PUCRS

ESCOLA POLITECNICA

PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO
MESTRADO EM CIENCIA DA COMPUTACAO

ADRIANO VOGEL
ADAPTIVE DEGREE OF PARALLELISM FOR THE SPAR RUNTIME

Porto Alegre
2018

POS-GRADUACAO - STRICTO SENSU

*8.6

it

g h
v * &
Q i

L
Egym®

Pontificia Universidade Catodlica
do Rio Grande do Sul

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY
COMPUTER SCIENCE GRADUATE PROGRAM

ADAPTIVE DEGREE OF
PARALLELISM FOR THE SPAR
RUNTIME

ADRIANO VOGEL

Thesis submitted to the Pontifical Catholic
University of Rio Grande do Sul in partial
fulfilment of the requirements for the
degree of Master in Computer Science.

Advisor: Prof. Luiz Gustavo Fernandes, PhD
Co-Advisor: Prof. Dalvan Griebler, PhD

Porto Alegre
2018

Ficha Catalografica

V878a Vogel, Adriano

Adaptive Degree of Parallelism for the SPar Runtime / Adriano
Vogel . —2018.

98 f.

Dissertagao (Mestrado) — Programa de Pos-Graduagao em
Ciéncia da Computagao, PUCRS.

Orientador: Prof. Dr. Luiz Gustavo Fernandes.
Co-orientador: Prof. Dr. Dalvan Griebler.

1. Stream Parallelism. 2. Abstracted and Adaptive Degree of
Parallelism. I. Fernandes, Luiz Gustavo. II. Griebler, Dalvan. III.
Titulo.

Elaborada pelo Sistema de Geragao Automatica de Ficha Catalografica da PUCRS
com os dados fornecidos pelo(a) autor(a).
Bibliotecaria responsavel: Salete Maria Sartori CRB-10/1363

Adriano Vogel

Adaptive Degree of Parallelism for the Spar Runtime

This Thesis has been submitted in partial fulfillment
of the requirements for the degree of Master in
Computer Science, of the Graduate Program in
Computer Science, School of Technology of the
Pontificia Universidade Catélica do Rio Grande do
Sul.

Sanctioned on 28" , 2018.

COMMITTEE MEMBERS:

Prof. Dr. Marco Danelutto (University of Pisa)

Prof. Dr. Avelino Francisco Zorzo (PPGCC/PUCRS)

Prof. Dr. Luiz Gustavo Leao Fernandes (PPGCC/PUCRS - Advisor)

Prof. Dr. Dalvan Jair Griebler (PNPD/PUCRS - Co-Advisor)

To my family, my girlfriend, and my friends.

“Do not let arrogance go to your
head and despair to your heart;
do not let compliments go to your
head and criticisms to your heart;
do not let success go to your head
and failure to your heart.”

(Roy T. Bennett)

ACKNOWLEDGMENTS

First | would like to thank my advisors for guiding this research. Second, my peers
and lab colleagues for their help and technical discussions. This work was partially sup-
ported by funding from the Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico
(CNPQ), Coordenagéo de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), and by
the HiPerfCloud Project.

ADAPTIVE DEGREE OF PARALLELISM FOR THE SPAR RUNTIME

RESUMO

As aplicacdes de stream se tornaram cargas de trabalho representativas nos sis-
temas computacionais. Diversos dominios de aplicacbes representam stream, como video,
audio, processamento de gréaficos e imagens. Uma parcela significativa dessas aplicacdes
demanda paralelismo para aumentar o desempenho. Porém, programadores frequente-
mente enfrentam desafios entre produtividade de cédigo e desempenho devido as com-
plexidades decorrentes do paralelismo. Buscando facilitar a paralelizagdo, a DSL SPar foi
criada usando atributos (stage, input, output, and replicate) do C++-11 para representar
paralelismo. O compilador reconhece os atributos da SPar e gera cédigo paralelo automa-
ticamente. Um desafio relevante que ocorre em estagios paralelos da SPar € a demanda
pela definicdo manual do grau de paralelismo, 0 que consome tempo e pode induzir a er-
ros. O grau de paralelismo é definido através do numero de réplicas em estagios paralelos.
Porém, a execucao de diversas aplicacées pode ser pouco eficiente se executadas com
um numero de réplicas inadequado ou usando um numero estatico que ignora a natureza
dindmica de algumas aplicacdes. Para resolver esse problema, é introduzido o conceito de
um numero de réplicas transparente e adaptativo para a SPar. Além disso, os mecanismos
implementados e as regras de transformacdo sao descritos para possibilitar a geragao de
cédigo paralelo na SPar com um numero adaptativo de réplicas. Os mecanismos adapta-
tivos foram avaliados demonstrando a sua eficacia. Ainda, aplicacdes reais foram usadas
para demonstrar que os mecanismos adaptativos propostos podem oferecer abstracoes de
alto nivel sem significativas perdas de desempenho.

Palavras-Chave: Paralelismo de Stream, Paralelismo Adaptativo e Abstrato.

