low latency per pixel computed. The
differences can be better understood in Figure 7.34 through the throughput rates.
Note that performance degradation starts from where the replicas start to use hyper
threading facilities. There is only significant degradation when spar_ondemand flag is
not present when going up to 16 replicas. Also, scheduling influences the throughput

7.3. Multi-Core Environment

135

speedup. In the worst case (using 17 replicas), the program can process about 6,372,000
pixels more when using this flag.

7e+07

6e+07

5e+07

4e+07

3e+07

Throughput of 400000000

2e+07

1e+07

spar

spar-ond —<— spar-blk ——

Mandelbrot (Stream Performance)

spar-blk-ond —&—

spar

spar-ond —<— spar-blk —+— spar-blk-ond —&—

Mandelbrot (Speedup Throughput)

%

%

o

s

e

/

01234567 8 91011121314151617181920212223242526272829303132

Number of Replicas

(a) Mandelbrot throughput.

0
01234567 8 91011121314151617181920212223242526272829303132

Number of Replicas

(b) Mandelbrot throughput speed-up.
Figure 7.34: Stream performance (Mandelbrot)

Concerning the HPC result in Figure 7.35, it becomes clear that in terms
of efficiency and energy consumption, the best choice is to use spar_ondemand and
spar_blocking flags together for this application along with the annotation schema.

spar

spar-ond —*— spar-blk —»—

Mandelbrot (HPC Performance)

spar-blk-ond —&—

spar

spar-ond —*— spar-blk —*— spar-blk-ond —&—

Mandelbrot (energy—cores)

0.8

Efficiency

0.6

0.5

0.4

Joules

4096

2048 1/

1024

512

256

012345678 91011121314151617181920212223242526272829303132

Number of Replicas

(a) Mandelbrot HPC efficiency.
Figure 7.35: HPC performance (Mandelbrot)

28
01234567 891011121314151617181920212223242526272829303132

Number of Replicas

(b) Mandelbrot CPU cores energy consumption.

The high standard deviation of cache misses presented in Figure 7.36 does
not allow us to assume that one alternative was better than another. On the other
hand, results of CPU socket energy consumption reflected the results of the power
consumption considering only the CPU cores. Finally, Figure 7.37 demonstrated
no significant differences in memory usage, while the power consumption difference
impacted the whole application’s performance.

136 7. Results

spar spar-ond —— spar-blk —*— spar-blk-ond —&— spar spar-ond —%— spar-blk —*— spar-blk-ond —&—
Mandelbrot (cache-miss) Mandelbrot (energy—pkg)
8192 8192
4096 \\
\
2048
o °
X E
4096 E]
NS
= 1024 §
s 2= S
;1 SSZR $P=an AN
EP sjg\‘?%é%ﬁﬁzg% EREER 512 = pa===%
=
ﬁﬁ%ﬁ!ﬁ,ﬂ_‘ :e
2048 L1 i i i i i 256 i
012345678 91011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Mandelbrot cache misses. (b) Mandelbrot socket energy consumption (cache
and CPUs).
Figure 7.36: CPU Socket performance (Mandelbrot)
spar spar-ond —— spar-blk —»— spar-blk-ond —&— spar spar-ond —— spar-blk —»— spar-blk-ond —&—
Mandelbrot (Memory) Mandelbrot (energy—ram)
524288 2048
262144
1024
131072 /
65536 I 512
o 32768 §
< l § 256 ™
16384 \l\“\l
-,
8192 128 N‘\' 4‘\’
" i
4096 '\"\"““‘::ﬁ,‘:xh‘h':l /
64
2048
1024 32
01234567 8 91011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Mandelbrot memory usage. (b) Mandelbrot memory energy consumption.

Figure 7.37: Memory performance (Mandelbrot)

| 7.3.3.2 | Productivity Comparison

To compare the SLOC productivity, we experimented all implementation version
that were used to compare performance, including OpenMP (omp), TBB (tbb),
FastFlow (ff), and Pthreads (pt). The FastFlow and Pthreads versions were taken
from the repository while we implemented the others. Figure 7.38 gives an idea of
code productivity differences (in percentage). SPar is much more productive with
respect to the state-of-the-art tools for stream parallelism (FastFlow and TBB) as
well as Pthreads. Moreover, even though OpenMP should be suitable for this kind of
parallelization, it requires more code than SPar because OpenMP annotations can not
be made along with C+-+ statements, they appear on a separate line.

For analyzing the implementation, we discuss only the most productive versions.

7.3. Multi-Core Environment 137

Source Line of Code (Mandelbrot)
160% T T T T 14479

140% [~

20% [~
94.78

o
=}
B3

T

80% [65.63

Percentage Difference
[o2]
S
o~
T

IS
S
X

T

9.38
—

n
N
o~

T

0.00 3.13

S
B

Seg gy Ony, # p ot

Figure 7.38: Source line of code for Mandelbrot application.

Therefore, their pseudo source code is presented in Section A.3.3. We can observe
in Listing A.9 that OpenMP parallelization uses an explicit approach and terms
that are particular to the programming model. In contrast, SPar annotations are
high-level stream properties and the parallelism is implicit by the specification of
stage replicas. On the other hand, programmers have to restructure the source
code in a pipeline fashion using TBB (Listing A.11) while in Listing A.9, FastFlow
restructures the program like a farm computation with the collector. In both libraries,
one must implement classes and methods offered through a C++ template interface.
Consequently, more code is necessary to structure and manage the data such as
pointers.

| 7.3.3.3 | Performance Comparison

In this section, we aim to provide a performance comparison for evaluating the SPar
and other state-of-the-art tools. Figure 7.39 compares execution times and latency for
a set number of tested replicas. Among the SPar versions, we plot only the default
without an optimization flag. We can observe that this SPar version has identical
execution times with respect to hand-written FastFlow and Pthreads up to 16 replicas.
To provide an identical result with more replicas, the spar_ondemand flag is used when
compiling the program (as was observed in Figure 7.33(a)). In respect to OpenMP and
TBB, SPar reduces the latency and execution time significantly. OpenMP performs the
worst because the parallel region can not be entirely parallelized. Since the OpenMP
runtime is not able to behave in a pipeline fashion, there is an implicit barrier after
single and parallel for (see Listing A.9), where all system threads cross together.

This difference is better represented in Figure 7.40. The best SPar option is
plotted in Figure A.26 to better visualize and compare with the other tools. We can
see that SPar flexibility by using optimization flags allows for speedup performance
while TBB does not provide such an opportunity. Although more competitive with

138 7. Results

spar ff —<— tbb —*— omp —&— pt —=— spar ff —<— tbb —— omp —&— pt —=—

Mandelbrot (Time) Mandelbrot (Stream Performance)
256

0.00045
- 0.0004
128 2
0.00035 %

@

64 K 2 0.0003

s | |

@2 Q

K \ - £ 0.00025
3 32 = £
@ 5 g

§ e g, e g 00002
'\.§ S W g

16 g 0.00015

N
i = S -
. K““‘HN(\’NN / 0.0001 \ L L
" *— / 35—
e 5e-05 i o
4 0
012345678 091011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Mandelbrot execution times. (b) Mandelbrot latency.

Figure 7.39: Time performance comparison (Mandelbrot)

spar ff —<— tbb —*— omp —=— pt —=—

spar ff —<— tbb —— omp —&— pt —=—
Mandelbrot (Stream Performance) Mandelbrot (Speedup Throughput)
7e+07 — 30
r//'<\“\
6e+07 e 25
- | / |

o e \ /./ e
S 50407 | o
8 /'/ \ 20
S o | e
8 % | -3 -
T 4e+07 1 ~
5 = 3 P
= I 3 .
g % §°
©36+07 %
e 0 Zoon

26407 .

e o —
Z e % PESuE -
1e+07 v = 5 e
yave e
. B
01234567 8 91011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Mandelbrot throughput. (b) Mandelbrot throughput speed-up.

Figure 7.40: Stream performance comparison (Mandelbrot)

FastFlow and Pthreads when using the optimization, SPar was not able to achieve

identical high throughput rates. Consequently, there is an opportunity for SPar to
improve code generation.

The parallel programming frameworks’ efficiency and energy consumption of the
CPU cores can be seen in 7.41. With the exception of OpenMP, all of the interfaces
achieved a good balance of energy and efficiency. FastFlow, Pthreads and SPar also had
a low number of cache misses as we can see in Figure 7.42. Yet, energy consumption is
a consequence of the cores’ energy consumption, which preserves a relative difference.

Figure 7.43 presents memory performance. Even using a different optimization
flag, this result could not be improved in SPar. Therefore, we found another important
result that permits the improvement of code generation, because manually developed
FastFlow achieved better memory usage than SPar.

KB

7.3. Multi-Core Environment

139

spar ff —<— tbb —*— omp —&— pt —=— spar ff —<— tbb —*— omp —&— pt —=—
Mandelbrot (HPC Performance) Mandelbrot (energy—cores)
1.1 4096
1 ——
09 e s 2048 |-/
g \ Vil 5, \
\
0.8 \ “‘ %
N B s o S S S SRR SN 1024
5 07 “ 3 55 et H‘\B/a-—ﬂ\f 5
k] \ 3 e m
i \ = 4
0.6 T
\ 512
05 | k’@-ﬁag S
R T =N ==
HHHjLn;?ﬁ?qt -
0.4 > 256 g - o =
03
o g A A
0.2 128 L
01234567 891011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Mandelbrot HPC efficiency. (b) Mandelbrot CPU cores energy consumption.
. .
Figure 7.41: HPC performance comparison (Mandelbrot)
spar ff —<— tbb —*— omp —&— pt —=— spar ff —<— tbb —*— omp —&— pt —=—
Mandelbrot (cache-miss) Mandelbrot (energy-pkg)
262144 8192
131072
AR 2= % o
KL’\% ﬁi: T+ 4096
65536 % \
[%
e
32768 / 2048
) 2 5O
]
< 16384 3 \HH\ s
20 5
1024 e
8192
N
4096 . y §E§
e I - - 512 oy
2048 I
e b ey :HHHg
=
1024 L I 256 I T
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Mandelbrot cache misses. (b) Mandelbrot socket energy consumption (cache
and CPUs).
. .
Figure 7.42: CPU Socket performance comparison (Mandelbrot)
spar ff —<— tbb —*— omp —&— pt —=— spar ff —<— tbb —*— omp —&— pt —=—
Mandelbrot (Memory) Mandelbrot (energy-ram)
524288 T T T T 7 2048
e - St
262144
1024
\
131072 (\ >
65536 (512 =
;e
32768 8 Nt .
‘ S 256 R .
508
16384 ([/'\,§§ oy
8192 128
= S =
Ry ""f’<'/‘ LE L\"ths.::'\n\,‘\)
4096 = = R '\"\"\-:““\n\«\,
i 64 -~ K
2048 = L 5t -
1024 32
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas

Number of Replicas

(a) Mandelbrot memory usage. (b) Mandelbrot memory energy consumption.

Figure 7.43: Memory performance comparison (Mandelbrot)

140 7. Results

| 7.3.3.4 | Summary

During the discussion of the Mandelbrot set application, we demonstrated that SPar
was able to again provide high-level, suitable and straightforward annotation along
with the possibility to maintain the source code. In this application, optimization flags
significantly improved the performance after a certain number of replicas.

When comparing productivity, SPar is significantly better than TBB and Fast-
Flow, and slightly better on SLOCs and much more high-level than OpenMP. Moreover,
OpenMP’s poor performance is a consequence of its programming model that is not
suitable for stream-like computations. SPar achieved similar performance in almost all
the replicas tested with respect to FastFlow and TBB, which makes it competitive.
Also, it is relevant to highlight that this application is not an original stream applica-
tion. Therefore, some performance degradations should be expected. In general, the
results were good, and the experiments were enough to find opportunities to increase
SPar’s performance, mainly for memory usage and when using a higher number of
replicas.

7.3.4| Prime Numbers

This application is the naive algorithm for finding prime numbers. Our implementation
receives a number as an input and checks it by simply dividing it, and adding up every
prime that is found. Listing 7.5 demonstrates an efficient way for introducing stream
parallelism for this application by using our DSL. This algorithm is a classic example
from the mathematical field used for many cryptographic applications and scientific
programs.

Even though it is not part of the stream parallelism domain, we chose this appli-
cation to illustrate how it is possible to implement a non-stream-oriented application
in SPar. Listing 7.5 presents only the function of the application that calculates a
prime number of a given number and returns the total of primes. Therefore, the first
loop will iterate for generating the numbers so that the nested loop can find all its
primes. If case there is not a prime, the variable used to sum the total number of
primes receives zero to not be counted.

Based on the SPar’s methodology, the answer for the first question is to annotate
the first loop (line 3) and reuse the iteration statement to characterize it as a stream
region. Then, the region only consumes the n variable as input. The total is not our
input, because it will be produced inside a stream operation that will be annotated
as a stage. Consequently, we can reuse the iteration statement (line 5) again to

7.3. Multi-Core Environment 141

annotate the first stage, which checks primes for a given number. The other stage will
be the sum of primers (line 12). As the ToStream region is producing the number,
SPar’s methodology sees it as a stream element as well as the prime variable used for
adding. Therefore, these variables are consumed by the first stage and only the prime
is produced in the next stage. Finally, the last stage consumes the prime and will
produce the total number of primes outside the stream region when the stream ends
for the function returning the data (line 14).

int prime_number(int n){
int total = 0;
[[spar ::ToStream, spar::Input(n)]] for (int i = 2; i <= n; i++){
int prime = 1;
[[spar::Stage, spar::Input(i,prime), spar::Output(prime), spar::
Replicate (workers)]] for (int j = 2; j < i; j+){
if (i %) =0){
prime = 0;
break;
¥
}
[[spar:: Stage,spar::Input(prime) ,spar::Output(total)]]
{ total = total + prime; }

}

return total;

}

Listing 7.5: Prime Numbers using SPar.

We can only add replicate in the first stage, since it is possible to check whether
a number is prime or not independently and sum the number of primes is a stateful
operation. On the other hand, the last stage can not be replicated because at the end
of the region the total sum is expected, instead of single replica sum. The next section
will evaluate SPar’s performance using different compiler optimization flags.

142 7. Results

7.3.4.1| SPar Performance

Figure 7.44 presents the completion time and latency of the prime number application
with all possible optimization flags. We tested the performance using the Pianosau
machine setting up 1,200,000 as the size of the workload to find the primes. The results
indicate that not using a spar_ondemand flag will significantly impact the completion
time and latency of the application. This means that the scheduler plays an important
control role for achieving good performance in this application. For example, Figure
7.45 presents the throughput rates, where it is possible to visualize that the difference
represents two times more throughput in some cases (16 and 17 replicas) with the
optimization flag.

spar spar-ond —%— spar-blk —=— spar-blk-ond —&— spar spar-ond —%— spar-blk —=— spar-blk-ond —&—
Prime Numbers (Time) Prime Numbers (Stream Performance)
512 0.35
» =
r 0.3
256
- 5 0.25
k]
128 § \ \
8 o
g % 0.2
& \ 5
§ 015 =
64 k|
A AUAVASS / I
" R e \,
a 0.05 N ./ =
HH:.\L“_\ s
16 0
01234567 891011121314151617181920212223242526272829303132 01234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Prime Numbers execution times. (b) Prime Numbers latency.
Figure 7.44: Time performance (Prime Numbers)
spar spar-ond —»— spar-blk —=— spar-blk-ond —&— spar spar-ond —»— spar-blk —s=— spar-blk-ond —&—
Prime Numbers (Stream Performance) Prime Numbers (Speedup Throughput)
55000 16
54
50000 14
45000 A \
g 40000 2
: Ik)
§ 35000 \ l \ I'_Y g0 “ .
/ i 4w I |
3
g A NAALL T &
T VL \f
i 20000 % \ 6
15000 7, / 4
10000 /
5000 |-/ 2
o p—
00 12345678 91011121314151617181920212223242526272829303132 00 12345678 91011121314151617 181920212223 24252627 28293031 32
Number of Replicas Number of Replicas
(a) Prime Numbers throughput. (b) Prime Numbers throughput speed-up.

Figure 7.45: Stream performance (Prime Numbers)

When looking at efficiency in Figure 7.46, we can see that adding the
spar_blocking flag provides slight degradations. This occurs because the block-
ing mode adds extra overhead on thread synchronizations in fine-grained stream

7.3. Multi-Core Environment 143

computations. The CPU cores’ energy consumption was as good as the efficiency of
spar_ondemand. Because there are intensive mathematical operations, the application
cannot scale more replicas than the number of physical cores. Consequently, we can
conclude that SPar was good enough to achieve expected speedup and efficiency with
the help of the optimization flags.

spar spar-ond —%— spar-blk —=— spar-blk-ond —&— spar spar-ond —%— spar-blk —=— spar-blk-ond —8—
Prime Numbers (HPC Performance) Prime Numbers (energy-cores)

1 8192 —r—
4

ol | h

N
08 \ \ l\ \ AN 4096
07 N
2ol IALLILA L] . g | X
5 0.6 o
2 K“\. 5,2048
e \LVALL . \
04 \ §§§ e
VAL HE
. | VN b
0.2
0-10 12834567 89101112131415161718192021222324 2526272829 303132 5120 1234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Prime Numbers HPC efficiency. (b) Prime Numbers CPU cores energy consump-

tion.
Figure 7.46: HPC performance (Prime Numbers)

spar spar-ond —»— spar-blk —=— spar-blk-ond —&— spar spar-ond —»— spar-blk —=— spar-blk-ond —&—
Prime Numbers (cache-miss) Prime Numbers (energy-pkg)
16384 16384 —

AW

MY

KB
Joules

4096 / \{“\1
' N B

AT At N Qv
2048 22 2048 N
1024 1024 L

01234567 891011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132

Number of Replicas Number of Replicas
(a) Prime Numbers cache misses. (b) Prime Numbers socket energy consumption

(cache and CPUs).
Figure 7.47: CPU Socket performance (Prime Numbers)

We can also note that using optimization flags will impact cache misses (Figure
7.47) and memory usage (Figure 7.48). Once again, SPar provides performance
flexibility to better fit the application’s design goals.

144 7. Results

spar spar-ond —%— spar-blk —=— spar-blk-ond —&— spar spar-ond —%— spar-blk —=— spar-blk-ond —&—
Prime Numbers (Memory) Prime Numbers (energy-ram)
65536 T T 4096

32768
2048
A\ VWA / g
16384
1024
a]
8192 S \
I 512
4096 '\\QLQ N
LAY >
2048 B 1 2%
1024 128
01234567 8 91011121314151617181920212223242526272829303132 01234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Prime Numbers memory usage. (b) Prime Numbers memory energy consumption.