ADAPTIVE DEGREE OF PARALLELISM FOR THE SPAR RUNTIME

ABSTRACT

In recent years, stream processing applications have become a traditional workload
in computing systems. They are traditionally found in video, audio, graphic and image pro-
cessing. Many of these applications demand parallelism to increase performance. However,
programmers must often face the trade-off between coding productivity and performance
that introducing parallelism creates. SPar Domain-Specific Language (DSL) was created to
achieve the optimal balance for programmers, with the C++-11 attribute annotation mecha-
nism to ensure that essential properties of stream parallelism could be represented (stage,
input, output, and replicate). The compiler recognizes the SPar attributes and generates
parallel code automatically. The need to manually define parallelism is one crucial challenge
for increasing SPAR'’s abstraction level, because it is time consuming and error prone. Also,
executing several applications can fail to be efficient when running a non-suitable number of
replicas. This occurs when the defined number of replicas in a parallel region is not optimal
or when a static number is used, which ignores the dynamic nature of stream processing
applications. In order to solve this problem, we introduced the concept of the abstracted and
adaptive number of replicas for SPar. Moreover, we described our implemented strategy as
well as transformation rules that enable SPar to generate parallel code with the adaptive de-
gree of parallelism support. We experimentally evaluated the implemented adaptive strate-
gies regarding their effectiveness. Thus, we used real-world applications to demonstrate
that our adaptive strategy implementations can provide higher abstraction levels without sig-
nificant performance degradation.

Keywords: Stream Parallelism, Abstracted and Adaptive Degree of Parallelism.

LIST OF FIGURES

Figure 1.1 — Performance of Bodytrack (Left) and Ferret (Right). Extracted from

PGB 18
Figure 2.1 — Pipeline. 22
Figure 2.2 — Basic Farm. 22
Figure 2.3 — Parallelism among stream operators. Extracted from [HSS*14].. 23
Figure 2.4 — Examples of stream processing applications. Extracted from [AGT14]. 24
Figure 2.5 — SParExample. e 26
Figure 2.6 — Farm - communication queues inside SPar’s runtime. 27
Figure 2.7 — Simple Example of Queueing System. Extracted from [HDPTO04]. ... 28
Figure 2.8 — Example of Feedback Control. Extracted from [HDPTO4]. 28
Figure 2.9 — Example of streaming. Extracted from [HDPTO04]. 29
Figure 3.1 — Proposed algorithm interactions. Extracted from [STD16]. 30
Figure 3.2 — Example of reconfiguration. Extracted from [MM16]. 31
Figure 3.3 — Elastic architecture. Extracted from [SAG*09]. 32
Figure 3.4 — Self-awareness properties. Extracted from [SST*15].............. 32
Figure 3.5 — Proposed algorithm [GSHW14]. 33
Figure 4.1 — SPar - desired adaptive mechanism. 36
Figure 4.2 — Queues monitoring mechanism in SPar’s runtime. 40
Figure 4.3 — Throughput Characterization. 42
Figure 4.4 — Lane Detection - Queues Monitoring. 43
Figure 4.5 — Time Interval and Scaling Factor - Throughput. 43
Figure 4.6 — Time Interval and Scaling Factor - Number of lterations. 44
Figure 4.7 — Time Interval and Scaling Factor - Number of Parallelism Adaptations. 45
Figure 4.8 — Time Interval and Scaling Factor - CPUs Utilization. 45
Figure 4.9 — Time interval and scaling Factor - Memory Usage. 46
Figure 4.10 — Regulator and Monitor in SPar’s runtime. 47
Figure 4.11 — Dynamic throughput with scaling factor 1 and time interval 0.5s..... 49
Figure 4.12 — Dynamic throughput with scaling factor 2 and time interval 0.5s 50
Figure 4.13 — Dynamic throughput with scaling factor 1 and time interval 1s. 50
Figure 4.14 — Dynamic throughput with scaling factor 2 and time interval 1s. 51
Figure 4.15 — Target throughput 60 with scaling factor 1 and time interval 0.5s. 51
Figure 4.16 — Target throughput 60 with scaling factor 2 and time interval 0.5s. 52

Figure 4.17 — Target throughput 80 with scaling factor 1 and time interval 0.5s. 52

Figure 4.18 — Target throughput 80 with scaling factor 2 and time interval 0.5s. 53
Figure 4.19 — Maximum throughput of each configuration. 54
Figure 4.20 — Latency and throughput of stream items (Left) and number of replicas
(Right). . 55
Figure 4.21 — Impact in latency caused by the number of replicas. 56
Figure 4.22 — Average latency of executions with replicas. 56
Figure 4.23 — Latency Constraint of 230 ms (Left) and Replicas used (Right). 58
Figure 4.24 — Latency Constraint of 240 ms (Left) and Replicas used (Right). 58

Figure 4.25 — Adaptive Strategy without user-defined parameters - Scaling Factor 1. 60

Figure 4.26 — Adaptive strategy without user-defined parameters - Scaling Factor 2. 61

Figure 4.27 — Maximum throughput of each configuration. 61
Figure 6.1 — Lane Detection - Workflow. Extracted from [GHDF17]............. 70
Figure 6.2 — Lane Detection - Processed Image. 71
Figure 6.3 — Throughput Characterizationinput2. 71
Figure 6.4 — input 2 - Performance of Target Throughput Configurations. 72
Figure 6.5 — input 2 - Performance of the strategy without user-defined parameters. 73
Figure 6.6 — Lane Detection - input 1 Throughput. 74
Figure 6.7 — Lane Detection - input 2 Throughput. 75
Figure 6.8 — Lane Detection input 1 - Average CPU utilization................. 75
Figure 6.9 — Lane Detection input 2 - Average CPU utilization................. 76
Figure 6.10 — Lane Detection input 1 - Average Memory Usage. 77
Figure 6.11 — Lane Detection input 2 - Average Memory Usage. 77
Figure 6.12 — Person Recognition - Workflow. Extracted from [GHDF17]. 78
Figure 6.13 — Person Recognition - Performance of Target Throughput Configura-

HONS. . . 79
Figure 6.14 — Person Recognition - Performance of the strategy without user-defined

PaArAME S, . . . o e 79
Figure 6.15 — Person Recognition - Average Throughput...................... 80
Figure 6.16 — Person Recognition - Average CPU utilization. 81
Figure 6.17 — Person Recognition - Average Memory Usage................... 81
Figure 6.18 — Bzip2 Compression - Workflow. Extracted from [GHL*17]. 82
Figure 6.19 — Compression - Performance of Target Throughput Configurations. .. 83

Figure 6.20 — Compression - Performance of the strategy without user-defined pa-
LM Ol S, . . ot e 83

Figure 6.21 — Compression - Average Throughput.. 84

Figure 6.22 — Compression - Average CPU utilization. 85
Figure 6.23 — Compression - Average Memory Usage.. 86
Figure 6.24 — Throughput Average - Configuration of the strategies. 88
Figure 6.25 — Summary of Average Throughput.. 88

Figure 6.26 — Performance Losses (%) Compared to the Best Static Static Execu-
tion in Lane Detection - input 1 (Left) and input 2 (Right). 89

Figure 6.27 — Performance Losses (%) Compared to the Best Static Static Execu-
tion - Person Recognizer (Left) and Pbzip2 Compression (Right). 90
Figure 6.28 — Pbzip2 Compression input 2 - Throughput (Left) and Percentage
(Right) . . 90

LIST OF ABBREVIATIONS

API. — Application Programming Interface

AST. — Abstract Syntax Tree

CPU. — Central Processsing Unit

CINCLE. — Compiler Infrastructure for New C/C++ Language Extensions
DAG. — Directed Acyclic Graph

DSL. — Domain-Specific Language

FIFO. — First In, First Out

GMAP. — Grupo de Modelagem de Aplicacbdes Paralelas
MIT. — Massachusetts Institute of Technology

ms. — millisecond

QoS. — Quality of Service

SPar. — Stream Parallelism

TBB. — Threading Building Blocks

UPL. — Utility Performance Library

1.1
1.2
1.3

2.1
2141
21.2
2.2
2.3
2.3.1
2.3.2
2.4

4.1
4.2
4.3
4.4

4.4.1
4.4.2
4.5
4.5.1
45.2
4.6
4.6.1
4.7

4.8

CONTENTS

INTRODUCTION e 16
MOTIVATION . . e 16
CONTRIBUTIONS . . . e 19
THESIS ORGANIZATION e 19
BACKGROUND e 20
STRUCTURED PARALLEL PROGRAMMING it 20
PIPELINE . . . 21
FARM L 22
STREAM PROCESSINGot 22
SPAR 25
SPAR LANGUAGE e 25
SPAR RUNTIME ... e e 26
CONTROL THEORY . .. e e 28
RELATED WORK 30

ADAPTIVE DEGREE OF PARALLELISM: DESIGN AND IMPLEMENTATION . 36

REQUIREMENTS FOR ADAPTIVE DEGREE OF PARALLELISM 37
DESIRED PROPERTIES FOR ADAPTIVE DEGREE OF PARALLELISM 38
IMPLEMENTED DESIGN GOALS 38
ADAPTING THE NUMBER OF REPLICAS BASED ON COMMUNICATION

QUEUES . . 39
IMPLEMENTATION . .. e 39
CONFIGURATION CONSIDERATIONS e 41
ADAPTING THE NUMBER OF REPLICAS BASED ON THE THROUGHPUT . 46
IMPLEMENTATION . .. e 46
COMPARISON OF CONFIGURATIONS e 53
ADAPTING THE NUMBER OF REPLICAS BASED ON THE LATENCY 54
IMPLEMENTATION . .. e 57
ADAPTING THE NUMBER OF REPLICAS WITHOUT USER-DEFINED PA-

RAMETERS . . . 59

REMARKS . . 62

5

5.1
5.1.1
5.1.2
5.2

6.1
6.1.1
6.1.2
6.1.3
6.2
6.2.1
6.2.2
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.5
6.6