Figure 7.48: Memory performance (Prime Numbers)

| 7.3.4.2 | Productivity Comparison

To discuss and compare productivity, we considered the simple and legwork implemen-
tation of the prime number on FastFlow and TBB. The results concerning the SLOCs
are presented in Figure 7.49. Even the simplest version of these tools require more
code than SPar and OpenMP required the same amount of code. OpenMP achieved
good coding productivity because it is a simple case and it was designed for simplifying
parallelism for this kind of computation. In contrast, TBB and FastFlow provide more
flexibility to the end user for implementing different parallelism versions.

Source Line of Code (Prime Number)
50% T T T T 45126
45% [~ 4
940% [~ .
3 35% 30.66 5
(o}
?DE 30% [~ 7
2 25% [~ B
£ 500, |
€ 20%
53
:TJ, el 7.30]
& 10% el
5% [0.00 0.73 0.73
0% — ‘ ‘

3.65

Ssg s Omp 7 H ooy 6 B0
0

Figure 7.49: Source line of code for Prime Number application.

All pseudo code versions can be seen in Section A.3.4. In Listing A.12, we
can note that OpenMP requires a single line annotation, where low-level parallel
programming aspects are put in the table such as scheduling and reduction operation.
Therefore, scheduling specification is not necessary to produce correct code. Yet, in
later experiments it was necessary to speedup performance. In contrast, even when
SPar has been used for another domain, it was able to provide efficient parallelism

7.3. Multi-Core Environment 145

without needing to add extra attributes through its annotations. On the other hand,
TBB and FastFlow can provide a different alternative for better productivity in this
kind of application by using the lambda function interface. However, this does not
prevent the user from restructuring the “for” loop and implementing the reduction
operation as can be observed in Listings A.14 and A.16.

| 7.3.4.3 | Performance Comparison

This section will compare the performance of the best solutions implemented to
evaluate the transformations of SPar. As previously discussed, the best alternatives for
SPar were when it used the spar_ondemand flag. In OpenMP, when using the default
scheduler, the performance is similar as with the default compilation of SPar. Thus,
we plotted its results with dynamic scheduler (omp-dyn). The results not discussed
in this section are in the Appendix, specifically in Section A.1.3. Therefore, Figure
7.50 presents the execution times and latency for the number of replicas tested. All
versions presented identical results, but using only the spar_ondemand flag along with
FastFlow revealed a performance degradation in the last number of replicas. This
is because of the on-demand scheduler that works intensively even when there is no
stream. Thus, the blocking mode prevents such overhead, because the thread will be
put to sleep when no work has to be done.

spar-ond ff-loop —w— omp-dyn —e— spar-ond ff-loop —#— omp-dyn —=—
spar-blk-ond —— tob-loop —&— spar-blk-ond —s— tbb-loop —&—
Prime Numbers (Time) Prime Numbers (Stream Performance)
512

o
©
&

= 3
0.3
256
@ 0.25
g
g
8 \
g128 & 02
g 2
g \ g
8 5
g
64 \, & 0.15
AN 3
\\ 0.1
2 R N
H 0.05
HH"""'H
16 0 L
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Prime Numbers execution times. (b) Prime Numbers latency.

Figure 7.50: Time performance comparison (Prime Numbers)

The scheduler overhead for this application is noted in Figure 7.51 as well as
the slightly worse performance difference of TBB, which is caused by its work-stealing
scheduler. This is confirmed through Figure 7.52, which shows efficiency when using
the CPU and energy consumption. We discovered that SPar and FastFlow versions
consume more energy than OpenMP and TBB.

146 7. Results

spar-ond ff-loop —w— omp-dyn —a— spar-ond ff-loop —w— omp-dyn —s—
spar-blk-ond —— tbb-loop —&— spar-blk-ond —%— tbb-loop —&—
Prime Numbers (Stream Performance) Prime Numbers (Speedup Throughput)
55000 T 16 T =SS =]
50000 o ?
14
45000 \ \
< 40000 12
S
8
§ 35000 10
s / I
S 30000 / 3
a 28
525000 »
3
£ 20000 ,} 6
).
15000 / 4
10000
y. 2
5000 g -
0 0
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829 303132
Number of Replicas Number of Replicas
(a) Prime Numbers throughput. (b) Prime Numbers throughput speed-up.
. . .
Figure 7.51: Stream performance comparison (Prime Numbers)
spar-ond ff-loop —w— omp-dyn —a— spar-ond ff-loop —w— omp-dyn —s—
spar-blk-ond —— tbb-loop —&— spar-blk-ond —*— tbb-loop —&—
Prime Numbers (HPC Performance) Prime Numbers (energy—cores)
1 T 8192
0.9
4096 [/
0.8
. e O
807 £
S 3
i A 32048 5,
0.6 N & \\
05 N \I\. AN
1024 4
e
0.4 ~
L 512
01234567 891011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Prime Numbers HPC efficiency. (b) Prime Numbers CPU cores energy consump-
tion.
. . .
Figure 7.52: HPC performance comparison (Prime Numbers)
—ond ff-loop —=— omp-dyn —e— spar—-ond ff-loop —=— omp-dyn —e—
spar-blk-ond —— tbb-loop —&— spar-blk-ond —*— tbb-loop —&—
Prime Numbers (cache-miss) Prime Numbers (energy—pkg)
131072 16384 —
65536
8192
32768 /
16384

[}
4096

K
Joules

8192 \
4096 j i\]Hi\ L \\ \\
::j 2048 AN
2 N
2048 I\IN'N\\
-
1024 L L 1024
01234567 8 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Prime Numbers cache misses. (b) Prime Numbers socket energy consumption

(cache and CPUs).
Figure 7.53: CPU Socket performance comparison (Prime Numbers)

7.3. Multi-Core Environment

147

Finally, SPar versions were able to avoid more cache misses (Figure 7.53) than

all others. It also used less memory (see on Figure 7.54). Consequently, less memory
energy consumption was necessary for SPar and FastFlow versions.

spar-ond ff-loop —w— omp-dyn —a—

spar-blk-ond —— tbb-loop —&8—

65536

Prime Numbers (Memory)

spar-ond ff-loop —w— omp-dyn —s—
spar-blk-ond —s— tbb-loop —&—

Prime Numbers (energy-ram)

32768

16384

25l

KB

8192

4096

H/Q N

2048 %

1024

4096
')
2048 \

1024

Joules

512

256 A

i i i i
01234567 891011121314151617181920212223242526272829303132

Number of Replicas

(a) Prime Numbers memory usage.

28
01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas

(b) Prime Numbers memory energy consumption.

Figure 7.54: Memory performance comparison (Prime Numbers)

| 7.3.4.4 | Summary

The prime number application provides us an interesting problem that stresses the

need for performance flexibility. In the expressiveness evaluation, we could observe

that SPar attributes were generic enough to annotate the parallelism of this application

in a stream fashion. As in the other state-of-the-art tools, SPar requires the help of

optimizations to provide high performance on data parallel computations.

Concerning the performance comparison, we concluded that SPar is also efficient
for data parallel computations. Even though the prime number application is not a

real stream computation, the results were good. Also, we did not expected so good and

optimistic results such as less memory usage, cache efficiency and a small difference in

stream performance such as throughput and latency.

148 7. Results

7.3.5| K-Means

During recent year data analysis has become one of the hottest research topics in
computer science. Among many algorithms existent in this field, one that is often used
for analyzing big data sets is K-Means. It is a simple algorithm of a non-supervised
machine learning to solve the clustering problem. The goal is to classify a given
data set in groups. Our algorithm was taken from the code examples of Phoenix+-+
[TYKI11]. Listing 7.6 presents the parallelized part of the algorithm to discuss and
demonstrate how SPar attributes can be used for annotating the parallelism.

K-Means aims to first define k centroids for each cluster. These centroids are
arranged at different locations bring different results. Consequently, it is necessary
to place them as far as possible from each other. The next step is to take each point
belonging to a given data set and associate it to the nearest centroid. Thus, when
no data is pending, the first step is completed, which has performed the first step
grouping. Then, the second phase is to recalculate the new cluster centroids from the
previous step. After, a new connection must be made between the same points of the
new data sets and the nearest centroid. Finally, K-Means algorithm has to iterate
several times until all points are classified.

This application is not a real stream computation, but it was chosen to test
SPar’s expressiveness in other domains and how we could annotate parallelism correctly.
Our methodology seeks to find the regions where it is possible to stream the code.
K-Means has two dependent steps, making impossible to annotate them as stages
(between line 3 — 18 and 19 — 36). When analyzing inside each step, we can see the
most outside for loop generates a stream that is the index for the points and matrix
of clusters or means. Thus, we found two stream regions. As for each iteration new
values for the matrix of clusters and means are produced, they are input streams for
ToStream annotations.

On the other hand, stream operations can be annotated in different ways using
SPar. Since we do so for performance evaluation later, we exemplified the most efficient
way to annotate. For instance, we could simply determine two stages in each one of the
stream regions. In this case, we put all stream operations in a single stage. The input
of the stage will be the same as the ToStream annotation plus the generated index,
while the output is only the stream element modified inside the stage. Therefore, the
first step stage produces the clusters as output and the second step stage produces
the means. For a new iteration, the first step consumes the output of the second step
and vice versa. Lastly, we can replicate each stage region because the points can be
computed independently.

Note that the vector of points is not a stream, because it is a static data source

7.3. Multi-Core Environment 149

that was previously loaded from a data set file. Also, the amount of K-Means iteration
is determined by the first step stage (line 16). The next section will present the
performance results for this application.

while (modified){

modified = false;
[[spar:: ToStream,spar :: Input(means)|] for (int i = 0; i < num_ points;
i++){

[[spar::Stage, spar::Input(i,means), spar::Output(clusters), spar::

Replicate () |]{

unsigned int min_dist = get_sq_dist(points[i], means[0]);

int min_idx = 0;

for (int j = 1; j < num means; j++){
unsigned int cur_dist = get_sq_dist(points[i], means[j]);
if (cur_dist < min_dist){

min_dist = cur_ dist;
min_ idx = j;

}

}

if (clusters[i] != min_idx){
clusters[i] = min_idx;
modified = true;

i3

}
[[spar ::ToStream,spar:: Input(clusters)]] for (int i = 0; i < num_means

RS St

[[spar::Stage, spar::Input(i,clusters), spar::Output(means), spar::

Replicate ()]]{

int* sum = (int *)malloc(dim * sizeof(int));
memset (sum, 0, dim * sizeof(int));
int grp_size = 0;
for (int j = 0; j < num_points; j++){
if (clusters[j] = i){
add_to_sum(sum, points[j]);
grp_ size4+;
}
}

for (int j = 0; j < dim; j++){
if (grp_size = 0){
means[i][j] = sum[j] / grp_size;
}
}

free (sum);}

Listing 7.6: K-Means application using SPar.

150 7. Results

7.3.5.1| SPar Performance

To evaluate the performance of SPar and its optimization flags, we created the workload
using 150,000 points to classify in 1,500 groups. The experiment ran in Pianosa machine
as in the previous experiments. We also used the same annotation schema with different
compilation flags. Figure 7.55 presents the execution times and latency for the replicas
tested. Note that the number of replicas is the same for each stream region. The
graphs clearly point out that using spar_blocking flag retrogrades the latency and
completion time with respect to other versions. The reason for such degradation is
attributed to the stream behavior that is fine grained and intensive. Consequently,
when more replicas are assigned, more blocking synchronization is necessary. This
becomes even worse when used with spar_ondemand, because more communication is
performed to scheduling the stream elements.

spar spar-ond —<— spar-blk —«— spar-blk-ond —&— spar spar-ond —<— spar-blk —«— spar-blk-ond —&—

kmeans (Time) kmeans (Stream Performance)

o
o

128

% 07
64
06
2
o s) g
@ 32 - — g 0.5
kel L 2
S et Eoa
3 N e
5
16 : 03
J %
k.‘\k* % j e 02 DD B a Y i
e AT R
s = e —
o g —4— /
. < -
e e e
4 0 ; I I N T O
012345678 9101112131415161718192021222324252627 2829303132 01234567 89101112131415161718192021222324252627 2829303132
Number of Replicas Number of Replicas
(a) K-Means execution times. (b) K-Means latency.

Figure 7.55: Time performance (K-Means)

The impact of the differences can be observed in Figure 7.56 by the throughput
and speedup. In general, when comparing the highest rates of the worst and best
versions, the difference is about 10,000 points for the given time of the replica. This
is very significant for the application’s performance. Moreover, we can also see the
efficiency and energy consumption in Figure 7.56, where no version was not good
enough from 12 replicas up to 32.

With respect to the cache misses, all optimization flags presented similar per-
formance. This can be seen in Figure 7.58. However, energy consumption was
dramatically different, where the least efficient SPar version also consumed much more
energy. This is an indication of overheads by the parallel code generated. Finally, the
memory usage (Figure 7.59) was also significantly different for the versions without
the spar_ondemand flag, which was similar to the previous applications because of the

impact of FastFlow queues.

7.3. Multi-Core Environment 151

spar spar-ond —<— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—
kmeans (Stream Performance) kmeans (Speedup Throughput)
20000 T T T T T | N B 12 T T T T T T T T T
18000
e 10 —
16000 = 4 R —
8 14000 = . -
3 \ |
2 12000 T | g e |
\
5 \ g \
:;10000 | & 6 I
3 \ \
2 8000 i \
< % | i \
- | 4 \
1
6000 =Le - Uy . o
4000 { 5 o ooy g o < HHHHHHHHHﬁMHHHH
2
2000 -y -
0 0
012345678 91011121314151617181920212223242526272829303132 012345678 9101112131415161718192021222324 2526272829 303132
Number of Replicas Number of Replicas
(a) K-Means throughput. (b) K-Means throughput speed-up.
.
Figure 7.56: Stream performance (K-Means)
spar spar-ond —*— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—
kmeans (HPC Performance) kmeans (energy—cores)
1 T T 2048
0.9 e
0.8
Sy)
0.7 \
1024 \ SR
306 ” \ % 1
g % . o t—o-oBg] ‘;‘
b+ 0.5 = S “w
|
04 « x 1 |
T 512 “
0.3 - |
|
/
0.2 A N S P
N WA " il
maam==N T N
0.1]
0 256 T T O
01234567 891011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) K-Means HPC efficiency. (b) K-Means CPU cores energy consumption.
.
Figure 7.57: HPC performance (K-Means)
spar spar-ond —*— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—
kmeans (cache-miss) kmeans (energy—pkg)
524288 4096
262144
131072 2048
65536 S A
P ;—e‘;iHH
uxn =] Hg/s;—a—ér@‘f 1 |
32768 S 1024 /‘
\ o e l 1+ /
16384 = =y = |
- s
H?é > %’) §§< = —¥— e |
8192 =2 = 512 e
& 2"&%(3 SR O e S
3
4096
2048 256 L L L
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) K-Means cache misses. (b) K-Means socket energy consumption (cache

and CPUs).
Figure 7.58: CPU Socket performance (K-Means)

152 7. Results

spar spar-ond —<— spar-blk —— spar-blk-ond —&— spar spar-ond —x— spar-blk —*— spar-blk-ond —&—

kmeans (Memory) kmeans (energy-ram)
32768 1024

512
16384 (3
P S i o gt
o kx> < x \isas> N § \\\ P S\E”E?ﬁﬁH
x . (=} K
oeats = S = = - 3 256 =
= S ‘i
8192
128
U
NS) e
¥ TAIR e = W
4096 o i I A A A O A O R O
01234567 8 91011121314151617181920212223242526272829303132 01234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) K-Means memory usage. (b) K-Means memory energy consumption.

Figure 7.59: Memory performance (K-Means)

| 7.3.5.2 | Productivity Comparison

Since we tested alternative implementations using low-level patterns with FastFlow
and TBB, it is not necessary to repeat such implementations to compare productivity
because we noted before that this requires much more effort to implement. Also, in
terms of data parallelism performance, the parallel for interface was demonstrated
to be better suited for this purpose. Figure 7.60 presents the percentage difference
of SLOCs when using each one of the programming frameworks. TBB and FastFlow
require slightly more code because they need to add their library. While SPar and
OpenMP, only annotations are necessary. The parallelized parts of the code are in
Section A.3.5.

Source Line of Code (k-Means)
2% T T T

RN
£
T
|

1.30 1.30

o F 0.87 0.87

Percentage Difference

S
B
T

0.00
1

0%
Seq sDar o,% Va g

Figure 7.60: Source line of code for K-Means application.

When comparing SPar (Listing 7.6) to OpenMP (Listing A.17), SPar achieved
the same productivity because it is placed along with the iteration statement and the
stage must be introduced. Consequently, this is one case where OpenMP provides
better productivity, because it was designed to be simple when there is easy data

7.3. Multi-Core Environment 153

parallelism. In contrast, the high-level SPar attributes are generic enough to annotate
such parallelism. Specifically in this application, we can conclude that OpenMP and
SPar provide equivalent coding productivity, while TBB (Listing A.19) and FastFlow
(A.18) still requires minimal code rewriting in data parallelism.

| 7.3.5.3 | Performance Comparison

To compare performance, we used the same implementation version of the productivity
comparison and the default SPar version, which presented the best performance among
the options. Figure 7.61 plots the results of execution time and latency. We can see
that SPar achieved the worst performance with respect to the others. Fastflow also
had significant performance degradation starting with 17 replicas up to 30. This initial
degradation achieved the same peak of SPar, which coincides with hyper threading
facilities usage of the machine. We also expected that OpenMP and TBB would suffer
some degradation starting at 17 replicas. Figure 7.62 shows that only FastFlow was
able to achieve a linear throughput speedup until physical cores are full with replicas.
The advantage is that less replicas are needed by FastFlow parallelism when compared
to OpenMP and TBB, which only achieved the highest speedup by using 26 replicas.

spar ff —<— tbb —— omp —&— spar ff —<— tbb —— omp —=—

kmeans (Time) kmeans (Stream Performance)

128 06
4
05
64
3
2o4
8
- 8
g Eos
16 2
K
\\\ 02
s ‘N'\k—\kl TR 0.1 A
i/ ~e . .
SSESNY .y _
s S S == '\n\“\ﬁ_‘ e e
4 P o P i P
012345678 91011121314151617181920212223242526272829303132 012345678 9101112131415161718192021222324252627 2829303132
Number of Replicas Number of Replicas
(a) K-Means execution times. (b) K-Means latency.

Figure 7.61: Time performance comparison (K-Means)

We can prove the efficiency of the programming frameworks in Figure 7.63 as well
as evaluate the energy consumption of the CPU cores. As in the other applications,
SPar and FastFlow usually consume more energy than the others. However, less
cache misses are generated as can be observed in Figure 7.64. Concerning memory
usage, there were contrasts among the interfaces, but OpenMP outperforms all other

versions.

154

7. Results

spar ff ——

tbb —%— omp —&—

spar ff —<— tbb —— omp —&—
kmeans (Stream Performance) kmeans (Speedup Throughput)
30000 18
ko ‘o
X g it 16 T
25000 = A e
3 & e ek
A 14
g | |
S 20000 } 12 {
B \ a \
z \ E \
S | 510 i
= \ 3 |
215000 -3
=) 9
El 8
<]
IS
10000 6
4
5000
2
Be p e
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829 303132
Number of Replicas Number of Replicas
(a) K-Means throughput. (b) K-Means throughput speed-up.
. .
Figure 7.62: Stream performance comparison (K-Means)
spar ff —<— tbb —*— omp —&— spar ff —<— tbb —— omp —&—
kmeans (HPC Performance) kmeans (energy-cores)
11 2048
1 e - QH
|
0.9 !
i\ 1024
0.8 \ !S
\
307 | & \
5 | s 8 \
S o6 | = 8 512}
£ o | . S
0.5 - \
0.4
256 =
—p—g RN
0.3 = s
== -
0.2
128
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) K-Means HPC efficiency. (b) K-Means CPU cores energy consumption.
. .
Figure 7.63: HPC performance comparison (K-Means)
spar ff —<— tbb —%— omp —&— spar ff —<— tbb —*— omp —&—
kmeans (cache-miss) kmeans (energy-pkg)
1.67772e+07 4096
419430406 N
o9 o5 b 5
S S 2048
1.04858e+06
o 262144 8 %
< 5 3
AEEEasaaa 2 S ERESSSEUFEEY 81024
65536 [+
\
‘w\ ‘s
16384 - =
\ 1t — 512
L)
4096 e
1024 L I A i il -
012345678 91011121314151617181920212223242526272829303132
Number of Replicas

(a) K-Means cache misses.

and CPUs).

Number of Replicas

Figure 7.64: CPU Socket performance comparison (K-Means)

012345678 91011121314151617181920212223242526272829303132

(b) K-Means socket energy consumption (cache

7.3. Multi-Core Environment 155

spar ff —<— tbb —— omp —&— spar ff —<— tbb —%— omp —&—

kmeans (Memory) kmeans (energy-ram)
65536 1024

- Isi\
3 512 [
32768 \
—x—f \
A \
- o 256 [
e £
16384 |- s \
128
B A B =aman SN
\2@ =N a1 '
8192 WAH 5 - . e Ny =
64 = - e <
—E=—
4096 32
01234567 8 91011121314151617181920212223242526272829303132 01234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) K-Means memory usage. (b) K-Means memory energy consumption.

Figure 7.65: Memory performance comparison (K-Means)

| 7.3.5.4 | Summary

K-means application provided us a different challenge for SPar. Its interface was
generic enough to annotate the parallelism in a stream fashion. The usage of SPar’s
optimization flags resulted in performance degradation. Also, coding productivity
when considering SLOCs is not significant different because the interfaces provided
suitable mechanisms for implementing this kind of parallelism. However, TBB and
FastFlow still require more code rewriting when using lambda function.

SPar did not achieve similar performance as other specialized programming
frameworks for data parallelism. Even FasFlow’s interface for data parallelism suffers
some degradations. Although not favorable to SPar, results give us interesting insights
for investigating in the future alternatives to achieve better performance for data
parallelism. However, our top research goal was to enable performance and productivity
in stream parallelism applications.

156 7. Results

(@Y Cluster Environment

This section shows the results of the experiments targeting the cluster environment to
evaluate SPar’s performance and code portability. In fact, we used two of the same
applications previously discussed and we applied different transformation rules to each
one of them. In case, the transformation rules used by the compiler in the multi-core
environment are the same when manually generated for the respectively application in
the cluster environment.

7.4.1| Sobel Filter

This application was previously discussed and annotated with SPar in Section 7.3.1.
We provided two previous versions, but in this section we only generate the code
manually for the second version, which is denoted as [[7o]]{ 0o, [[So, R,]]{01}}. There
are no any new attributes inserted and transformations follow Rule 6.1 described in
Section 6.6. Our goal is to demonstrate that transformation rules are generalized and
enough to achieve code portability.

In the cluster environment, our experiments were set up with balanced and
unbalanced workloads. For the balanced workload 320 images were used with 3000x2250
resolution. On the other hand, the unbalanced workload was composed of 1,280
images, and four different resolutions were selected (800x600, 1024x768, 1600x1200
and 3000x2250). We ran the application ten times to take an average duration of the
Dodge cluster (see the configuration in Section 7.2.2). The standard deviations are
plotted through error bars in the graphs.

Figure 7.66 presents the graphs of execution time (a) and latency (b) for the
replicas tested. The application reduced the completion time and latency in half
in almost all replicas tested. If compared to the multi-core environment, the same
performance is not expected because there is a network and distributed file system. The
problem is that our application does not reduce the completion time when increasing
the number of replicas. The throughput and speedup helped us to better understand
the impacts in Figure 7.67.

As previously discussed, the Sobel filter performs more in disk than CPU and
the latency and overhead increases because of the distributed file system. In case, it
will be hard to achieve speedups greater than two using this workload, since it is not
concerning the environment. In the Appendix Section A.2 the results use unbalanced
workloads. They presented similar results even though there were the highest number

7.4. Cluster Environment

157

of images. As the image size varies with smaller images, the latency was lower such as
in Figure A.27(b) demonstrates.

spar
Sobel (Time)

spar
Sobel (Stream Performance)

Seconds

64

32

Latency(milliseconds)

300

o
o
S

o
=3
S

a
S

Number of Replicas

(a) Sobel Filter execution times.

16
012345678 91011121314151617 181920212223 24 252627282930 31

50
01

|
2345678 91011121314151617 181920212223 24 252627 28 29 30 31
Number of Replicas

(b) Sobel Filter latency.

Figure 7.66: Time performance using balanced workload (Sobel Filter)

spar
Sobel (Stream Performance)

spar
Sobel (Speedup Throughput)

Throughput of 320

3 L

01234567 8 91011121314151617 181920212223 24 2526 27 28 29 30 31

Number of Replicas

(a) Sobel Filter throughput.

06
01

2345678 91011121314151617 181920212223 24 252627 2829 30 31
Number of Replicas

(b) Sobel Filter throughput speed-up.

Figure 7.67: Stream performance using balanced workload (Sobel Filter)

Another important aspect concerning the results is that we are using an older

machine in the cluster environment and less sophisticated hardware and network.
Unfortunately, the disk bottleneck impacts much more in the cluster environment.

Thus, we can conclude that even providing code portability, performance may be not

the same as the other environment. It depends not only on the code generated, but

also on the hardware aspects and application constraints.

7.4.2

Prime Number

In the prime number application, the annotation schema is exactly the same as discussed

before in Section 7.3.4 and can be denoted as [[To]]{0o, [[So, Rn][{01}, [[S1][{02}}

158 7. Results

Consequently, we applied Rule 6.3 to manually generate the code, so that we can
demonstrate that code portability is possible. The experiment was conducted in the
Dodge cluster and the problem size was the same as in multi-core, which is to find the
primers from 1 to 1,200,000 numbers.

Figure 7.68 presents the results concerning completion time metric. The contrasts
are similar as presented in Figure 7.44 when the code generated is without optimization
flags, which is performing in a round robin fashion. Thus, this result was also expected
in a cluster environment, which can better observed in Figure 7.69 through the
throughput rates and speedup. As the machines are different (in the cluster and
multi-core environments), the results in the original source code were also different for
latency and completion time (with 0 replica).

spar spar
Prime Numbers (Time) Prime Numbers (Stream Performance)
256 0.2

o
=

o
o
T

o
o
&

Latency(milliseconds)
°

o
=3
=3

Y
i
g
o
R

o

Q

N
i

8 i 0 i ST T T
01234567 8 91011121314151617 18 1920 21 22 23 24 25 26 27 28 29 012345678 91011121314151617 181920 21 22 23 24 25 26 27 28 29
Number of Replicas Number of Replicas

(a) Prime Numbers execution times. (b) Prime Numbers latency.

Figure 7.68: Time performance (Prime Numbers)

spar spar
Prime Numbers (Stream Performance) Prime Numbers (Speedup Throughput)
100000 18

90000 16

80000

Throughput of 1200000

2 a o N

S o & 9o

8 & 38 3

S o © 9

s & & o
L

I i ol i i i
01234567 8 9101112131415161718 192021 2223 24 25 26 27 28 29 01234567 8 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29
Number of Replicas Number of Replicas

(a) Prime Numbers throughput. (b) Prime Numbers throughput speed-up.
Figure 7.69: Stream performance (Prime Numbers)

We already highlighted the importance of the scheduler in this application
in Section 7.3.4. Unfortunately, for the cluster environment, our runtime did not
providing this optimization. We expect in the future to also support an on-demand

7.5. Summary 159

scheduler to enable better performance for applications where performance depends
on the scheduler. Unlike the Sobel filter application, we demonstrated through this
experiment that we were also able to provide performance portability along with code
portability, like a CPU bound application.

Summary

In this chapter, we first performed experiments in the multi-core environment to
evaluate and compare Spar’s performance and code productivity to TBB, FastFlow,
OpenMP, and eventually Pthreads. Our performance results were similar as those
tuning manually and better than TBB and OpenMP for streaming applications. Also,
our experiments demonstrated that we reduced the programming effort significantly
and increased the coding productivity compared to TBB and FastFlow. As expected,
SPar was able to annotate data parallel computations and maintain productivity, but
provided less performance than OpenMP.

In the cluster environment, we evaluated the code portability by using two
identical annotated applications previously tested for the multi-core environment.
Thus, code portability was granted through the transformation rules proposed for both
environments. However, performance portability also depends on application features
(e.g., the disk bottleneck), and runtime support for scheduling optimizations.

- Part 1V

SSSSSSSSSS

CONCLUSIONS

This chapter will present the conclusions of the thests.

Contents
8.1 Overview . . . @ v i i i it e e e e e e e e e e e e e e e e 164
8.2 Assessments. it i et e e e e e e e e e e e e 165
8.3 Limitations i i e 166
8.4 Considerations n e e 166

164 8. Conclusions

Overview

This dissertation has contributed to the fields of domain-specific language design and
support tools for high-level stream parallelism. The support tools proposed include the
Compiler Infrastructure for New C/C++ Languages Extensions (CINCLE). CINCLE
uses several standard tools to provide a simpler and more efficient environment /in-
frastructure for generating standard C++ embedded DSLs, especially for introducing
the C++ attribute mechanism. Moreover, CINCLE was implemented to support the
user with aggressive source-to-source code transformations (AST to AST) as well as to
provide an AST that is fully compliant with the standard grammar. Also, it provides
a set of APIs and a tree visualization library to increase productivity and accelerate
the learning curve when designing DSLs.

CINCLE provides essential features and capabilities for high-level abstraction
that have been used to build an embedded C++ DSL for stream parallelism (named
as SPar). SPar helps users to annotate parallelism with only five attributes that are
implemented using the standard C++ attribute mechanism. The language terms are
related only the streaming domain, avoiding low-level parallel programming aspects
such as models, scheduling policies, load balancing, and others. SPar essentially aims
to enhance code productivity without significantly degraded performance. We also
created a methodology where developers ask themselves five questions that will instruct
them what to do when annotating the code. Thus, it guides them reduce programming
effort and achieve efficient stream parallelism.

The design of the SPar language was also essential to introduce code portability.
We therefore created generalized transformation rules to translate SPar attributes
to parallel patterns. These rules are independent of the target architecture and
programming framework, and can therefore be easily implemented into a compiler
algorithm or manually generated. First, the SPar compiler was implemented to perform
source-to-source code transformations automatically targeting multi-cores using the
FastFlow framework and accomplish the interpretation and semantic analysis of the
attributes. Then, we demonstrated how the translations target code portability by
manually generating the code for clusters using the MPI library.

Lastly, we performed a set of experiments to evaluate productivity, performance,
and code portability. We picked five different applications that were annotated with
SPar as well as implemented with TBB, FastFlow, OpenMP, and later Pthreads.
Thus, productivity and performance were evaluated in a multi-core environment.
Code portability was tested by implementing two of the five applications in a cluster
environment without changing the source code tested in the multi-core experiments,
while using the same transformation rules used to generate the multi-core versions.

8.2. Assessments 165

Assessments

In the dissertation we achieved all of the established goals. The first goal was to
provide support tools that enable parallel programmers to create standard C++ embedded
DSLs. We met this goal by creating CINCLE. It was sufficient to support us in the
implementation of the SPar compiler. We were able to perform complex source-to-
source transformations and semantic analysis using CINCLE. Also, in Section 5.7, we
highlighted that CINCLE simplified DSL design and, through real use cases (Section
4.9), that it performed quite well.

Our second goal was to provide high-level stream parallelism and coding productiv-
ity without significant performance degradation in multi-core systems. We achieved this
goal by creating SPar. The experiments (Section 7.3) and presentation in Chapter 5
revealed that SPar provides a simpler vocabulary with only five attributes sufficient to
annotate different kinds of applications and parallelism. High-level stream parallelism
is achieved because C++ programmers do not have to be aware of any low-level
parallel programming aspects. The results of the experiments proved that SPar is
more productive without demonstrating any significant performance degradation in
stream applications. Moreover, it is able to provide the same productivity in data
parallel applications with competitive performance (e.g. K-Means and Prime Numbers
applications) when compared to other frameworks (TBB, FastFlow and OpenMP). In
addition, SPar performed similar to FastFlow (implemented manually), illustrating
that the automatic code generation designed was efficient and does not add significant
overhead.

The third goal was to introduce code portability in multi-core and cluster sys-
tems. We met this goal by introducing generalized transformation rules from SPar
attributes targeting parallel patterns. We demonstrated that it is possible to provide
code portability in SPar because we were able to transform code integration the
transformation rules in the compiler to automatically generate parallel code using
FastFlow (multi-cores) and manually generate code using the MPI library (clusters).
Although code portability was achieved, the results demonstrated that performance
portability depends on application characteristics and scheduling optimizations of the
runtime support.

In addition to our main goals, we have met the programming framework aims
as well as support application level DSL to entirely abstract parallelism exploitation.
We achieved a vertical validation of the framework in a collaborative research project
that created a DSL for geospatial visualizations (named as GMaVis) [Led16]. GMaVis
provides a descriptive language that generates a robust C++ code along with SPar

166 8. Conclusions

annotations to take advantage of parallelism in multi-core architectures. It is im-
portant to highlight this study because we validated our perspective and the results
demonstrated increased code productivity and simplicity for the designer of the DSL
application. These results verify the thesis in a completely different scenario.

A Limitations

The limitations relate to real use cases and experiments regarding productivity, perfor-
mance, and code portability. We cannot generalize performance and productivity in an
application that is not stream-oriented. SPar is not able to deal with state-full stages
and stages with feedbacks channels. This is also a research challenge in the parallel
programming field that has not been solved in a completely abstract and general way.
In SPar, we recommend that state-full stages should not be replicated.

CINCLE’s infrastructure was initially made to deal with C++ attributes. Even
though we proposed it as a more generic support tool, there is no guarantee at the
moment that it also works for other kinds of language extensions that are not C++
annotations. There are limitations concerning the AST because Bison cannot solve all
ambiguities. Therefore, we need to test CINCLE with bigger amount of code and an
algorithm must be created to address complex ambiguities after the creation of the
AST. SPar’s code generation was not a problem, but it would become a problem if we
were to perform DataFlow and other sophisticated analysis at compilation time.

Our generalized transformation rules are not generic enough when other domains
are taken into account. Although generalized, the rules we used only deal with SPar
attributes and may produce only farm, pipeline, and compositions of pipeline with
farm stages. They are so-called generalized because they were created to enable
one to produce more complex transformations for other SPar annotation sentences
allowed by its semantics. Consequently, code portability inherits these limitations
either integrating them into the compiler algorithm to perform changes automatically
in the AST or for manually generating code.

‘8 Considerations

The dissertation also contributes to the wider scenario of computer science dealing
with parallel patterns, FastFlow runtime, and the C++ community. Concerning
parallel patterns, we stress the fact that they were proposed independently of a target
architecture, and we have proven that they can also be integrated with a different

8.4. Considerations 167

scenario such as DSLs. For instance, SPar provides a higher abstraction level that
can be translated into parallel code using a parallel patterns approach. On the other
hand, using FastFlow we further contributed to stresses its performance and flexibility
to exploit parallelism. We bring significant insights to different performance metrics
when compared to other state-of-the-art frameworks. Because SPar can easily combine
different annotation sentences, we can further expand the test scenarios to FastFlow
runtime so that it can be improved in the future and support better performance and
flexibility.

Using the standard C++ attribute mechanism, we contributed by providing a
use case and pointing out the challenges that were not clear before starting the DSL
design. This work has proven that this mechanism is a suitable alternative to providing
high-level abstraction and powerful source-to-source transformations. Unfortunately,
we found out that there is weak support in the documentation and there is no clear
understanding what can be provided. We are happy with the design of CINCLE, which
can now also be used for other DSLs aiming at parallelism abstractions. Moreover,
SPar is a real use case that can be proposed to directly integrate into the grammar,
because it is a “de-facto” embedded in C++ language.

FUTURE WORK

This chapter will present and discuss potential future work related to the contributions
of this dissertation.

Contents
9.1 Programming Framework 170
9.1.1 CINCLE. e 170
9.1.2 SPar 170
9.1.3 Transformation Rules 171

9.2 Experiments ittt e 172

170 9. Future Work

Programming Framework

This dissertation has achieved and presented contributions in our programming frame-
work. They may be extended in different ways in the coming years to improve our
findings in high-level parallel programming, compiler-based tools, and the stream
parallelism domain.

In addition to the opportunities to expand and improve our specific contributions,
which will be described in detail in the next sections, we will also give some ideas of what
we expect to achieve in the customization space and support space in the next years
(see Figure 3.1). In the customization space, our collaborative work in [Led16] only
targeted a small set of applications. There are a variety of applications to be explored
and we are seeking DSLs in the application layer that will be embedded with C++ to
reuse the CINCLE infrastructure, because GMaVis is an external DSL (a completely
new language). For the support space, there is the possibility to create/reuse different
runtimes targeting virtual machines, GPU, DSP, FPGA, and others.