ADAPTIVE NUMBER OF REPLICASINSPAR 64

SOURCE-TO-SOURCE TRANSFORMATION RULES 64
SPAREXISTINGRULES 64
ADAPTIVE RULES ... e 65
FLAGS FOR ADAPTIVE NUMBER OF REPLICAS 66
RESULTS . .. 68
EXPERIMENTAL METHODOLOGY e 68
TEST APPLICATIONS . . .o e 68
TEST ENVIRONMENT e 69
PERFORMANCE EVALUATION e 69
LANE DETECTION e 70
PERFORMANCE OF ADAPTIVE STRATEGIES 70
PERFORMANCE COMPARISON e 72
PERSON RECOGNITION e 78
PERFORMANCE OF ADAPTIVE STRATEGIES 78
PERFORMANCE COMPARISON e 80
BZIP 2 . . 82
PERFORMANCE OF ADAPTIVE STRATEGIES 82
PERFORMANCE COMPARISON e 84
PERFORMANCE OVERVIEW e 87
REMARKS . . 91
CONCLUSION 92

REFERENCES 94

15

LIST OF PAPERS

Private laaS Clouds: A Comparative Analysis of OpenNebula, CloudStack and
OpenStack. 24th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP) [VGM*16].

Proposta de Implementacao de Grau de Paralelismo Adaptativo em uma DSL
para Paralelismo de Stream. Escola Regional de Alto Desempenho (ERAD) [VGF17].

An Intra-Cloud Networking Performance Evaluation on CloudStack Environment.
25th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP) [VGSF17].

Grau de Paralelismo Adaptativo na DSL SPar. Escola Regional de Alto Desem-
penho (ERAD) [VF18].

Performance of Data Mining, Media, and Financial Applications under Private
Cloud Conditions. /EEE Symposium on Computers and Communications (ISCC)
[GVM*18].

Service Level Objectives via C++11 Attributes. Euro-Par: Parallel Processing Work-
shops, International Workshop on Reengineering for Parallelism in Heterogeneous
Parallel Platforms [GSV*18].

Autonomic and Latency-Aware Degree of Parallelism Management in SPar. Euro-
Par: Parallel Processing Workshops, International Workshop on Autonomic Solutions
for Parallel and Distributed Data Stream Processing [VGS*18].

16

1. INTRODUCTION

The increasing use of techniques to collect data from different sources (e.g., sen-
sors, cameras, radar) has given rise to stream applications. This new type of application has
unique aspects, such as continuous data processing and varied volume of input streams.
The Quality of Service (QoS) of these applications relies mainly on latency, throughput,
memory, and CPU usage metrics [CQO09].

The stream processing paradigm emerged due to the need to built systems capable
of processing a continuous flow of data [AGT14]. It is also a consequence of technological
advances in database and distributed systems, combined with the increased usage of signal
processing and big data technologies. There are a huge number of domains that must gather
and analyze data in real time [AGT14]. However, this is a difficult task that presents several
challenges.

Adding to the level of complexity, currently several processors are placed on the
same chip. Despite the opportunity to improve performance, applications must be able to
run in parallel in order to properly exploit the hardware [MRR12]. Therefore, the concept of
parallel programming, which emerged based on the idea of dividing a problem into several
parts, is also applied to stream processing applications as a way to improve their perfor-
mance.

1.1 Motivation

Since it is possible to run stream processing applications in parallel, several pro-
gramming frameworks and libraries were developed to facilitate the task of parallel program-
ming, such as Intel Thread Building Blocks (TBB) [Rei07], FastFlow [Fas17, AMT10] and
Streamlt [TKA02]. TBB [Rei07] is Intel's tool for parallel programming, which uses the C++
standard. It exploits a template interface for expressing parallelism using the Pipeline pat-
tern, where stages of the pipeline can run in parallel with a static degree of parallelism. A
comparable abstraction in TBB is performed by decomposing threads into tasks.

Streamlt [TKAO02] is a programming language developed by the Massachusetts In-
stitute of Technology (MIT) which uses a new language that was designed for coding stream
processing applications. It is also based on a static degree of parallelism, although it has
extensions for an adaptive degree of parallelism [SMMF15]. Another solution is FastFlow
[Fas17, AMT10], which is considered a high-level and skeleton-based parallel programming
library created by researchers from the University of Pisa and the University of Turin. The
FastFlow programming interface is also based on C++ templates and offers a flexible runtime
library. Executions with its runtime library use a static degree of parallelism.

17

The programming complexities involved in introducing parallelism in stream pro-
cessing applications have motivated research efforts for abstractions. Yet, the coding ab-
straction introduced by the previously mentioned programming frameworks remain insuffi-
cient for application programmers, who are focused on developing stream processing appli-
cations [Gri16] and which may not necessarily be parallel programming experts.

In order to address the need for further abstractions in stream parallelism, SPar
[GF17, GDTF15] was created as an internal DSL (Domain-Specific Language). It maintains
the host language (C++) syntax and enables high-level stream parallelism through code
annotations. Aiming to increase productivity and abstraction to efficiently make sequential
code parallel, it was designed with C++-11 attribute annotation mechanism. Using SPar,
programmers can identify regions that are able to run in parallel and annotate the sequential
code by using attributes, which are handled at the compiler level. The SPar compiler parses
the attributes and generates the parallel code. The degree of parallelism in SPar is defined
through the Replicate attribute. A static number of replicas is set for each execution by the
user/programmer. Despite the fact that SPar uses high-level abstractions, it has been proven
to have good performance while running applications [GFDF18, GHDF17, GHL*17, Gri16].
Listing 1.1 gives an example of a stream processing application coded using SPar attributes.
In this example, the data type is a “string” and the input stream comes from a file (read in
line 3). This code block is a loop with iterations and a new stream item is read and computed
(line 6) for each iteration. In line 5, the attribute Replicate defines the degree of parallelism
to 4 replicas, which is the static number of replicas used during the entire execution. An
example of a code that produces an output is shown in line 8.

[[spar::ToStream]] while (1) {
std :: string stream_element;
read_in (stream_element) ;
if (stream_in.eof()) break;
[[spar :: Stage, spar::Input(stream_element) ,spar:: Output(stream_element) ,
spar :: Replicate (4)]]
{ compute(stream_element); }
[[spar :: Stage, spar ::Input(stream_element)]]
{ write_out(stream_element); }

}

Listing 1.1 — Simple stream computation using SPar to annotate parallelism. Extracted from
[GDTF17].

This work addresses the problem related to the abstraction of manually setting the
degree of parallelism in SPar. For the most part, defining the degree of parallelism is a
complicated and time-consuming task, because the programmer has to run the same pro-
gram several times to decide which is the best configuration. Also, some stream processing
applications have load fluctuations which require continuous adaptations to achieve optimal

18

throughput [VF18]. Consequently, running and testing several configurations is not a feasible
approach for stream processing applications. Unfortunately, currently neither SPar nor the
other state-of-the-art frameworks (TBB, FastFlow, and Streamlt) enable ready-to-use and
adaptive degree of parallelism. Hence, when the load increases, the performance can be
degraded due to the use of a static number of replicas. Moreover, when the load decreases,
unnecessary resources may be used, which is a waste of computing power.

An example of the complexities involved in defining the degree of parallelism is
shown in Figure 1.1. Here the authors [PGB11] compared PARSEC applications’ per-
formance in a 24 core machine. This evaluation indicates that the Bodytrack application
achieved the best performance when using one thread for each core, while Ferret had the
best speedup when running 64 threads in the 24 core machine (3 threads per core). Thus,
we can infer that the common practice of defining the degree of parallelism with one thread
per core is not suitable for some applications.

o4 :
B ke ®
e - + -+
[=T ,’_, 4
£, +
iy
e =
% o ' ' a =
g i -+ No-Binding g -+- No-Binding
13 *»_' ~-#- Binding ' + -e- Binding
73]] k 17}
w - ’
/ uy =
J‘ ‘
i L
/ *
*1 /) *
+
= 4
T T T T T T T T T T T T T
6 12 18 24 36 48 1 15 23 35 47 63 71
Threads # Threads

Figure 1.1 — Performance of Bodytrack (Left) and Ferret (Right). Extracted from [PGB11].

The evaluation of PARSEC applications in [PGB11] shows how relevant and at the
same time how difficult it is to find an optimal degree of parallelism. However, it is important
to note that the problem addressed by [PGB11] is distinct from ours. In addition to stream
processing applications, they use a different runtime system and consider aspects of the
operating system. The technique presented in [PGB11] is unable to adapt the degree of
parallelism on-the-fly, it needs to rerun an application to adapt the degree of parallelism.
Consequently, [PGB11]’s techniqgue may not be suitable for real-world stream processing
applications.

19

1.2 Contributions

The main goal of this work is to provide an adaptive degree of parallelism for stream
processing applications. There are related studies available in the literature. Yet, they use
distinct frameworks and have other goals, such as improving utilization and energy efficiency
[STD16]. Whereas e.g. utilizes a proactive approach [MM16], [SST*15] uses self-aware
adaptations for stream processing applications. Although [GSHW14] addressed the same
goal, we target different scenarios and runtime libraries. The main contributions of this work
are threefold:

» Providing a fully abstracted adaptive strategy to automatically adapt the degree of par-
allelism in SPar. By monitoring the application during its execution and taking actions to
optimize the number of active replicas, programmers are no longer required to provide
the degree of parallelism manually.

» Implementing strategies for a wide range of stream processing applications and con-
sidering different metrics. The adaptive strategies were designed based on a feedback
loop from the control theory concept. The degree of parallelism can be adapted for dif-
ferent objectives (throughput, latency, and congestion). It enables QoS by maximizing
throughput and also controls latency and runtime congestion.

A performance evaluation of the strategies. We provide an implementation with real-
world stream processing applications and compare the performance of adaptive to
static executions.

1.3 Thesis Organization

The remainder of this work is organized as follows: the next chapter presents the
background and context of this study. The related approaches are then presented in Chapter
3. Implementations are presented in Chapter 4 and Chapter 5 discusses the transformation
rules for implementing the adaptive strategies in SPar. Chapter 6 consists of the experiment
results. Finally, the conclusion and discussion are presented in Chapter 7.