9.1.1| CINCLE

CINCLE is not ready to release to the scientific community because it is still being
improved. Considering the time spent in related projects to consolidate their tools,
we have a great deal of work ahead in terms of software development and testing
to make CINCLE a competitive tool in the C++ DSL design space. In addition to
the technical aspects and the clear documentation that need to be completed, in the
future we aim to provide a better API by using C++ templates and object oriented
approaches. Moreover, we intend to improve CINCLE to support more complex source
code analysis regarding data-flow, pattern matching, automatic code parallelization,
other internal optimizations, and compiler techniques for code generation.

9.1.2| SPar

The performance experiments have demonstrated opportunities for SPar to generate
more efficient code by using FastFlow with respect to memory and energy. One
possible future project would be to evaluate the FastFlow runtime to optimize code
generation, combining different sized queues to increase memory performance. Another

9.1. Programming Framework 171

possible optimization would be to implement dynamic changing of the blocking and
non-blocking mode to improve energy efficiency.

Concerning the DSL interface and capabilities, it would be interesting to support
users by offering stages for feedback communication. Another option would be to add
sliding window option in the Stage attribute. This could give more opportunities for
fine tuning streaming applications. Moreover, new optimization flags could be created
to target different schedulers to increase performance for a wider set of applications
and architectures.

At the present moment we only support the replication of stateless stages. The
benchmark characterization of Streamlt is presented in Figure 9.1. This is the result
of streaming applications for the filter types (stages). As we can observe, these
applications are almost always composed of stateless stages, only six percent were
state-full. In fact, half of this six percent are avoidable by using internal compiler
techniques. Therefore, as future work, we can investigate techniques to avoid state-full
stages while the rest are unavoidable in benchmark applications.

763 Filter Types 49 Stateful Types

94%
Stateless

Ay Avoidable

6%
Stateful

Figure 9.1: Statistics of StreamIt benchmarks [TA10]. Extracted from [Wonl2].

When transformation rules for clusters are also integrated in the SPar compiler,
a future work could be to exploit hybrid parallelism. Here we can combined code gen-
eration to exploit clusters with multi-core machines. Because there is one MPI process
inside each machine, it could be equipped with FastFlow code to exploit lightweight
multi-thread parallelism. This implementation could optimize the performance and
have better scale for some cluster applications.

9.1.3| Transformation Rules

Our transformation rules target only stream parallel patterns. As future work, we
plan to include data parallel patterns like map and reduce, when possible. An example
would be the following SPar sentence [[T5]]{[[S0, R.]][{01}}. In this case, there is a

172 9. Future Work

ToStream annotation in front of the “for” loop and inside of the loop the immediately
sentence is a stage block declaration. Due to the fact that it has the attribute
replicate, we can assume that it can run independently. Also, there is no O between
the annotation Ty and Sy. Consequently, we could apply the map parallel pattern or
transform it into a parallel “for”. This is just one hypothetical case to achieve better
performance transformation rules when data parallel computations are annotated
using SPar. There will probably be other similar cases. Therefore, there are many
possibilities for future investigation if it works well for maintaining consistency with
different parallel architecture targets.

Experiments

There is a lack of streaming application benchmarks in C++ and most of the state-of-
the-art benchmarks are low-level and use old C code. This causes many incompatibilities
when compiling with the new standard compiler. A future work would be to create
a standard C++ benchmark that tests all stream parallelism properties. Also, it
would be interesting to do experiments with robust applications. In this case, a big
challenge for future work would be to implement some of the PARSEC and Streamlt
benchmarks.

In the cluster environment, we have tested only two transformation rules. A
future work is to conduct more experiments in this environment with all of the
applications experimented in the dissertation. Other experiments to benchmark
complex transformations rules would be interesting to observe their efficiency. Also, to
test if equivalent transformation rules are also equivalent in performance.

Concerning code productivity, it would be interesting to expand the experiments
taking into account other metrics such as those presented in [SS96], where experiments
were conducted with students. Also, software engineering methods could be applied
such as the COCOMO II model [BAB"00] to predict cost and programming effort.

MMMMMMMMMM

10

BIBLIOGRAPHY

[AACH11]

[ACD*15]

[ADO7]

[ADA*12]

[ADK*11]

[ADK*+12]

[ADKT12]

Mehdi Amini, Corinne Ancourt, Fabien Coelho, Béatrice Creusillet, Serge
Guelton, Francois Irigoin, Pierre Jouvelot, Ronan Keryell, and Pierre
Villalon. PIPS Is not (only) Polyhedral Software. In First International
Workshop on Polyhedral Compilation Techniques, IMPACT’ 11, page 6,
Chamonix, France, April 2011.

Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick,
and Massimo Torquati. Pool Evolution: A Domain Specific Parallel
Pattern. International Journal of Parallel Programming (IJPP), pages
1-21, March 2015.

Marco Aldinucci and Marco Danelutto. Skeleton-based Parallel Program-
ming: Functional and Parallel Semantics in a Single Shot. Computer
Languages, Systems and Structures, 33(3):179-192, October 2007.

Marco Aldinucci, Marco Danelutto, Lorenzo Anardu, Massimo Torquati,
and Peter Kilpatrick. Parallel Patterns + Macro Data Flow for Multi-
Core Programming. In 20th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), pages 27-36,
Garching, Germany, Febuary 2012. IEEE.

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano
Meneghin, and Massimo Torquati. Accelerating Code on Multi-Cores
with FastFlow. In Euro-Par 2011 Parallel Processing, volume 6853 of
Lecture Notes in Computer Science, pages 170-181, Bordeaux, France,
September 2011. Springer Berlin Heidelberg.

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano
Meneghin, and Massimo Torquati. An Efficient Unbounded Lock-Free
Queue for Multi-core Systems. In Furo-Par 2012 Parallel Processing, vol-
ume 7484 of Lecture Notes in Computer Science, pages 662—673, Rhodes
Island, Greece, August 2012. Springer Berlin Heidelberg.

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo
Torquati. Targeting Heterogeneous Architectures Via Macro Data Flow.
Parallel Processing Letters, 22(2):12, May 2012.

176

10 Bibliography

[ADKT14]

[ADM*09]

[ADP*14]

[AGJT14]

[AGLF15a]

[AGLF15b)]

AGT14]

[ATO1]

Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo
Torquati. FastFlow: High-Level and Efficient Streaming on Multi-core.
In Programming Multi-core and Many-core Computing Systems, volume 1
of Parallel and Distributed Computing, page 14, Pisa, Italy, March 2014.
Wiley.

Marco Aldinucci, Marco Danelutto, Massimiliano Meneghin, Peter Kil-
patrick, and Massimo Torquati. Efficient Streaming Applications on
Multi-Core with FastFlow: the Biosequence Alignment Test-Bed. In Par-
allel Computing: From Multicores and GPU’s to Petascale, volume 19 of
Advances in Parallel Computing, pages 273280, Lyon, France, September
2009. IOS Press.

Marco Aldinucci, Maurizio Drocco, Guilherme Peretti Pezzi, Claudia
Misale, Fabio Tordini, and Massimo Torquati. Exercising High-Level
Parallel Programming on Streams: A Systems Biology use Case. In 34th
International Conference on Distributed Computing Systems Workshops
(ICDCSW), pages 51-56, Madrid, Spanish, July 2014. IEEE.

Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer, Harshitha
Menon, Eric Mikida, Xiang Ni, Michael Robson, Yanhua Sun, Ehsan
Totoni, Lukasz Wesolowski, and Laxmikant Kale. Parallel Program-
ming with Migratable Objects: Charm++ in Practice. In International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC "14, pages 647658, New Orleans, Louisana, November 2014.
IEEE Press.

Daniel Adornes, Dalvan Griebler, Cleverson Ledur, and Luiz G. Fernandes.
A Unified MapReduce Domain-Specific Language for Distributed and
Shared Memory Architectures. In The 27th International Conference
on Software Engineering € Knowledge Engineering, page 6, Pittsburgh,
USA, July 2015. Knowledge Systems Institute Graduate School.

Daniel Adornes, Dalvan Griebler, Cleverson Ledur, and Luiz G. Fernan-
des. Coding Productivity in MapReduce Applications for Distributed
and Shared Memory Architectures. International Journal of Software
Engineering and Knowledge Engineering, 25(10):1739-1741, December
2015.

Henrique C. M. Andrade, Bugra Gedik, and Deepak S. Turaga. Funda-
mentals of Stream Processing. Cambridge University Press, New York,
USA, 2014.

Corinne Ancourt and Frangois Irigoin. Scanning Polyhedra with DO
Loops. In Third ACM SIGPLAN Symposium on Principles and Prac-

10 Bibliography 177

[ALSU07]

[Amil2]

[AMT10]

[And13]

[APD*15]

[ATD*13)

[BAB+00]

[BCO5]

[BDLT13]

tice of Parallel Programming, PPOPP 91, pages 39-50, Williamsburg,
Virginia, USA, April 1991. ACM.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, € Tools. Person Addison Wesley,
Boston, USA, 2007.

Mehdi Amini. Source-to-Source Automatic Program Transformations for
GPU-like Hardware Accelerators. PhD thesis, Ecole Nationale Supérieure
des Mines de Paris, Paris, French, December 2012.

Marco Aldinucci, Massimiliano Meneghin, and Massimo Torquati. Effi-
cient Smith-Waterman on Multi-Core with FastFlow. In 18th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP), pages 195-199, Pisa, Italy, February 2010. IEEE.

Quinton Anderson. Storm Real-time Processing Cookbook. PACKT,
Birmingham, UK, 2013.

Marco Aldinucci, Guilherme Peretti Pezzi, Maurizio Drocco, Concetto
Spampinato, and Massimo Torquati. Parallel Visual Data Restoration
on Multi-GPGPUs using Stencil-Reduce Pattern. International Journal
of High Performance Computing Application, 29(4):461-472, 2015.

Marco Aldinucci, Fabio Tordini, Maurizio Drocco, Massimo Torquati,
and Mario Coppo. Parallel Stochastic Simulators in System Biology: the
Evolution of the Species. In 21th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), pages
410-419, Belfast, UK, February 2013. IEEE.

Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Brad-
ford K. Clark, Ellis Horowitz, Ray Madachy, Donald J. Reifer, and Bert
Steece. Software Cost Estimation with COCOMO II. Prentice Hall,
Upper Saddle River, United States, 2000.

Anne Benoit and Murray Cole. Two Fundamental Concepts in Skeletal
Parallel Programming. In International Conference on Computational
Science (ICCS), volume 3515 of LNCS, pages 764-771, USA, May 2005.
Springer.

Daniele Buono, Marco Danelutto, Silvia Lametti, and Massimo Torquati.
Parallel Patterns for General Purpose Many-Core. In 21th Euromicro

International Conference on Parallel, Distributed and Network-Based
Processing (PDP), pages 131-139, Belfast, UK, February 2013. IEEE.

178

10 Bibliography

[BEO5]

[BGP14]

[BJK+95]

[BMD*11]

[BMEO7]

[BML*+12]

[BPD*+12]

[BSL*11]

Ayon Basumallik and Rudolf Eigenmann. Towards Automatic Trans-
lation of OpenMP to MPI. In 19th Annual International Conference
on Supercomputing, ICS '05, pages 189-198, Cambridge, Massachusetts,
June 2005. ACM.

Suresh Boob, Horacio Gonzalez—Vélez, and Alina Madalina Popescu.
Automated Instantiation of Heterogeneous Fast Flow CPU/GPU Parallel
Pattern Applications in Clouds. In 22th Furomicro International Con-
ference on Parallel, Distributed and Network-Based Processing (PDP),
pages 162-169, Torino, Italy, February 2014. IEEE.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An
Efficient Multithreaded Runtime System. In Symposium on Principles

and Practice of Parallel Programming, volume 30 of PPOPP 95, pages
207-216, USA, August 1995. ACM.

Javier Bueno, Luis Martinell, Alejandro Duran, Montse Farreras, Xavier
Martorell, Rosa M. Badia, Eduard Ayguade, and Jesus Labarta. Produc-
tive Cluster Programming with OmpSs. In 17th International Conference
on Parallel Processing, Euro-Par’11, pages 555-566, Bordeaux, France,
August 2011. Springer-Verlag.

Ayon Basumallik, Seung-Jai Min, and Rudolf Eigenmann. Programming
Distributed Memory Sytems Using OpenMP. In IEEE International on
Parallel and Distributed Processing Symposium, IPDPS’ 2007, pages 1-8,
Long Beach, CA, March 2007. IEEE.

Hansang Bae, Dheya Mustafa, Jae-Woo Lee, Aurangzeb, Hao Lin, Chirag
Dave, Rudolf Eigenmann, and Samuel P. Midkiff. The Cetus Source-to-
Source Compiler Infrastructure: Overview and Evaluation. International
Journal of Parallel Programming, 41(6):753-767, August 2012.

Javier Bueno, Judit Planas, Alejandro Duran, Rosa M. Badia, Xavier
Martorell, Eduard Ayguade, and Jesus Labarta. Productive Program-
ming of GPU Clusters with OmpSs. In 26th International Parallel and
Distributed Processing Symposium, IPDPS ’12, pages 557-568, Shanghai,
China, May 2012. IEEE Computer Society.

Kevin J. Brown, Arvind K. Sujeeth, Hyouk Joong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. A Heterogeneous
Parallel Framework for Domain-Specific Languages. In International
Conference on Parallel Architectures and Compilation Techniques, PACT
'11, pages 89-100, Washington, DC, USA, October 2011. IEEE Computer
Society.

10 Bibliography 179

[CCA*10]

[Chal6]

[Cil16]

[CIvdP07]

[Clal16]

[Col89]

[Col04]

[CSBT11]

[DBM*09]

[DDST14]

[DGOS]

[DGS*16]

Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled
Elmeleegy, and Russell Sears. MapReduce Online. In 7th USENIX
Conference on Networked Systems Design and Implementation, NSDI'10,
page 21, San Jose, CA, USA, April 2010. USENIX Association.

Charm+-+. Parallel Programming Framework.
http://charmplusplus.org/, Febuary 2016.

Intel Cilk. Intel® Cilk Plus. https://www.cilkplus.org/, Febuary 2016.

Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP:
Portable Shared Memory Parallel Programming (Scientific and Engineer-
ing Computation). MIT Press, London, UK, 2007.

Clang. The Clang’s Documentation. http://clang.llvm.org/docs/,
Febuary 2016.

Murray Cole. Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, Cambridge, USA, 1989.

Murray Cole. Bringing Skeletons out of the Closet: A Pragmatic Mani-
festo for Skeletal Parallel Programming. Parallel Computing, 30(3):389—
406, March 2004.

Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee,
Anand R. Atreya, and Kunle Olukotun. A Domain-specific Approach to
Heterogeneous Parallelism. In 16th ACM Symposium on Principles and
Practice of Parallel Programming, PPoPP 11, pages 3546, San Antonio,
TX, USA, March 2011. ACM.

Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Ein-
genmann, and Samuel Midkiff. Centus: A Source-to-Source Compiler
Infrastructure for Multicores. IEEE Computer, 42(12):36-42, 2009.

Marco Danelutto, Luca Deri, Daniele De Sensi, and Massimo Torquati.
Deep Packet Inspection on Commodity Hardware using FastFlow. In
Parallel Computing: Accelerating Computational Science and Engineering
(CSE), volume 25 of Advances in Parallel Computing, pages 92-99,
Munich, Germany, September 2014. IOS Press.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Communications ACM, 51(1):107-113,
January 2008.

Marco Danelutto, Jose Daniel Garcia, Luis Miguel Sanchez, Rafael
Sotomayor, and Massimo Torquati. Introducing Parallelism by using

180

10 Bibliography

[DJP*11]

[DK14]

[DMO6]

[DT14]

[DT15]

[DTK15]

[Fas16]

[FHLLBOY]

[Fow10]

REPARA C++11 Attributes. In 24th Furomicro International Con-
ference on Parallel, Distributed and Network-Based Processing (PDP),
page 5. IEEE, February 2016.

Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley,
Montserrat Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex
Aiken, Karthik Duraisamy, Eric Darve, Juan Alonso, and Pat Hanrahan.
Liszt: A Domain Specific Language for Building Portable Mesh-based
PDE Solvers. In International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’11, page 12, Seattle,
Washington, November 2011. ACM.

Marco Danelutto and Haileyesus Alemu Kifle. Stream parallel computa-
tions on GPUs. In International Workshop on High-level Programming
for Heterogeneous and Hierarchical Parallel Systems (HLPGPU), pages
26-32, Viena, Austria, January 2014. ACM.

V Dolotin and A Morozov. The Universal Mandelbrot Set. World of
Science Press, Singapore, US, 2006.

Marco Danelutto and Massimo Torquati. Loop Parallelism: A New
Skeleton Perspective on Data Parallel Patterns. In 22th FEuromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP), pages 52-59, Torino, Italy, February 2014. IEEE.

Marco Danelutto and Massimo Torquati. Structured Parallel Program-
ming with “core” FastFlow. In Central European Functional Programming
School: 5th Summer School, volume 8606 of Lecture Notes in Computer
Science, pages 29-75, Cluj-Napoca, Romania, July 2015. Springer Inter-
national Publishing.

Marco Danelutto, Massimo Torquati, and Peter Kilpatrick. A Green
Perspective on Structured Parallel Programming. In 23rd Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP), pages 430-437, Turku, Finland, March 2015. IEEE.

FastFlow. FastFlow website. http://me-fastflow.sourceforge.net/,
Febuary 2016.

Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-
Berlin. Reducers and Other Cilk++ Hyperobjects. In Twenty-first Annual
Symposium on Parallelism in Algorithms and Architectures, SPAA 09,
pages 79-90, Calgary, AB, Canada, August 2009. ACM.

Martin Fowler. Domain-Specific Languages. Addison-Wesley, Boston,
USA, 2010.

10 Bibliography 181

[Furl4] Ash Furrow. Functional Reactive Programming on i0S. Leanpub, 2014.

[GAF14] Dalvan Griebler, Daniel Adornes, and Luiz G. Fernandes. Performance

[GCC16a]

[GCC16b]

[GDTF15]

[GF13]

[GHIV02]

[GHLL*98

[Gholl]

[Gor10]

[Grel4]

and Usability Evaluation of a Pattern-Oriented Parallel Programming
Interface for Multi-Core Architectures. In The 26th International Con-
ference on Software Engineering € Knowledge Engineering, pages 25-30,
Vancouver, Canada, July 2014. Knowledge Systems Institute Graduate
School.

GCC. The GNU Compiler Collection. https://gcc.gnu.org/, Febuary
2016.

GNU GCC. Plugins (online documentation).
https://gee.gnu.org/onlinedocs/gecint /Plugins. html, March 2016.

Dalvan Griebler, Marco Danelutto, Massimo Torquati, and Luiz G.
Fernandes. An Embedded C+4 Domain-Specific Language for Stream
Parallelism. In Parallel Computing: On the Road to Fxascale, Proceedings
of the International Conference on Parallel Computing, ParCo’15, pages
317-326, Edinburgh, Scotland, UK, September 2015. IOS Press.

Dalvan Griebler and Luiz G. Fernandes. Towards a Domain-Specific
Language for Patterns-Oriented Parallel Programming. In Programming
Languages - 17th Brazilian Symposium - SBLP, volume 8129 of Lecture
Notes in Computer Science, pages 105-119, Brasilia, Brazil, October
2013. Springer Berlin Heidelberg.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Boston, USA, 2002.

William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing
Lusk, Bill Nitzberg, William Saphir, and Marc Snir. MPI: The Complete
Reference. MIT Press, London, England, 1998.

Debasish Ghosh. DSLs in Action. Manning publications Co., Stamford,
CT, USA, 2011.

Michael 1. Gordon. Compiler Techniques for Scalable Performance of
Stream Programs on Multicore Architectures. PhD thesis, Massachusetts
Institute of Technology, Cambridge, Massachusetts, June 2010.

Brendan Gregg. Systems Performance: Enterprise and the Cloud. Pren-
tice Hall, Boston, USA, 2014.

182

10 Bibliography

[Gril2]

[GSFS15]

[Guell]

[Gusl1]

[GVL10]

[Had16]

[HP11]

[HSWO14]

[1JT91]

ISO11a]

[1SO11b]

Dalvan J. Griebler. Proposta de uma Linguagem Especifica de Dominio
de Programagao Paralela Orientada a Padroes Paralelos: Um Estudo de
Caso Baseado no Padrao Mestre/Escravo para Arquiteturas Multi-Core.
Master’s thesis, Faculdade de Informéatica - PPGCC - PUCRS, Porto
Alegre, Brazil, March 2012.

Jose Daniel Garcia, Rafael Sotomayor, Javier Fernandez, and Luis Miguel
Sanchez. Static Partitioning and Mapping of Kernel-Based Applications
Over Modern Heterogeneous Architectures. Simulation Modelling Prac-
tice and Theory, 58(1):79-94, November 2015.

Serge Guelton. Building Source-to-Source Compilers for Heterogeneous
Targets. PhD thesis, Ecole Nationale Supérieure des Mines de Paris,
Paris, French, October 2011.

John L. Gustafson. Little’s Law. In David Padua, editor, Encyclopedia
of Parallel Computing, pages 1038-1041. Springer US, 2011.

Horacio Gonzalez-Vélez and Mario Leyton. A Survey of Algorithmic
Skeleton Frameworks: High-level Structured Parallel Programming En-
ablers. Software Practice € Experience, 40(12):1135-1160, November
2010.

Hadoop. Apache Hadoop. http://hadoop.apache.org/, Febuary 2016.

John L. Hennessy and David A. Patterson. Computer Architecture: a
Quantitative Approach. Morgan-Kaufmann, Boston, USA, 2011.

Sungpack Hong, Semih Salihoglu, Jennifer Widom, and Kunle Olukotun.
Simplifying Scalable Graph Processing with a Domain-Specific Language.
In Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’14, page 11, Orlando, FL, USA, March 2014.
ACM.

Francois Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical Inter-
procedural Parallelization: An Overview of the PIPS Project. In 5th
International Conference on Supercomputing, 1CS '91, pages 244-251,
Cologne, West Germany, June 1991. ACM.

ISO/TEC-14882:2011. Information Technology - Programming Languages
- C++. Technical report, International Standard, Geneva, Switzerland,
August 2011.

ISO/TEC-9899:2011. Information technology - Programming languages
- C. Technical report, International Standard, Geneva, Switzerland,
December 2011.

10 Bibliography 183

1SO14]

[JLF*05

[Kar05]

[KB16]

[KKWZ15]

[KmWH10]

[LA14]

[Led16]

[Lei09]

[Lev09]

[LGMF15]

ISO/TEC-14882:2014. Information Technology - Programming Languages
- C++. Technical report, International Standard, Geneva, Switzerland,
December 2014.

Troy A. Johnson, Sang-lIk Lee, Long Fei, Ayon Basumallik, Gautam
Upadhyaya, Rudolf Eigenmann, and Samuel P. Midkiff. Experiences
in Using Cetus for Source-to-source Transformations. In 17th Interna-
tional Conference on Languages and Compilers for High Performance
Computing, LCPC’04, pages 1-14, West Lafayette, IN, September 2005.
Springer-Verlag.

Bjorn Karlsson. Beyond the C++ Standard Library: Introduction to
Boost. Addison Wesley Professional, Boston, USA, 2005.

Adrian Kaebler and Gary Bradski. Learning OpenCV Computer Vision
in C++ with the OpenC'V library. O’Reily Press, Sebastopol, CA, 2016.

Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia.
Learning Spark: Lightning-Fast Big Data Analysis. O’Reilly Media,
Sebastopol, CA, USA, 2015.

David B. Kirk and Wen mei W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach. Elsevier, Burlington, MA, USA, 2010.

Bruno Cardoso Lopes and Rafael Auler. Getting Started with LLVM
Core Libraries. PACKT Publishing, Birmingham, UK, 2014.

Cleverson Ledur. GMaVis: A Domain-Specific Language for Large-
Scale Geospatial Data Visualization Supporting Multi-core Parallelism.
Master’s thesis, Faculdade de Informatica - PPGCC - PUCRS, Porto
Alegre, Brazil, March 2016.

Charles E. Leiserson. The Cilk++ Concurrency Platform. In 46th Annual
Design Automation Conference, DAC 09, pages 522-527, San Francisco,
California, July 2009. ACM.

John R. Levine. Flex & Bison. O’Reilly Media Inc., Sebastopol, CA,
20009.

Cleverson Ledur, Dalvan Griebler, Isabel Manssuor, and Luiz G. Fernan-
des. Towards a Domain-Specific Language for Geospatial Data Visualiza-
tion Maps with Big Data Sets. In ACS/IEEE International Conference
on Computer Systems and Applications, AICCSA’15, page 8, Marrakech,
Marrocos, November 2015. IEEE.

184

10 Bibliography

[LLS*13]

[L614]

[Mil15]

[Mis14]

[MMPSCOS]

[MRR12]

IMS12]

[MSMO5]

[MWOS]

[NBF96]

[Omp16]

[Opel6]

[0SV10]

[-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Jim Sukha,
and Zhunping Zhang. On-the-fly Pipeline Parallelism. In ACM Sympo-
stum on Parallelism in Algorithms and Architectures, SPAA 13, pages
140-151, Portland, Oregon, USA, June 2013. ACM.

Sergio Aldea Lépez. Compile-Time Support for Thread-Level Speculation.
PhD thesis, Universidad de Valladolid, Valladolid, Spain, July 2014.

Joshua John Milthorpe. X10 for High-Performance Scientific Computing.
PhD thesis, Australian National University, Australia, March 2015.

Claudia Misale. Accelerating Bowtie2 With a Lock-Less Concurrency
Approach and Memory Affinity. In 22th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing (PDP),
pages 578-585, Torino, Italy, February 2014. IEEE.

Daniel Millot, Alain Muller, Christian Parrot, and Frédérique Silber-
Chaussumier. STEP: A Distributed OpenMP for Coarse-Grain Paral-
lelism Tool. In OpenMP in a New Era of Parallelism: 4th International
Workshop, IWOMP’08, pages 83-99, West Lafayette, IN, USA, May 2008.
Springer Berlin Heidelberg.

Michael McCool, Arch D. Robison, and James Reinders. Structured
Parallel Programming: Patterns for Efficient Computation. Morgan
Kaufmann, MA, USA, 2012.

Donald Miner and Adam Shook. MapReduce Design Patterns. O’Reilly,
Sebastopol, CA, USA, 2012.

Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill.
Patterns for Parallel Programming. Addison-Wesley, Boston, USA, 2005.

Jens Maurer and Michael Wong. Towards Support for Attributes in
C++ (Revision 6). Technical report, The C++ Standards Committee,
September 2008.

Bradford Nicbols, Dick Buttlar, and Jacqueline P. Farrell. Pthreads
Programming. O’Reilly, Sebastopol, USA, 1996.

OmpSs. The OmpSs Programming Model. https://pm.bsc.es/ompss,
Febuary 2016.

OpenMP. Open Multi-Processing API specification for parallel program-
ming. http://openmp.org/, Febuary 2016.

Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala
2nd. Artima Press, Walnut Creek, California, 2010.

10 Bibliography 185

[Par13]

[PBAL13]

[PC11]

[PC13]

[Pop12]

[PPL16]

[Prol4]

[Prol5]

[QSYS04]

[Qui03]

[RCJ11]

[Rei07]

Terrence Par. The Definitive ANTRL 4 Reference. The Pragmatic
Programmers, 2013.

Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jestis Labarta. Self-
Adaptive OmpSs Tasks in Heterogeneous Environments. In IEEE 27th
International Symposium on Parallel Distributed Processing, IPDPS "13,
pages 138-149, Boston, MA, May 2013. IEEE Computer Society.

Antoniu Pop and Albert Cohen. A Stream-Computing Extension to
OpenMP. In 6th International Conference on High Performance and Em-
bedded Architectures and Compilers, HIPEAC 11, pages 5-14, Heraklion,
Greece, January 2011. ACM.

Antoniu Pop and Albert Cohen. OpenStream: Expressiveness and Data-
flow Compilation of OpenMP Streaming Programs. ACM Transactions
on Architecture and Code Optimization, 9(4):53:1-53:25, January 2013.

Antoniu Pop. Leveraging Streaming for Deterministic Parallelization:
an Integrated Language, Compiler and Runtime Approach. PhD thesis,
Ecole Nationale Supéricure des Mines de Paris, Paris, French, June 2012.

PPL. The Pervasive Parallelism Laboratory.
https://ppl.stanford.edu/projects, Febuary 2016.

REPARA Project. D3.3: Static Partitioning Tool. Technical report,
University of Pisa, Pisa, Italy, December 2014.

REPARA Project. D4.3: Source Code Transformations for Coarse
Grained Parallelism. Technical report, University of Pisa, Pisa, Italy,
February 2015.

Dan Quinlan, Markus Schordan, Qing Yi, and Andreas Saebjornsen. Clas-
sification and Utilization of Abstractions for Optimization. In Leveraging
Applications of Formal Methods: First International Symposium, ISoLA
2004, pages 57-73, Paphos, Cyprus, Greece, October 2004. Springer
Berlin Heidelberg.

Michael J. Quinn. Parallel Programming in C with MPI and OpenMP.
McGraw-Hill, New York, USA, 2003.

Eric C. Reed, Nicholas Chen, and Ralph E. Johnson. Expressing Pipeline
Parallelism Using TBB Constructs: A Case Study on What Works and
What Doesn’T. In Compilation of the Co-located Workshops of SPLASH,
SPLASH ’11 Workshops, pages 133-138, Portland, Oregon, USA, October
2011. ACM.

James Reinders. Intel Threading Building Blocks. O’Reilly, Sebastopol,
CA, USA, 2007.

186

10 Bibliography

[REP16]

[RJ15]

[RO10]

[ROS16]

[RR10]

[SBL*14]

[Sch14]

[SGAT13]

[SLB*11]

[SLJ*14]

REPARA. Reengineering and Enabling Performance and poweR of
Applications. http://repara-project.eu/?page id=244, Febuary 2016.

James Reinders and Jim Jeffers. High Performance Parallelism Pearls:
Multicore and Many-core Programming Approaches. ElSci, United States,
2015.

Tiark Rompf and Martin Odersky. Lightweight Modular Staging: A Prag-
matic Approach to Runtime Code Generation and Compiled DSLs. In
Ninth International Conference on Generative Programming and Compo-
nent Engineering, GPCE ’10, pages 127-136, Eindhoven, The Netherlands,
October 2010. ACM.

ROSE. ROSEQLLNL: Making Compiler Technology Accessible.
http://rosecompiler.org/, Febuary 2016.

Thomas Rauber and Gudula Riinger. Parallel Programming for Multicore
and Cluster Systems. Springer, New York, USA, 2010.

Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. Delite: A Compiler
Architecture for Performance-Oriented Embedded Domain-Specific Lan-
guages. ACM Transactions on Embedded Computing Systems, 13(4):25,
July 2014.

Boris Schaling. The Boost C++ Libraries. XML Press, 2014.

Robert Soulé, Michael I. Gordon, Saman Amarasinghe, Robert Grimm,
and Martin Hirzel. Dynamic Expressivity with Static Optimization
for Streaming Languages. In 7th ACM International Conference on
Distributed FEvent-based Systems, DEBS 13, pages 159-170, Arlington,
Texas, USA, July 2013. ACM.

Arvind Sujeeth, HyoukJoong Lee, Kevin Brown, Tiark Rompf, Hassan
Chafi, Michael Wu, Anand Atreya, Martin Odersky, and Kunle Olukotun.
OptiML: An Implicitly Parallel Domain-Specific Language for Machine
Learning. In 28th International Conference on Machine Learning (ICML-
11), ICML ’11, pages 609-616, Bellevue, Washington, USA, June 2011.
ACM.

Mehrzad Samadi, Janghaeng Lee, Anoushe D. Jamshidi, Scott Mahlke,
and Amir Hormati. Scaling Performance via Self-Tuning Approximation
for Graphics Engines. ACM Transaction Computer Systems, 32(3):7:1—
7:29, September 2014.

10 Bibliography 187

[SQO3]

[S596]

[Str14]

[Str16]

[Suj14]

[SUPT14]

[TA10]

[TBB16]

[TDM™*14]

[Thi09)]

Markus Schordan and Dan Quinlan. A Source-To-Source Architecture for
User-Defined Optimizations. In Modular Programming Languages: Joint
Modular Languages Conference, JMLC 2003, pages 214-223, Klagenfurt,
Austria, August 2003. Springer Berlin Heidelberg.

Duane Szafron and Jonathan Schaeffer. An Experiment to Measure the
Usability of Parallel Programming Systems. Concurrency: Practice and
FEzperience, 8(2):147-166, March 1996.

Bjarne Stroustrup. Programming: Principles and Practice Using C++.
Addison-Wesley Professional, San Francisco, USA, 2014.

StreamlIt. Website. http://groups.csail.mit.edu/cag/streamit, Febuary
2016.

Arvind Krishna Sujeeth. Productivity and Performance with Embedded
Domain-Specific Language. PhD thesis, Stanford University, Stanford,
USA, May 2014.

Alessandro Secco, Irfan Uddin, Guilherme Peretti Pezzi, and Massimo
Torquati. Message Passing on InfiniBand RDMA for Parallel Run-Time
Supports. In 22th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), pages 130-137, Torino,
Italy, February 2014. IEEE.

William Thies and Saman Amarasinghe. An Empirical Characterization
of Stream Programs and Its Implications for Language and Compiler
Design. In International Conference on Parallel Architectures and Com-
pilation Techniques, PACT ’10, pages 365-376, Austria, September 2010.
ACM.

Intel TBB. Intel®) Threading Building Blocks.
http://threadingbuildingblocks.org, Febuary 2016.

Fabio Tordini, Maurizio Drocco, Ivan Merelli, Luciano Milanesi, Pietro
Lio, and Marco Aldinucci. NuChart-II: A Graph-Based Approach for
the Analysis and Interpretation of Hi-C Data. In 11th International
meeting on Computational Intelligence methods for Bioinformatics and
Biostatistics (CIBB), volume 1 of Lecture Notes in Bioinformatics, pages
1-13, Cambridge, UK, June 2014. Springer.

William Thies. Language and Compiler Support for Stream Programs.
PhD thesis, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, February 2009.

188

10 Bibliography

[TKA02a]

[TKA02b)

[TYK11]

[VBD+13]

[VHOG]

[Won12]

[Wril0]

[X1016]

[ZLRAOS]

William Thies, Michal Karczmarek, and Saman P. Amarasinghe.
Streamlt: A Language for Streaming Applications. In 171th Interna-
tional Conference on Compiler Construction, CC ’02, pages 179-196,
Grenoble, France, April 2002. Springer-Verlag.

William Thies, Michal Karczmarek, and Saman P. Amarasinghe.
Streamlt: A Language for Streaming Applications. In 11th Interna-
tional Conference on Compiler Construction, CC ’02, pages 179-196,
Grenoble, France, April 2002. Springer-Verlag.

Justin Talbot, Richard M. Yoo, and Christos Kozyrakis. Phoenix++-:
Modular MapReduce for Shared-memory Systems. In Second Interna-

tional Workshop on MapReduce and Its Applications, MapReduce 11,
pages 9-16, San Jose, California, USA, June 2011. ACM.

Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,
Mats Helander, Lennart Kats, Eelco Visser, and Guido Wachsmuth.
DSL Engineering Designing, Implementing and Using Domain-Specific
Languages. Ebook, Germany, 2013.

William von Hagen. The Definitive Guide to GCC. Apress, Berkeley,
CA, 2006.

Eric Wong. Optimizations in Stream Programming for Multimedia
Applications . Master’s thesis, Massachusetts Institute of Technology,
Cambridge, Massachusetts, August 2012.

Steve Wright. Digital Compositing for Film and Video. Focal Press and
Elsevier, Oxford, UK, 2010.

X10. Performance and Productivity at Scale. http://x10-lang.org/,
Febuary 2016.

David Zhang, Qiuyuan J. Li, Rodric Rabbah, and Saman Amarasinghe.
A Lightweight Streaming Layer for Multicore Execution. SIGARCH
Computer Architecture News, 36(2):18-27, May 2008.

APPENDIX

This chapter presents all appendizes to complement the discussions of the thesis.

Contents
A.1 Complementary Results on Multi-Core 190
A.1.1 Filter Sobel SPar Performance 190
A.1.2 Filter Sobel Performance Comparison 193
A.1.3 Prime Numbers Performance Comparison 198
A.1.4 Mandelbrot Set Performance Comparison 200
A.2 Complementary Results on Cluster 201
A.3 Sources for Coding Productivity 201
A.3.1 Filter Sobel 202
A3.2 Video OpenCV e 206
A.3.3 Mandelbrot 208
A3.4 Prime Numbers 210

A35 K-Means v v v v o 213

190 A. Appendix

Complementary Results on Multi-Core

During this section, complementary results of the applications when running in a
multi-core environment are plotted.