20

2. BACKGROUND

We have seen the rise of a new type of application over the past few decades
— the stream class. These applications arose to address the need to process data in a
continuous fashion without having a predefined end to the execution (sometimes there is
no end) [CQO09]. In Section 2.1, we introduce the parallel patterns that best fit the stream
parallelism context. An overview of this paradigm is presented in Section 2.2. Then in
Section 2.3, we describe the SPar, a DSL for stream parallelism that we intend to extend
in this work. Lastly, the fundamentals for designing an adaptive degree of parallelism are
shown in Section 2.4.

2.1 Structured Parallel Programming

Modern computers are now parallel and support parallelism features (e.g., vec-
tor instructions, multicore processors, co-processors). However, automatic parallelization
approaches for serial code are not effective [MRR12]. Consequently, a parallel execution
requires explicit parallel programming in order to exploit the machine’s resources. McCool
et al. [MRR12] emphasizes the advances and challenges regarding parallelism:

“Despite the fact that computer hardware is naturally parallel, computer archi-
tects chose 40 years ago to present a serial programming abstraction to program-
mers. Decades of work in computer architecture have focused on maintaining the
illusion of serial execution. Extensive efforts are made inside modern processors
to translate serial programs into a parallel form so they can execute efficiently us-
ing the fine-grained parallel hardware inside the processor. Unfortunately, driven
by the exponential increase in the number of transistors provided by Moore’s Law,
the need for parallelism is now so great that it is no longer possible to maintain the
serial illusion while continuing to scale performance. It is now necessary for pro-
grammers to explicitly specify parallel algorithms if they want their performance
to scale. Parallelism is everywhere, and it is the path to performance on modern
computer architectures.”

In theory, any application may be seen as many tasks that run concurrently to
achieve a specific goal [Sen12]. Parallelism is a suitable way to scale applications’ perfor-
mance, but developing an efficient parallel application is considered both challenging and
error-prone [MRR12, FAG*17, GDTF17]. This has motivated efforts towards increasing the
level of abstraction and hiding the complexities from application programmers (e.g., concur-
rency, synchronization, scheduling). One way to do so is to follow the methodologies for
structured parallel programming.

21

Structured Parallel Programming can be understood as a methodology for program-
mers using libraries or languages to introduce parallelism. Patterns are a representation of
structured parallel programming and are currently a well-accepted concept that optimizes
and reuses specific parts of code. They emerge from the best practices of codifying in
software engineering. Thus, Parallel Patterns use the methodology from structured parallel
programming in order to enable code abstractions. The reference material presented by
[MRR12] defines the term parallel pattern as: “a recurring combination of task distribution
and data access that solves a specific problem in parallel algorithm design”.

In this context, we also have skeletons [Col89] that have a similar goal of parallel
patterns, but skeletons came from the High Performance Computing (HPC) community. In
our specific case, we consider skeletons in the same context as parallel patterns since they
are related, but simply emerged in different areas [MRR12]. Each pattern or skeleton has a
specific name that describes it, making it easier to compare different patterns. Consequently,
studying patterns results in vocabulary, which is one of the most relevant aspects used to
design algorithms. In this case, patterns are combined to model parallel applications.

Patterns are considered universal, which means that they can be applied to all
existing parallel programming systems [MRR12]. Furthermore, there are already a very large
number of patterns in different areas. However, in the specific case of this work focused on
stream processing applications, we are interested in pipeline and farm patterns. Pipeline
and farm are within the stream parallelism category and their computations are independent
tasks running in parallel [Gri16, Sen12]. In this study, the forms of parallelism described in
this section are used to model parallel applications for the stream scenario (Section 2.2).

A significant part of applications can be represented by using implemented patterns
called Skeletons [Col89, Col04]. These programming patterns are introduced by libraries or
higher order functions (templates). Skeletons enable the modeling of parallel programs by
composing typical patterns.

211 Pipeline

A pipeline is a skeleton that handles tasks in a producer-consumer fashion. In
theory, every pipeline stage is active at once, and each one performs different operations in
the input data, working in sequence like on an assembly line. A pipeline stage can be serial
(one item at a time) or parallel (replicated). Even when there are serial stages, a pipeline
still runs in parallel, because different stages perform operations at the same time, as shown
in Figure 2.1. For instance, a pipeline’s performance is the time it takes to process a given
task. Consequently, the slowest stage limits performance (e.g., throughput).

22

Figure 2.1 — Pipeline.

21.2 Farm

Task-farm is a skeleton that uses functional replication with modules [Sen12, Fas17].
Moreover, a task-farm may also be called a master-worker pattern, we simply call it a farm.

QO Thread

|

|

: (O stream item

, —» Communication

Figure 2.2 — Basic Farm.