A.1.1| Filter Sobel SPar Performance

This section is just complementing the results concerning the Filter Sobel application,
instead using unbounded workload for comparing the SPar optimization flags and
application versions.

= —pipe-blk —x*— —pi —pipe-blk —x*—
spar—s;isre—%gg —x— spar—sﬁigre—% ke—cnd —e— sparfggg—%ﬁg —x— spar—sp?lsfa—% ke—ond —e—
Sobel (Time) Sobel (Stream Performance)
128 80
70
260
64 g
§ ﬁ 50
EY
¢ 240
2
]
32 4
30
\sg;i g = -
e TE 23R S =ax 50 }
16 _— L 10 L
01234567 891011121314151617181920212223242526272829303132 012345678 9101112131415161718192021222324 2526272829 303132
Number of Replicas Number of Replicas
(a) Filter Sobel execution times. (b) Filter Sobel latency.
Figure A.1: Time performance using unbalanced workload (pipe-like)
spar spar-ond —*— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—
Sobel (Time) Sobel (Stream Performance)
128 80
e 70
64
gSO \
2
8
8 250
g 32 E
i 540
SFES .
. SESSESSS FIERE NS %
20
= S
8 10 i i i
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel execution times. (b) Filter Sobel latency.

Figure A.2: Time performance using unbalanced workload (farm-like)

A.1. Complementary Results on Multi-Core 191

spar—pipe spar—pipe-blk —— spar—pipe spar—pipe-blk —x*—
spar—pipe-ond —*— spar—pipe-blk-ond —&— spar-pipe-ond —*— spar-pipe-blk-ond —&—
Sobel (Stream Performance) Sobel (Speedup Throughput)
80 T T T T 55 T T T T T T T T T
= 5 = 2= A
70 B = jzs& A \% % R M7 = ‘@
= s <
%? ¥ *<§<>Z s 45 §<
260 \
& / 4
5 g
550 %35
e &
g &
840 3
£
; /
25
30
/ 2
20 /
|/! 15
10 1
012345678 9101112131415161718192021222324 2526272829 303132 01234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel throughput. (b) Filter Sobel throughput speed-up.

Figure A.3: Stream performance using unbalanced workload (pipe-like)

spar spar-ond —*— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—
Sobel (Stream Performance) Sobel (Speedup Throughput)
80 T T T T /B{ 6 T T
— §:§ 55
" . Vb o 549
5
fachha e N
60 45
: f
5 S 4
550 2
240
IS 3
30 25
2
20
15
=
10 1
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel throughput. (b) Filter Sobel throughput speed-up.
Figure A.4: Stream performance using unbalanced workload (farm-like)
spar-pipe spar-pipe-blk —x— spar—pipe spar-pipe-blk —x—
spar—pipe—ond —*— spar—pipe-blk-ond —&— spar-pipe—ond —*— spar-pipe-blk-ond —&—
Sobel (HPC Performance) Sobel (energy-cores)
14 2048
1.2
A\
1024 [/
1 e\
A\
z &)
E, 0.8 é
£ 3 512 =
f ™ &, .
o8 ﬁ\\ Ei\ /
04 . §g!§i - Eﬂﬁﬁgga SENEEV
\& 256
s e,
’ ot
O0 1234567 8 91011121314151617181920212223242526272829303132 1280 12345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel HPC efficiency. (b) Filter Sobel CPU cores energy consumption.

Figure A.5: HPC performance using unbalanced workload (pipe-like)

192 A. Appendix

Efficiency

spar spar-ond —*— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—
Sobel (HPC Performance) Sobel (energy-cores)
1.1 2048
ﬁke
1
0.9
1024 ‘/\\
08 / \
0.7 = " |
k]
3 {5
0.6 > S 512 51’9‘>n<\ -
0.5 i\.q&{ N e AR
g 1 N
0.4 B aea g P TS k .
§ 256
0.3
g,
0.2
0.10 1234567 8 91011121314151617181920212223242526272829303132 1280 1234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel HPC efficiency. (b) Filter Sobel CPU cores energy consumption.
Figure A.6: HPC performance using unbalanced workload (farm-like)
spar-pipe spar-pipe-blk —»— spar-pipe spar-pipe-blk —»—
spar-pipe-ond —*— spar-pipe-blk-ond —&— spar-pipe-ond —*— spar-pipe-blk-ond —&—
Sobel (cache-miss) Sobel (energy-pkg)
1.67772e+07 4096
4.1943e+06
1.04858¢+06 2048 %
262144 §
\ S 1024
65536 \ \E§i§ |
16384 §i§;§ =5 e N
512
4096
1024 256
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel cache misses. (b) Filter Sobel socket energy consumption (cache
and CPUs).
Figure A.7: CPU Socket performance using unbalanced workload (pipe-like)
spar spar-ond —*— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—
Sobel (cache-miss) Sobel (energy-pkg)
1.67772e+07 4096
4.1943e+06
2048
1.04858e+06
262144 8
\ 31024
65536 4
\ Sgg\é N NRESSEEES SN
16384 51 N:ﬁ:fﬁtggﬁbkg EaSeSESE S
4096
1024 L 256
01234567 891011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel cache misses. (b) Filter Sobel socket energy consumption (cache

and CPUs).
Figure A.8: CPU Socket performance using unbalanced workload (farm-like)

A.1. Complementary Results on Multi-Core 193

spar—pipe spar—pipe-blk —— spar—pipe spar—pipe-blk —x*—
spar—pipe-ond —*— spar—pipe-blk-ond —&— spar-pipe-ond —*— spar-pipe-blk-ond —&—

Sobel (energy-ram)

Sobel (Memory)
4.1943e+06 1024
K
1 NHH&)&"\)H‘—OH(—)
2.09715e+06 yll’“‘“:! [
e
%S
1.04858e+06
/ 512
@ 524288 y 8
e /i S
/ / 3
262144
[256
131072
)\
65536 > = =
i% ¥ g
32768 128 L L L L L
01234567 891011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel memory usage. (b) Filter Sobel memory energy consumption.

Figure A.9: Memory performance using unbalanced workload (pipe-like)

spar spar-ond —*— spar-blk —%— spar-blk-ond —&— spar spar-ond —*— spar-blk —%— spar-blk-ond —&—

Sobel (Memory) Sobel (energy-ram)

1.04858e+06 1024
QF’HH}A
§9ets
524288 v o
<al
!AI’J 512
262144 (l 2
< // §
131072
256 =
S\
65536
ML HAHL
32768 - i i H i

28
012345678 91011121314151617181920212223242526272829303132

012345678 91011121314151617181920212223242526272829303132
Number of Replicas

Number of Replicas

(a) Filter Sobel memory usage. (b) Filter Sobel memory energy consumption.

Figure A.10: Memory performance using unbalanced workload (farm-like)

A.1.2| Filter Sobel Performance Comparison

This section is presenting more results concerning the Filter Sobel application using

unbounded workload for the performance comparison.

194 A. Appendix

spar—pipe ff-pipe —<— tbb-pipe —*— omp-pipe —&— spar-pipe ff-pipe —=— tbb-pipe —*— omp-pipe —&—
Sobel (Time) Sobel (Stream Performance)
128 80
70
§ %60
64 2 \
8
g &50
g E
@» 3
§ 40
3
32
B 30
= I ko 36
2 ARREES 2 ™
i o SRS — S ol
E — [
s ragicassis_swsceces Shas=ruc~cSSRtgS e “a
16 i i 10 i i i
01234567 89101112131415161718192021222324252627 2829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel execution times. (b) Filter Sobel latency.

Figure A.11: Time performance comparison using unbalanced workload (Listing 7.1)

spar ff —<— thb —*— omp —&— spar ff —<— tbb —— omp —&—
Sobel (Time) Sobel (Stream Performance)
128 80
N 70
64
60
§ \
8 850
s =
3 32 £ \
@ 3
§40
-4% 3
et EINEeS
© E > A 30
20
SNWENE N
8 10 i i i i i
01234567 891011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829 303132
Number of Replicas Number of Replicas
(a) Filter Sobel execution times. (b) Filter Sobel latency.

Figure A.12: Time performance comparison using unbalanced workload (Listing 7.2)

spar—pipe ff-pipe —=— tbb—pipe —*— omp-pipe —&— spar—pipe ff—pipe —*— tob-pipe —*— omp-pipe —&—
Sobel (Stream Performance) Sobel (Speedup Throughput)
80 N s s s T T T 55 T T T T T T T | m— T T T T T T T
T wa !
70 =y I e NS 5 o e
> B = S
e N —
5 AMBRSGPR T 45 .
60 o
I~ 7 -
& - 4 2
5 f— B E i 7
250 $ 35
2 8
g 2
Ed o » 5
240 3
£
; /
25
30
2
20 /
15
10 1
012345678 91011121314151617181920212223242526272829303132 01234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel throughput. (b) Filter Sobel throughput speed-up.

Figure A.13: Stream performance comparison using unbalanced workload (Listing 7.1)

A.1. Complementary Results on Multi-Core 195

spar ff —<— tbb —%— omp —&— spar ff —<— tbb —%— omp —&—

Sobel (Stream Performance) Sobel (Speedup Throughput)
80 T TT T T 6

S i BENEW SN S

b
u(”\n'\’

5
AN
Nk

&

o
K </7 /
S50 = g ¢
4 3
£ 835 /\
S &
EAU 3 /
30 25
2
20
| 4 1.5
10 1
012345678 91011121314151617181920212223242526272829 303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel throughput. (b) Filter Sobel throughput speed-up.

Figure A.14: Stream performance comparison using unbalanced workload (Listing 7.2)

spar-pipe ff-pipe —<— tbb-pipe —*— omp-pipe —&— spar-pipe ff-pipe —=— tbb-pipe —*— omp-pipe —&—
Sobel (HPC Performance) Sobel (energy-cores)
1.4 2048
1.2
1024
1
g
go® £
% 3 512 -
1
0.6 N
ot <§ — Eé%
kK B o F—
0s = Eay PP DA
e 256
5‘§‘S§§ SR = TEAC I R o S 3
0.2 =~
) R
o
0 128
01234567 891011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel HPC efficiency. (b) Filter Sobel CPU cores energy consumption.

Figure A.15: HPC performance comparison using unbalanced workload (Listing 7.1)

spar ff —<— tbb —*— omp —&— spar ff —<— tbb —%— omp —&—
Sobel (HPC Performance) Sobel (energy-cores)
1.1 T 2048
g
NI

0.9

1024
0.8

gw 8
%ae A 3 512 g
BN
05 ? \ e L
Ao ;\! § ot B g +]
04 5% 255 AnannTES & 4 H.»H-ﬂzﬁka
o & N
e
02 e
0.1 L 128
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel HPC efficiency. (b) Filter Sobel CPU cores energy consumption.

Figure A.16: HPC performance comparison using unbalanced workload (Listing 7.2)

196 A. Appendix

spar—pipe ff-pipe —*— tbb-pipe —*— omp-pipe —&— spar—pipe ff-pipe —*— tbb-pipe —*— omp-pipe —&—
Sobel (cache-miss) Sobel (energy-pkg)
1.67772e+07 4096
4.1943e+06
%“’ =
1.048586+06 R T o N 2048 <
\ 1Y)
bd
o 262144 é
\ S 1024
65536 - .
\ H]\E
4 f—%—3 %
16384 N e N
512
Kty b6 G o oo G0 i
4096 — ke e e N N U e
—E—— %
1024 - L 256 i
012345678 91011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel cache misses. (b) Filter Sobel socket energy consumption (cache

and CPUs).

Figure A.17: CPU Socket performance comparison using unbalanced workload (Listing
7.1)

spar ff —<— thb —*— omp —&— spar ff —<— tbb —— omp —&—
Sobel (cache-miss) Sobel (energy-pkg)
1.67772e+07 4096
4.1943e+06
'\! 2048
1.048580+06 he <3 é
Lﬁﬁg""‘“‘“ﬂ:ﬁ
o 262144 = 3
S
* \ 31024

65536 \/)
| \

4
16384 512 Ny 1 gt] dox]
ES
S
4096 k%% g%
1024 L 256
01234567 891011121314151617181920212223242526272829303132 01234567 891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel cache misses. (b) Filter Sobel socket energy consumption (cache

and CPUs).

Figure A.18: CPU Socket performance comparison using unbalanced workload (Listing
7.2)

spar—pipe ff-pipe —<— tbb-pipe —*— omp-pipe —&— spar-pipe ff-pipe —=— tbb-pipe —*— omp-pipe —&—
Sobel (Memory) Sobel (energy-ram)
4.1943e+06 1024
HHH?‘gt“tﬁtﬁt;
2.09715e+06 <
1.04858e+06
512
F—f—%—¥
524288 2 =8 3
4 LT E)
e
262144
!/IH/
256
131072 -
T~ Lo ¢ 4
X% ¥ k1
65536 A4 ERSSSERp oy ‘/)(\’?Z"’
S =
N SEESNERERRC. oo s S
-
32768 128 L L L .
01234567 8 91011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Filter Sobel memory usage. (b) Filter Sobel memory energy consumption.

Figure A.19: Memory performance comparison using unbalanced workload (Listing 7.1)

A.1. Complementary Results on Multi-Core 197

spar ff —<— tbb —— omp —&— spar ff —<— tbb —%— omp —&—
Sobel (Memory) Sobel (energy-ram)
1.04858e+06 1024
=
T %
524288
ot
fﬁfi 512
262144 ()'A -
I/ K4
4 /(‘ 3
131072
256 t=
65536 ’<’E§3;u;\kY bt L
SESSSS S SRRINYS
_— . il RN R L
012345678 91011121314151617181920212223242526272829303132

01234567 891011121314151617181920212223242526272829303132
Number of Replicas

(a) Filter Sobel memory usage. (b) Filter Sobel memory energy consumption.

Figure A.20: Memory performance comparison using unbalanced workload (Listing 7.2)

Number of Replicas

198 A. Appendix

A.1.3| Prime Numbers Performance Comparison

In this section, complementary results are presented for the Prime Numbers application
running in multi-core.

spar ff —%— tbb —w— omp —8— spar ff —%— tbb —w— omp —&—
Prime Numbers (Time) Prime Numbers (Stream Performance)
512 035
-
X\H\H 0™
256 i e
TN —
——a & 0.25
8
2128 y £ oo =
8 E
3 I\ll\l 5 N
o e | §0.15 =N
'\ILI 3 e o NI
> R\ o1 5
\\ '_%\IHHH | pNE
32 o l\u\!
. 0.05 ~ a .
e T
16 ; L 0 L ; ; ; L ;
012345678 9101112131415161718192021222324 25262728 29303132 01234567891011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Prime Numbers execution times. (b) Prime Numbers latency.
Figure A.21: Time performance comparison (Prime Numbers Default)
spar ff —»— tbb —=— omp —&— spar ff —%— tbb —%— omp —&—
Prime Numbers (Stream Performance) Prime Numbers (Speedup Throughput)
55000 . 16 T
50000
14 |
45000 \
5 40000 1 12 =
g =t v ol L
€ 35000 s 10 = i
= aerf E
5 30000 / \ 3 e
i TR g s 1
525000 1 @ v
g 4 ‘ b8
£ 20000 2 .
%8 Vs
15000 ’/‘/ 3y 4 5 1
10000
’/H/‘ A 1 2 /‘/ -
5000 -~ T e
o L 0 L
012345678 91011121314151617181920212223242526272829303132 01234567891011121314151617 181920212223 242526 272829303132
Number of Replicas Number of Replicas
(a) Prime Numbers throughput. (b) Prime Numbers throughput speed-up.

Figure A.22: Stream performance comparison (Prime Numbers Default)

A.1. Complementary Results on Multi-Core 199

spar ff —»— tbb —w— omp —&— spar ff —%— tbb —%— omp —8—
Prime Numbers (HPC Performance) Prime Numbers (energy—cores)
1 8192 T

il il TRT RO A 0

Vi
I
Joules

8
%
va

Efficiency

o
Ay
a
iy
4.
e
—

04 i HI\1
03 < ny Nw\% o
1024 4
02 - 1 ‘\\,HHHH {4
0.1 BB oo
00 128345678 910111213141516171819202122232425262728293‘03132 5120 123456738 9101112131‘4151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Prime Numbers HPC efficiency. (b) Prime Numbers CPU cores energy consump-
tion.
Figure A.23: HPC performance comparison (Prime Numbers Default)
spar ff —»— tbb —=— omp —&— spar ff —%— tbb —%— omp —&—
Prime Numbers (cache-miss) Prime Numbers (energy—pkg)
1.67772x10" 16384
4.1943x10°
P N N S
1.04858x10° / 8192
HHHH
262144 H
e | ey,
65536 S 409
\
16384 \
¥
4096 2048
— A \""\.\H —
o=
1024 £ ~ =3 o-5-0-9-a/ |
56 1024 . i : :
01234567 891011121314151617181920212223242526272829303132 012345678 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Prime Numbers cache misses. (b) Prime Numbers socket energy consumption
(cache and CPUs).
Figure A.24: CPU Socket performance comparison (Prime Numbers Default)
spar ff —»— tbb —=— omp —&— spar ff —*— tbb —%— omp —&—
Prime Numbers (Memory) Prime Numbers (energy-ram)
65536 T T T T 4096
& CREE
so7es | HWVHH* g
HE/j 2048 SSReS
H \ K‘HNHHHNH
16384 | —
H 1024
g £
< a2 | k) I\"\n\“\|
i 512 N I\"\n\| 4
4096 \\ HHH"“‘"—@H
q e REARAs 2 s 2V &
2048 B B = 26 l
1024 L 128
012345678 91011121314151617181920212223242526272829303132 01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas Number of Replicas
(a) Prime Numbers memory usage. (b) Prime Numbers memory energy consumption.

Figure A.25: Memory performance comparison (Prime Numbers Default)

200

A. Appendix

A.14

Mandelbrot Set Performance Comparison

Some complementary results about the Mandelbrot set application are demonstrated
in this section that run in a multi-core machine.

spar-blk-ond
ff

thb ——

omp —&—

Mandelbrot (Stream Performance)

thb ——

omp —&—

spar-blk-ond
ff

Mandelbrot (Speedup Throughput)
7e+07 —= 30
A
\
| _
6e+07 g 25 A
} |
2 . | /// =
S 56407 2 | >)
g - \ 20 . {
g Ve |- e
T 4e+07 z =
E ~ B1s >~
3 Z 4
G3e+07 / @ i 2
3 _
£ o 10 =
20407 -
n/
bt % —
¥y /% per bl > e eete
16407 / A = 5 y e
8 e
S ._..4'/ -
012345678 091011121314151617181920212223242526272829303132

(a) Mandelbrot throughput.

Number of Replicas

01234567 8 91011121314151617181920212223242526272829303132
Number of Replicas

(b) Mandelbrot throughput speed-up.

Figure A.26: Stream performance comparison (Mandelbrot)

A.2. Complementary Results on Cluster 201

Complementary Results on Cluster

This section will present all complementary results for evaluating the performance on
cluster environment.

spar spar
Sobel (Time) Sobel (Stream Performance)
256 110
100 -
90
128 1 8
8 80
£ E
3
3 e0
64 |-
50
40
32o 12345678 91011121314151617 18192021 222324 25 26 27 28 29 30 31 300 12345678 91011121314151617 1819202122 23 24 2526 27 28 29 30 31
Number of Replicas Number of Replicas
(a) Filter Sobel execution times. (b) Filter Sobel latency.
Figure A.27: Time performance using unbalanced workload (Filter Sobel)
spar spar
Sobel (Stream Performance) Sobel (Speedup Throughput)
26 T T T T T T T T T T T 2.4 T T T T T T T T T T T T T
24 20
22 N
220
S ol8
2 i
518 o
2 3
E] S 16
316 @
= 14l
14
12 F
12 -
10 1
012345678 91011121314151617 181920212223 24 2526 27 28 29 30 31 o'30 12345678 91011121314151617 1819202122 2324 2526 27 28 29 30 31
Number of Replicas Number of Replicas
(a) Filter Sobel throughput. (b) Filter Sobel throughput speed-up.

Figure A.28: Stream performance using unbalanced workload (Filter Sobel)

Sources for Coding Productivity

This section will present all applications pseudo codes used to evaluate and compare
the coding productivity.

202 A. Appendix

A.3.1| Filter Sobel

2| int main(int argc, char xargv[]){
3| #pragma omp parallel num_ threads(workers)

5| #pragma omp single

6] {

8 DIR xdptr = opendir (...) ;
9 struct dirent *xdfptr;

10 while ((dfptr = readdir (dptr)) != NULL) {
11

12 if (file_extension == "bmp"){

13 tot__img+4+;

14 #pragma omp task

15 {

image = read (name, height ,width) ;
19 new__image=sobel (image , height , width) ;

write (newname,new__image, height , width) ;

21

22 }

23 }else{
24 tot_not+-4;
25 }

26 }

27

28| }

20| }

30 return O0;
31|}

Listing A.1: Filter Sobel using OpenMP.

int main(int argc, char xargv[]){
| #pragma omp parallel num_ threads(workers)
1K

5| #pragma omp single

6] {

8 DIR xdptr = opendir (...) ;
9 struct dirent =xdfptr;

o o =

10 while ((dfptr = readdir (dptr)) != NULL) {

11

12 if (file_extension == "bmp"){

13 tot__img++;

14

15 image = read (name, height ,width) ;

16 #pragma omp task depend(in:image[tot img]) depend(out:new_image[tot_img])
17 {

18

19 new__image=sobel (image , height , width);
20 }

21 #pragma omp task depend(in:new_image[tot__img])
22 {

23

24 write (newname,new__image, height , width) ;
25 }

26 }else{

27 tot_not++;

28 }

29 }

30| }

310}

32

33 return O0;

340}

Listing A.2: Filter Sobel using OpenMP (pipeline-like).

l|#include <ff/farm.hpp>

2| using namespace ff;

3| struct FF_Stream {

+ FF_Stream (char xname, char xnewname):

5 name (name) ,newname (newname) {};

16

o0

aUR W N

S © 0w

QNI

5 00

R R R W W W W W W W W W WNN NN N

'
'S

SN NN N NN
TS W N =

10

A.3. Sources for Coding Productivity

203

char sname;
char xnewname;
b
struct Emitter_ff: ff node_t<FF_Stream> {
const std::string filepath;
unsigned int tot_img;
unsigned int tot_not;
Emitter_ ff(const std::string filepath , unsigned int tot_img, unsigned int tot_not):
filepath (filepath) ,tot_img(tot_img) ,tot_not(tot_not){}

FF_Stream =*svc(FF_Stream x){

DIR xdptr = opendir (...) ;
struct dirent xdfptr;

while ((dfptr = readdir(dptr)) != NULL){
if (file__extension == "bmp")({
tot__img++;
FF_Stream xstream = new FF_ Stream (name,newname, ...) ;
ff_send_out(stream);
}else{
tot_not+4+4;
}
}

return EOS;
}
}s
void StageReplicate_Spar (FF_Stream xin){

image = read (in—>name, height ,width);
new__image=sobel (image , height , width) ;

write (in—>newname,new_image, height , width) ;
}
FF_Stream *StageReplicate_ ff (FF_Stream *in, ff nodexconst){
StageReplicate_Spar(in);
delete in;
return (FF_Streamx*)GO_ON;

}

int main(int argc, char xargv[]){
Emitter_ff Emitter(interating ,filepath ,tot_img,tot_not);
ff Farm<FF_ Stream> StageReplicate(StageReplicate_ff,workers);
StageReplicate.add__emitter (Emitter) ;
StageReplicate .set__scheduling_ondemand () ;
StageReplicate.remove__collector () ;
if (StageReplicate.run_and_wait_end () <0) {
error ("Running farm\n");
return —1;
}
tot_img=Emitter.tot_img;
tot_not=Emitter.tot__not;

Listing A.3: Filter Sobel using FastFlow (farm-like).

#include <ff/pipeline.hpp>
using namespace ff;
struct FF_Stream {
FF_Stream (char *name, char xnewname,...) :
name (name) ,newname (newname) , ... {};

char xname;

char xnewname;

unsigned charx image;
unsigned charx new__image;

}s
struct Emitter_ff: ff node_t<FF_ Stream> {
const std::string filepath;
unsigned int tot_img;
unsigned int tot__not;
Emitter_ff(const std::string filepath , unsigned int tot_img, unsigned int tot_mnot):
filepath (filepath) ,tot_img(tot_img) ,tot_not(tot_not){}

FF_Stream xsvc(FF_Stream x){

DIR sdptr = opendir (...) ;
struct dirent =dfptr;

while ((dfptr = readdir(dptr)) != NULL){
if (file__extension == "bmp"){
tot__img+4+;

20

TUA W N =

~

W W wWwWwWwwWNNNNNNDNN N D
S P~ 5

T W R

204 A. Appendix

image = read (name, height ,width) ;
FF_Stream xstream = new FF_Stream (name,newname, ...);
ff_send_out (stream);
}else{
tot_not+4++;

}

return EOS;
}
s

void StageReplicate_ Spar (FF_Stream =in){

in—>new__image=sobel (in—>image ,in—>height ,in—>width) ;

}

void Stage_Spar (FF_Stream =in){

write (in—>newname, in—>new__image,in—>height ,in—>width) ;

}

FF_Stream xStageReplicate_ ff (FF_Stream =*in, ff nodexconst){
StageReplicate__Spar(in);
return in;

FF_Stream xStage_ff (FF_Stream *in, ff_nodexconst){
Stage_Spar(in);
delete inj;
return (FF_Streamx)GO_ON;

}

int main(int argc, char xargv[]){
Emitter_ff Emitter (filepath ,tot_img,tot_not);
ff Farm<FF_ Stream> StageReplicate(StageReplicate ff, workers);
StageReplicate.add__emitter (Emitter) ;
StageReplicate .set__scheduling ondemand () ;
StageReplicate.remove__collector () ;
struct Multilnput_Stage: ff minode_ t<FF_Stream> {
FF_Stream =svc(FF_Stream xstream) {
return Stage_ ff(stream, this);
}
s
Multilnput__Stage S;
ff _Pipe<> pipe(StageReplicate ,S);
if (pipe.run_and_wait_end()<0) {
error ("Running pipeline\n");
return —1;
¥
tot_img=Emitter.tot_img;
tot_not=Emitter.tot__not;

Listing A.4: Filter Sobel using FastFlow (pipe-like).

#include <tbb/pipeline.h>
#include <tbb/task_scheduler__init.h>
struct TBB_ Stream {
TBB_ Stream (char sname, char snewname) :
name (name) ,newname (newname) {};

char *xname;
char *xnewname;

s
class Emitter_tbb: public tbb:: filter {
public:
Emitter__tbb(const std::string filepath , unsigned int tot_img, unsigned int tot_not);
void *operator () (void =x);
const std::string filepath;
unsigned int tot_img;
unsigned int tot__not;
s

Emitter__tbb:: Emitter_tbb(const std::string filepath , unsigned int tot_img, unsigned int tot_not)
tbb:: filter (serial_in_order), filepath (filepath) ,tot_img(tot_img) ,tot_not(tot_not)
{}
void * Emitter_tbb:: operator () (void *) {
struct dirent *xdfptr;

DIR xdptr = opendir (...) ;
struct dirent =xdfptr;

while ((dfptr = readdir (dptr)) != NULL) {

if (file_extension == "bmp"){
tot__img+-+;
TBB_ Stream #*stream = new TBB_ Stream (name,newname) ;
return stream;

}else{
tot_not++4;

}

A.3. Sources for Coding Productivity 205

36 return NULL;
38| class StageReplicate_tbb: public tbb:: filter {

39| public:

10 StageReplicate__tbb () ;

11 void x operator () (void xinput);

121}

13| StageReplicate_tbb:: StageReplicate_tbb(): tbb:: filter (parallel){}
14| void xStageReplicate_tbb ::operator () (void =input){

15 TBB_ Stream #*in = static__cast<TBB_ Streamx>(input);

a7 image = read (in—>name, height ,width);
19 new__image=sobel (image , height , width) ;

51 write (in—>newname, new__image, height , width) ;
2 delete in;

53 return NULL;
1

}

56| int main(int argc, char xargv|[]){

57 tbb:: task scheduler_init init(workers);

58 tbb:: pipeline pipeline;

59 Emitter_tbb Emitter (filepath ,tot_img,tot_not);
60 pipeline.add_filter (Emitter);

61 StageReplicate_tbb StageReplicate;

62 pipeline.add_filter (StageReplicate);

63 pipeline.run(workers);

64 tot_img=Emitter.tot_img;

65 tot_not=Emitter.tot__not;

Listing A.5: Filter Sobel using TBB (farm-like).

unsigned int tot_img=0, workers=1, ninter=1, tot_not=0;
2| #include <tbb/pipeline.h>

3|#include <tbb/task_scheduler__init.h>

1

5

struct TBB_ Stream {

TBB_ Stream (char sname, char xnewname, ...):
6 name (name) ,newname (newname) , ... {};
7
8 char *name;

9 char *newname;
unsigned charx* image;
unsigned charx filtered image;

b
class Emitter_tbb: public tbb:: filter {
public:
Emitter_tbb (const std::string filepath , unsigned int tot_img, unsigned int tot_not);
void xoperator () (void =x);
const std::string filepath;
unsigned int tot_img;
unsigned int tot_not;
}s
Emitter tbb:: Emitter tbb(const std::string filepath , unsigned int tot_img, unsigned int tot_ not)
tbb:: filter (serial_in_order) ,filepath (filepath) ,tot_img(tot_img) ,tot_not(tot_not)

B W N =

S © 0w

=~

{3

void * Emitter_ tbb:: operator () (void =*) {

ot

DIR *dptr = opendir (...) ;

W W W wWwWWwowwowihnWwN DLNDINNNDLNRE = H 2= e e e e
- S o 8 b

struct dirent =xdfptr;
9 while ((dfptr = readdir (dptr)) != NULL){
0
1 if (file_extension == "bmp"){
2 tot__img++;
3

image = read (name, height ,width);

5 TBB_ Stream #*stream = new TBB_ Stream(name,newname, ...) ;
6 return stream;
7 }else{
8 tot_not+4+4;
39 }
10
11 return NULL;
12| }
13| class StageReplicate_tbb: public tbb:: filter {
14| public:

15 StageReplicate__tbb () ;

16 void * operator () (void xinput);

17}

15| StageReplicate_tbb:: StageReplicate_tbb(): tbb:: filter (parallel){}
19| void *StageReplicate_ tbb::operator () (void xinput){

50 TBB_ Stream *in = static__cast<TBB_ Stream=*>(input);

1
52 in—>new__image=sobel (in—>image ,in—>height ,in—>width);

64
65
66

67

— O © ®

w N

P e B B B B |
| I

1
N o U

o

20

w N

~

206 A. Appendix

return in;

class Stage_tbb: public tbb:: filter {
public:
Stage_tbb () ;
void x operator () (void xinput);
}s
Stage_tbb:: Stage_ tbb(): tbb:: filter (serial_in_order){}
void *Stage_tbb::operator () (void xinput){
TBB_ Stream *in = static__cast<TBB_ Streamx*>(input);

write (in—>newname, in—>new__image,in—>height ,in—>width);
delete in;
return NULL;

}

int main(int argc, char xargv[]){
tbb:: task scheduler_ init init ((workers+2));
tbb:: pipeline pipeline;
Emitter__tbb Emitter (interating ,filepath ,tot_img,tot_not);
pipeline.add_filter (Emitter);
StageReplicate tbb StageReplicate;
pipeline.add_filter (StageReplicate);
Stage__tbb S;
pipeline.add_filter (S);
pipeline.run(workers);
tot_img=Emitter.tot_img;
tot_not=Emitter.tot__not;

Listing A.6: Filter Sobel using TBB (pipe-like).

A.3.2| Video OpenCV

#include <ff/farm.hpp>
#include <ff/pipeline.hpp>
using namespace ff;
struct Stream{
Stream (Mat src, Mat res, int channel, Size S):src(src),res(res),channel(channel),S(S){}

Mat src;
Mat res;
int channel;
Size S;
b
struct Source : ff_node_t<Stream> {
int channel;
Size S;
Mat src;
Mat res;
Source(int channel,Size S):channel(channel),S(S) {}
Stream* svc(Stream =) {
for (53) {
total frames++;
inputVideo >> src;
if (src.empty()) break;
Stream *s = new Stream (src,res,channel,S);
ff _send_out(s);
}
return EOS;
}
}s

Stream *StageReplicate (Stream x*t, ff nodexconst){
vector<Mat> spl;
split (t—>src, spl);
for (int i =0; i < 3; ++i){
if (i != t—>channel){
spl[i] = Mat:: zeros (t—>S, spl[0].type());
}
}
merge (spl, t—>res);
cv:: GaussianBlur (t—>res, t—>res, cv::Size(0, 0), 3);
cv::addWeighted (t—>res, 1.5, t—>res, —0.5, 0, t—>res);
Sobel (t—>res ,t—>res ,—1,1,0,3);
return t;
I
struct Drain: ff node_t<Stream> {
Stream =*svc (Stream = t) {

J0 s W

NN NN N
% 8

A.3. Sources for Coding Productivity

207

outputVideo << t—>res;
delete t;
return GO_ON;
}
s
ff OFarm<Stream> F(StageReplicate ,workers);
Source E(channel ,S);
F.setEmitterF (E) ;
Drain drain;
F.setCollectorF (drain);

if (F.run_and_wait_end()<0) {
error ("running pipe");
return —1;

¥

Listing A.7: Video OpenCV using FastFlow.

#include <tbb/pipeline.h>
#include <tbb/task_scheduler__init.h>
using namespace tbb;
struct Stream{
Stream (Mat src, Mat res, int channel, Size S):src(src),res(res),channel(channel),S(S){}
Mat src;
Mat res;
int channel;
Size S;
}s
class Source: public tbb:: filter {
public:
Source (int channel, Size S);
void *xoperator () (void =x);
int channel;
Size S;
Mat src;
Mat res;
s
Source :: Source (int channel,Size S): tbb:: filter (serial_in_order),channel(channel) ,S(S){}
void * Source::operator () (void =) {
for (53) {
total_frames++;
inputVideo >> src;
if (src.empty()) break;
Stream *s = new Stream (src ,res,channel,S);
return s;

}
return NULL;
}s
class StageReplicate: public tbb:: filter {
public:
vector<Mat> spl;
StageReplicate () ;
void x operator () (void xinput);
}s

StageReplicate :: StageReplicate (): tbb:: filter (parallel){}
void *StageReplicate :: operator () (void =input){
Stream *xt = static__cast<Stream=>(input);
cv::split(t—>src, spl);
for (int i =0; i < 3; ++i){
if (i != t—>channel){
spl[i] = Mat:: zeros (t—>S, spl[0].type());

¥

merge (spl, t—>res);

cv:: GaussianBlur (t—>res, t—>res, cv::Size(0, 0), 3);
cv::addWeighted (t—>res, 1.5, t—>res, —0.5, 0, t—>res);
Sobel (t—>res ,t—>res ,—1,1,0,3);

return t;

}
class Drain: public tbb:: filter {
public:

Drain () ;

void * operator () (void xinput);
}.

Drain :: Drain () :tbb:: filter (serial__in_order){}
void *Drain::operator () (void =xinput){

Stream xt = static__cast<Stream=>(input);
outputVideo << t—>res;
delete t;

return NULL;
s
tbb:: task_scheduler__init init (workers);
tbb:: pipeline pipeline;
Source E(channel ,S);
pipeline.add_filter (E);
StageReplicate SR;
pipeline.add_filter (SR);

208 A. Appendix

70| Drain D;
71| pipeline.add_filter (D);
72| pipeline .run(workers) ;

Listing A.8: Video OpenCV using TBB.

A.3.3| Mandelbrot

1| unsigned char *M = (unsigned char x) malloc(dim);
2| #pragma omp parallel num_threads(workers)

314

1 for (int i=0;i<dim;i++) {

5 double a,b,a2,b2,cr ,k;

6 double im=init__b+(stepxi);
7 #pragma omp for

8 for (int j=0;j<dim;j++){

9 a=cr=init__a-+stepx*j;

10 b=im ;

11 k=0;

12 for (k=0;k<niter ;k++){
3 a2=axa;

14 b2=bxb;

5 if ((a24b2)>4.0) break;
16 b=2%axb+im;

17 a=a2—b2+cr;

}
19 M[j]= (unsigned char) 255—((k*255/niter));

20 }

21 #pragma omp single
22

23 ShowLine (M,dim , i) ;
24 }

25 }

26| }

Listing A.9: Mandelbrot using OpenMP.