A basic farm is shown in Figure 2.2. It has at least one activity, called an emit-
ter, which receives the input tasks and sends them to next stage(workers), according to a
scheduling policy. An emitter is then replicated with a number N of parallel agents (called
workers or replicas), N being the degree of parallelism. The collector then gathers the tasks
from the workers and places them in the output stream. The collector is optional and can be
removed if desired.

2.2 Stream Processing

A data source is called a producer when data items are consumed/analyzed by a
stream processing application [AGT14]. Sources may vary and range from equipment (radar,
telescopes, cameras, etc.) to files (text, image). Also, the data consumed by stream systems
may have different characteristics, the three main classes are structured, semi-structured,
or unstructured data.

23

Stream processing applications are being used more and more currently and there
is an increasing demand for efficient solutions to meet the challenges they present. There-
fore, research in this area is expanding rapidly. Challenges still remain when it comes to
properly exploiting stream systems. Due to the large number of studies, this area lacks
unified taxonomies and terminologies. Thus, [HSS*14]’'s work presented a survey and cat-
aloged the prevailing terminology and definitions with the aim of providing a common vo-
cabulary. The authors also combined the synonymous terms and explained the differences
between similar definitions. For instance, [HSS*14] defines stream processing system as a
runtime system that can execute stream tasks '.

Additionally, a survey of stream processing systems is presented by [WKWO12],
which classifies the existing solutions according a set of criteria. The main challenges re-
garding stream processing systems are in terms of performance, scalability, and robustness
[WKWO12]. These aspects are emphasized due to the demand for handling a continuous
flow of data from different sources.

Hirzel et al. [HSS*14] also discusses the terminology used for parallelism in stream
processing applications, the three main examples are shown in Figure 2.3. Pipeline-parallel
(a) is related to the concurrent running of different stages (A,B) using the terminology of pro-
ducer and consumer. We can easily see similarities with this view of pipeline parallel and the
pipeline angle from the structured parallel programming (Section 2.1.1). Task-parallel (b) on
the other hand, concerns the concurrent execution of different operators (D,E) and is related
to structured parallel programming with stream parallel patterns, such as the farm shown in
Section 2.1.2. Moreover, in data-parallel (Figure 2.3(a)) the same task G is processed by
different parallel sub tasks. In this work, we are interested in stream parallelism, which is the
target scenario of the SPar DSL, described in Section 2.3.

D G
—s A —» B — —» C ES— — Split Merge —
E G
(a) Pipeline-parallel A || B. (b) Task-parallel D || E. (c¢) Data-parallel G || G.

Figure 2.3 — Parallelism among stream operators. Extracted from [HSS*14].

The characteristics of stream processing applications vary depending on the source
and model [CQQ09]. Yet, stream processing applications have several common characteris-
tics. One of the most highlighted aspects is the continuous arrival of data items.

The input of data items in stream systems cannot be controlled and therefore can
be quite unpredictable. It can vary from a very large rate (gigabytes per minute, for in-
stance) to just a few bytes per minute. Stream systems are exploited by users through

'In this work, when the term stream processing system is mentioned we are referring to this definition.

24

applications, and thousands of such applications are available in several areas. For exam-
ple, in telecommunications (online billing, network switches, signal processing), sensors and
surveillance (monitoring, cameras, scanners), financial (stock trading, credit card), among
others [AGT14], which are shown in Figure 2.4.

Stock market Law enforcement, defense Fraud prevention
* Impact of weather on and cyber security * Multi-party fraud detection
securities prices * Real-time multimodal * Real-time fraud prevention
* Analyze market data at surveillance
ultra-low latencies * Situational awareness e-Science

. Cyber Security detection - Space weather prediction
* Detection of transient events
» Synchrotron atomic research

Natural systems
» Wildfire management
* Water management

Other
Transportation * Smart Grid
« Intelligent traffic « Text Analysis
management *Who's Talking to Whom?
* ERP for Commodities
Manufacturing * FPGA Acceleration
* Process control for
microchip fabrication
Telephony
Health and life sciences * CDR processing
* Neonatal ICU monitoring » Social analysis
* Epidemic early warning system * Churn prediction
* Remote healthcare monitoring * Geomapping

Figure 2.4 — Examples of stream processing applications. Extracted from [AGT14].

Whereas stream processing covers the class of stream processing applications,
stream parallelism is broader because it models parallel applications, which can thus be
applied to stream processing applications.

In order to increase the performance of stream processing applications, several
types of parallelism are exploited. Stream parallelism is one variant of stream processing,
where each operator performs a set of operations in stream items [Gri16]. The applications
related to stream parallelism tend to require intensive use of computation resources, be-
cause applications that do not work intensively may not need to be executed in parallel or
cannot efficiently use the available resources.

The large number of stream processing applications available represent a signifi-
cant part of current computing systems. However, as emphasized in [Gri16], a high percent-
age of stream processing applications are still sequential and thus cannot run in parallel.
This is the primary reason programmers face a trade-off between coding productivity and
performance, thus increasing programming effort because of the need to rewrite code.