#include <ff/farm.hpp>

#include <ff/spin—lock .hpp>

#include <ff/mapping_utils.hpp>

using namespace ff;

static lock_t lock;

typedef struct outitem {

7 unsigned char x M;

8 int line;

)| } ostream_ t;

0| const double range=3.0;

1| const double init__a=-2.125,init_b=-1.5;
2| double step = range/((double) DIM) ;

3l int dim = DIM;

| int niter = ITERATION;

5| class Worker: public ff node {

6| public:

void * svc(void x task) {

18 int * t = (int =x)task;

19 ostream_t % oi = (ostream_tx)malloc(sizeof(ostream_t));
20 0i—>M = (unsigned char *) malloc(dimxsizeof(char));
21 int i = oi—>line = xt;

22 int j,k;

23 double im,a,b,a2,b2,cr;

24

N

>
>
2
2 im=init_b+4(stepxi);

25 for (j=0;j<dim;j++){
26 a=cr=init__a+stepx*j;

27 b=im;

28 k=0;

29 for (k=0;k<niter ;k++){
30 a2=axa;

31 b2=bxb;

32 if ((a24b2) >4.0) break;

33 b=2%axb+im;

34 a=a2—b2+tcr;

35 }

36 0oi—>M[j] = (unsigned char) 255—((k*255/niter));
3 }

3

38 return oi;

60
61

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

A.3. Sources for Coding Productivity

209

}
b
class Worker2: public ff_node {
public:
void * svc(void x task) {
int * t = (int =x)task;
ostream_t * oi = (ostream_tx)malloc(sizeof(ostream_t));
0i—>M = (unsigned char %) malloc(dim*sizeof(char));
int i = oi—>line = x*t;
int j,k;
double im,a,b,a2,b2,cr;
im=init_b+(stepxi);
for (j=0;j<dim;j++) {
a=cr=init__a+tstepx*j;
b=im ;
k=0;
for (k=0;k<niter ;k++)
{
a2=axa;
b2=bxb;
if ((a2+4b2)>4.0) break;
b=2*axb+im;
a=a2—b2+cr;
}
0i—>M[j] = (unsigned char) 255—((k*255/niter));
spin_lock (lock);
ShowLine (0i—>M, dim, oi—>line);
spin__unlock (lock) ;
free (0i—>M) ;
free (oi);
return GO_ON;
}
}s
class Collector: public ff node {
public:
void x svc(void x task) {
ostream_t *x t = (ostream_t =x)task;
ShowLine (t—>M, dim ,t—>line) ;
free (t—>M) ;
free (t);
return GO_ON;
}
private:
int init;
s
class Emitter: public ff_ node {
public:
Emitter (int max_task):ntask (max_task) {};
void * svc(void *) {
int % task = new int(dim—ntask);
——ntask;
if (ntask <0) return NULL;
return task;
}
private:
int ntask;

}s

ff_farm<> farm (false, dim);

std :: vector<ff__node *>w;

for (int k=0;k<workers;k++){
w.push_back((ncores>=4)? ((ff_nodex*)new Worker)

}

farm .add__workers(w) ;

Emitter E(dim) ;

farm.add__emitter(&E) ;

Collector Cj

if (ncores>=4){
farm.add__collector (&C) ;

if (farm.run_and_wait_end () <0) {
error ("running farm\n'");

return —1;

((ff_nodex*)new Worker2));

Listing A.10: Mandelbrot using FastFlow.

#include <tbb/pipeline.h>
#include <tbb/task_scheduler_init.h>
struct TBB_ Stream {

TBB_ Stream (unsigned char %M, double

int i, im,

int niter ,

double init__a,

M(M) ,i(i),im(im) ,niter (niter),init_a(init_a) ,step(step) ,dim(dim){}

unsigned char =M;
int i;
double
int niter;

im ;

double step ,

int dim):

210

A. Appendix

double init__aj;
double step;
int dim;

b
class Emitter_tbb: public tbb:: filter {
public:
Emitter _tbb(int dim, double init_b, double step, double init_a, int niter, int i);
void xoperator () (void =x);
int dim;
double init_b, step, init_a;
int niter;
int i;
}s

Emitter_tbb:: Emitter_tbb(int dim, double init_b, double step, double init_a,

int niter , int i)

tbb:: filter (serial_in_order) ,dim(dim) ,init_b(init_b) ,step(step),init_a(init_a),niter (niter) ,i(

i)
{}
void * Emitter__tbb:: operator () (void x*) {
while ((i++)<dim) {

unsigned char *M = (unsigned char %) malloc(dim);
double im=init__b+(stepx*i);
TBB_ Stream xstream = new TBB_ Stream(M,i,im, niter ,init_a ,step ,dim);
return stream;
¥
return NULL;
}
class StageReplicate_tbb: public tbb:: filter {
public:
StageReplicate__tbb () ;
void x operator()(void xinput);
s

StageReplicate_tbb:: StageReplicate_tbb(): tbb:: filter (parallel){}
void xStageReplicate_tbb ::operator () (void *input){
TBB_ Stream *in = static__cast<TBB_ Streamx*>(input);
double a,b,a2,b2,cr k;
for (int j=0;j<in—>dim; j++){
a=cr=in—>init__a+4in—>stepx*j;
b=in—>im;
k=0;
for (k=0;k<in—>niter ;k++){
a2=axa;
b2=bxb;
if ((a24b2)>4.0) break;
b=2%axb+in—>im;
a=a2—b2+cr;
}
in—>M][j]= (unsigned char) 255—((k*255/in—>niter));
¥

return in;

class Stage_tbb: public tbb:: filter {
public:
Stage_tbb () ;
void x operator()(void xinput);

s
Stage_tbb:: Stage_tbb(): tbb:: filter (serial_in_order){}
void xStage_tbb::operator () (void xinput){

TBB_ Stream =*in = static__cast<TBB_Streamx>(input) ;

ShowLine (in—>M, in—>dim , in—>i) ;

free (in—>M) ;

delete inj;

return NULL;
}
tbb:: task__scheduler_init init ((workers+2));
tbb:: pipeline pipeline;
int i=0;
Emitter__tbb Emitter (dim,init_b ,step ,init_a ,niter ,i);
pipeline.add_filter (Emitter);
StageReplicate__tbb StageReplicate;
pipeline.add_filter (StageReplicate);
Stage__tbb S;
pipeline.add_filter (S);
pipeline .run(workers) ;

Listing A.11: Mandelbrot using TBB.

A.3.4| Prime Numbers

A.3. Sources for Coding Productivity 211

I| int prime_number (int n){

int total = 0;

#pragma omp parallel for shared (n) reduction (+:total) num_threads(workers) schedule(dynamic)
for (int i = 2; i <= n; i++){

5 int prime = 1;

6 for (int j = 2; j < i; j++){
7 if (i % j =0){

8 prime = 0;

9 break;

10 }

11 }

12 total = total + prime;

13 }

14 return total;

15] }

Listing A.12: Prime Numbers using OpenMP.

I|#include <ff/pipeline.hpp>
2| using namespace ff;

3| struct Spar_Stream {
1
5

Spar__ Stream (int i, int prime):
i(i),prime(prime) {};
6 int i;

7 int prime;

91 }s
10| void StageReplicate__Spar (Spar_Stream xin){
for (int j = 2; j < in—>i; j++){

12 if (in—>i % j == 0){

13 in—>prime = 0;

14 break;

15)

16 }

171}

13| struct ToStream_ ff: ff node_ t<Spar_ Stream> {
19 int n;

20 ToStream_ ff(int n):

21 n(n) {}

22

23 Spar__ Stream *svc(Spar_Stream =in){

24 for (int i = 2; i <= n; i++){

25 int prime = 1;

26 Spar__Stream xstream = new Spar_ Stream (i,prime);
27 ff send__out(stream);

28

29 return EOS;

30 }

310 };

32| Spar__Stream xStageReplicate_ff (Spar_Stream xin, ff_nodexconst){
33 StageReplicate__Spar(in);

34 return in;

35|}

36| struct Collector: ff _node_t<Spar_Stream> {
37 Collector (int total):total(total) {}

38 int total;

39 Spar__Stream =xsvc(Spar_Stream =xin) {

10 total = total 4+ in—>prime;
11 delete in;

12 return GO_ON;

13 }

L]}

15| int prime_number (int n){

16 int total = 0;

A7 ToStream_ ff ToStream(n) ;

48 Collector C(total);

49 ff Farm<Spar_Stream> StageReplicate(StageReplicate ff, workers);

50 StageReplicate.add__collector (C);

51 StageReplicate.add__emitter (ToStream) ;

52 StageReplicate .set__scheduling ondemand () ;

if (StageReplicate.run_and_wait_end () <0) {
error ("Running farm\n");

55 return —1;

56 }

57 total=C.total;

58 return total;

Listing A.13: Prime Numbers using FastFlow.

#include <ff/parallel_for .hpp>
using namespace ff;
int prime_ number (int n){

212 A. Appendix

int total = 0;

> auto reduceF = [](int& total, int elem) { total += elem; };
6 auto bodyF = [](int i, int &total) {

7 int prime = 1;

8 for (int j = 2; j
9 if (i % j =0
10 prime = 0;

11 break;

12 1

13 }

14 totald+=prime;

15 }s

16 ParallelForReduce<int> pfr(workers);

17 pfr.parallel_reduce(total, 0O, O, n, 1, 1, bodyF, reduceF, workers);
18 return total;

19] }

< is o4+) Ao
) {

Listing A.14: Prime Numbers using FastFlow (parallel for).

I|#include <tbb/pipeline.h>

2| #include <tbb/task_scheduler_init.h>
3] struct Stream_tbb {

1 Stream_ tbb(int i, int prime):

5 i(i),prime(prime) {};

6 int i;

int prime;

8|}

9| void StageReplicate (Stream_ tbb xin){
10 for (int j = 2; j < in—>i; j++){

11 if ((in—>i % j==0){
12 in—>prime = 0;
13 break;
}
}
}
class Emitter_tbb: public tbb:: filter {
public:
Emitter__tbb(int n, int i);
void *xoperator () (void =x);
int n;
int i;
}s

Emitter__tbb :: Emitter__tbb(int n,int i) :
tbb:: filter (serial_in_order) ,n(n),i(i)

{3
void * Emitter__tbb:: operator () (void *) {
while ((i++) <= n){
int prime = 1;
Stream__tbb xstream = new Stream_tbb(i,prime);

return stream;

return NULL;

}
class StageReplicate_tbb: public tbb:: filter {
public:
StageReplicate tbb () ;
void * operator () (void xinput);
}s

StageReplicate _tbb:: StageReplicate_tbb(): tbb:: filter (parallel){}
void xStageReplicate_tbb ::operator () (void xinput){
Stream__tbb *xin = static__cast<Stream_tbbx>(input);
if (in != NULL){
StageReplicate (in);
return in;

¥
return NULL;
}
class Stage_tbb: public tbb:: filter {
50| public:
51 Stage_tbb(int total);
52 void * operator()(void xinput);
53 int total=0;
541 };

55| Stage__tbb :: Stage_tbb(int total): tbb:: filter (serial_in_order),total(total){}
56| void *Stage_tbb :: operator () (void xinput){

57 Stream__tbb *in = static__cast<Stream_tbbx>(input);

58 total = total 4+ in—>prime;

59 delete in;

60 return NULL;

61}

62| int prime_number (int n){
63 int total = 0;

64 int i=2;

5
65 tbb:: task_scheduler__init init (workers);
66 tbb:: pipeline pipeline;

67 Emitter__tbb Emitter(n,i);

G W N

B W= O © W

16
17
18
19

O © WO U W N

™ o =

A.3. Sources for Coding Productivity 213

pipeline.add_filter (Emitter);
StageReplicate_tbb SR;
pipeline.add_filter (SR);
Stage_ tbb S(total);
pipeline.add_filter (S);
pipeline.run(workers);

total = S.total;

return total;

Listing A.15: Prime Numbers using TBB.

#include "tbb/parallel reduce.h"
#include "tbb/blocked range.h"
#include <tbb/task_ scheduler_init.h>
using namespace tbb;
int prime_number (int n){
affinity partitioner ap;
task__scheduler__init init (workers);
int total = 0;
auto bodyF = [](const blocked_ range<int> &r, int in) —> int {
for (int i=r.begin();i!l=r.end();++i) {
int prime = 1;
for (int j =
if (i %
prime =
break;

< i+ o
)

}
}

ind+=prime;

Listing A.16: Prime Numbers using TBB (parallel for).

A.3.5| K-Means

while (modified){

modified = false;
#pragma omp parallel for schedule(dynamic)
for (int i = 0; i < num_points; i4++4){
unsigned int min_dist = get_sq_dist(points[i], means[0]) ;
int min_idx = 0;
for (int j = 1; j < num_means; j++){
unsigned int cur_dist = get_sq_dist(points[i], means[j]);
if (cur_dist < min_dist){
min__dist = cur_ dist;
min_idx = j;
}
if (clusters[i] != min_idx){
clusters [i] = min_idx;
modified = true;
}
¥
#pragma omp parallel for schedule(dynamic)
for (int i = 0; i < num_means; i++){
intx sum = (int x)malloc(dim * sizeof(int));
memset (sum, 0, dim * sizeof(int));
int grp_size = 0;
for (int j = 0; j < num_ points; j++){
if (clusters[j] == i){
add__to_sum(sum, points[j]);
grp_sizet-;
}
¥
for (int j = 0; j < dim; j++){
if (grp_size != 0){
means[i][j] = sum[]j] / grp_size;
free (sum) ;
}

Listing A.17: K-Means using OpenMP.

16

20

TR W N =

NNNNDNNNNN
= O © 00~ W N

W N

o 1

214

A. Appendix

#include <ff/parallel_for.hpp>

using namespace ff;

ParallelFor pf(atoi(argv([l]), false);
while (modified){

modified = false;
pf.parallel_for (0,num_points,|[points ,means,&clusters ,&modified](int i){
unsigned int min_dist = get_sq_dist(points[i], means[0]) ;
int min_idx = 0;
for (int j = 1; j < num_means; j++) {
unsigned int cur_dist = get_sq_dist(points[i], means[]j]);
if (cur_dist < min_dist){
min__dist = cur__dist;
min_idx = j;
}
if (clusters[i] != min_idx){
clusters [i] = min_idx;
modified = true;
}
P
pf.parallel for (0,num_means, [points ,&means, clusters , modified](int i){
intx sum = (int x)malloc(dim * sizeof(int));
memset (sum, 0, dim * sizeof(int));
int grp_size = 0;
for (int j = 0; j < num_ points; j++){
if (clusters[j] == i){

add__to_sum(sum, points[j]);
grp__size+4+;

¥
for (int j = 0; j < dim; j++){
if (grp_size != 0){
means[i][j] = sum[]j] / grp_size;
¥
}
free (sum);
s

}

Listing A.18: K-Means using FastFlow.

#include "tbb/tbb.h"

using namespace tbb;

tbb:: task_scheduler_init init (atoi(argv[1]));
while (modified){

modified = false;
parallel_for (0,num_ points,[points ,means,&clusters ,&modified](int i){
unsigned int min_dist = get_sq_dist(points[i], means[0]) ;
int min__idx = 0;
for (int j = 1; j < num_means; j++){
unsigned int cur_dist = get_sq_dist(points[i], means[]j]);
if (cur_dist < min_dist){
min__dist = cur__dist;
min__idx = j;
}
if (clusters[i] != min_idx) {
clusters [i] = min_idx;
modified = true;
}
1)
parallel for (0,num_means, [points ,&means, clusters , modified](int i){
int*x sum = (int x)malloc(dim * sizeof(int));
memset (sum, 0, dim * sizeof(int));
int grp__size = 0;
for (int j = 0; j < num_points; j++){
if (clusters[j] == i){

add_to_sum(sum, points[j]);
grp_size++;

}
}
for (int j = 0; j < dim; j++){
if (grp_size != 0){
means[i][j] = sum[j] / grp_size;
¥
free (sum) ;

1)
}

Listing A.19: k-Means using TBB.

	List of Figures
	List of Tables
	I Scenario
	Introduction
	Contextualization
	Perspectives on High-Level Parallelism
	Stream Parallelism Domain

	Goals
	Contributions
	Outline

	Related Work
	High-Level Parallelism
	REPARA Research Project
	Stanford Pervasive Parallelism Research
	Discussion

	C/C++ DSL Design Space
	Cetus
	PIPS
	GCC-Plugins
	Clang
	ROSE
	Comparison

	Parallel Programming Frameworks
	Stream-Based
	Annotation-Based
	General-Purpose Frameworks
	Comparison

	Concluding Remarks

	II Contributions
	Overview of the Contributions
	Introduction
	The Programming Framework
	A Compiler-Based Infrastructure
	High-Level and Productive Stream Parallelism
	Introducing Code Portability for Multi-Core and Clusters

	CINCLE: A Compiler Infrastructure for New C/C++ Language Extensions
	Introduction
	Original Contribution
	Implementation Design Goals
	The CINCLE Infrastructure
	CINCLE Front-End
	CINCLE Middle-End
	CINCLE Back-End
	Supporting New Language Extensions
	Real Use Cases
	Summary

	SPar: an Embedded C++ DSL for Stream Parallelism
	Introduction
	Original Contributions
	Design Goals
	SPar DSL: Syntax and Semantics
	ToStream
	Stage
	Input
	Output
	Replicate

	Methodology Schema: How to Annotate
	Examples and Good Practices
	SPar Compiler
	SPar Internals
	Annotation Statistics on Real Use Cases
	Summary

	Introducing Code Portability for Multi-Core and Cluster
	Introduction
	Original Contribution
	Parallel Patterns in a Nutshell
	Multi-Core Runtime (FastFlow)
	Cluster Runtime (MPI Boost)
	Farm
	Pipeline
	Pattern Compositions

	Generalized Transformation Rules
	Source-to-Source Transformations Use Cases
	Transformations for Multi-Core
	Transformations for Cluster

	Summary

	III Experiments
	Results
	Introduction
	Experimental Methodology
	Benchmarking Setup
	Tests Environment
	Performance Evaluation
	Coding Productivity Instrumentation

	Multi-Core Environment
	Sobel Filter
	Video OpenCV
	Mandelbrot Set
	Prime Numbers
	K-Means

	Cluster Environment
	Sobel Filter
	Prime Number

	Summary

	IV Discussions
	Conclusions
	Overview
	Assessments
	Limitations
	Considerations

	Future Work
	Programming Framework
	CINCLE
	SPar
	Transformation Rules

	Experiments

	V Complements
	Bibliography
	Appendix
	Complementary Results on Multi-Core
	Filter Sobel SPar Performance
	Filter Sobel Performance Comparison
	Prime Numbers Performance Comparison
	Mandelbrot Set Performance Comparison

	Complementary Results on Cluster
	Sources for Coding Productivity
	Filter Sobel
	Video OpenCV
	Mandelbrot
	Prime Numbers
	K-Means