25

2.3 SPar

Considering the inherent challenges of parallelism in stream processing applica-
tions, SPar [GDTF17], a DSL specifically designed to facilitate stream parallelism, was been
proposed. It offers high-level C++11 attributes to enable source code annotations eliminat-
ing the need to rewrite sequential code manually. SPar’s compiler generates parallel code
using source-to-source transformations.

All of its specific features have been designed to increase the abstraction level by
using High-Level Parallelism so users do not need to manipulate low-level instructions when
coding [Gri16]. Because SPar uses FastFlow [Fas17, MMPM14] as its runtime library (de-
scribed in Subsection 2.3.2), programmers do not need to deal with advanced concepts,
scheduling, load balancing or parallelism strategies, which are all examples of built-in func-
tionalities provided by FastFlow.

Additionally, SPar was designed to be architecture independent, enable code porta-
bility, and coding productivity by decreasing programming effort [Gri16]. SPar also uses the
C++ standard interface, C++ programmers do not need to learn a new language syntax.

2.3.1 SPar Language

SPar provides five attributes to exploit key aspects of stream parallelism. The
ToStream attribute represents the beginning of a stream region, the code block between the
ToStream and the first Stage will run as the first processing stage. The defined ToStream
often starts a stream parallel part of a given program. The number of Stages are defined in
ToStream, which sets a phase for stream items to be computed by applying operations.

Another relevant feature is the Input attribute, which programmers can use to define
the data to be processed inside a stream region. This data is then consumed in a stage
using input arguments or with a variable list. In contrast, the Output attribute is used to set
a stream result produced in a processing stage by modifying a specific list of variables.

Replicate is another very important attribute, which is used to define the degree
of parallelism. It represents the number of concurrent operations performed in a parallel
region (stage), which is actually the number of replicas or worker threads. Due to the fact
that SPar is currently related to stateless stream operators, each replica is independent and
modifies items and produces results. When all workers have finished their processing, the
results may be unordered. Therefore, SPar has a compilation flag to maintain the order of
the stream items that are produced (spar-ordered) [GDTF17].

SPar is a C++ embedded DSL. An example of SPar’s annotation attributes is shown
on the left-hand side of Figure 2.5. It first reads a stream, then computes the items, and

26

produces an output using the attributes mentioned above. The Replicate attribute is the
number of worker threads on stateless parallel regions. In this example, the first stage’s
annotation [[spar::Stage, spar::Replicate(<integer value>)]] uses the Replicate attribute for
setting the degree of parallelism to any integer value defined by the programmer.

[[spar::ToStream]]
while (true){

item=read_item();
[[spar::Stage, spar::Input(item), spar::Output(item), spar::Replicate(n)]] {
item=filter(item);

}
[[spar::Stage, spar::Input(item)]] {

write_item(item);” —- - --------=--

[}

. |
Stream item |
} ! —>» Communication !

Figure 2.5 — SPar Example.

Moreover, SPar uses a compiler in order to generate parallel code. As stated by
Griebler and Fernandes [GF17]:

“The SPar compiler is designed to recognize our language and generate paral-
lel code. It was developed by using the CINCLE (A Compiler Infrastructure for
New C/C++ Language Extensions) support tools. The compiler parses the code
(which is specified by a compiler flag named spar file) and builds an AST (Ab-
stract Syntax Tree) to abstractly represent the C++ source code. Subsequently,
all code transformations are made directly in the AST. Once all SPar annotations
are properly transformed, another C++ code is generated, which is then compiled
by invoking the GCC compiler to produce a binary output.”

2.3.2 SPar Runtime

The previous section described SPar’s language and how it generates parallel
code, which is based on the FastFlow library. SPar also uses FastFlow’s objects and run-
time, because FastFlow is considered a high-level and pattern-based parallel programming
library [Fas17],[MMPM14]. The runtime library has a modular architecture which provides
the necessary flexibility to programmers.

27

The runtime library powered by FastFlow supports several parallel patterns. One
of the most relevant is the pipeline, which is composed of several stages in which at least
one is active during execution and each stage may update the data values when processing
[Fas17]. Moreover, a farm is another relevant parallel pattern that has at least one emitter, N
worker threads and sometimes a process that collects the results. The farm can be viewed
as a pipeline because the heaviest stage is replicated using N replicas (threads). When a
farm is implemented, the numbers of replicas, or the degree of parallelism for the execution,
must to be defined. SPar generates new parallel patterns by combining FastFlow’s pipeline
with farm patterns.

queue h queue
[X X] pOp pUS [X X]
pe)
%
queue queue
pop push pop
(YY) YY)
° . Q
. e
queue queue
pop push
(YY) YY)

Figure 2.6 — Farm - communication queues inside SPar’s runtime.

SPar’s default scheduling policy is round-robin. Therefore, worker threads pas-
sively receive items to compute based on the emitter’s task distribution. Moreover, auto-
scheduling, which uses an on-demand policy, is also available. It optimizes the memory
consumption and load balancing, and the emitter (task scheduler) continuously tries to add
one task to the workers’ queue. The runtime library’s queues are called push and pop. A
given task is added to a queue by a push operation, and a task is taken from a queue by
a pop. For instance, the emitter (task scheduler) gives a task to the next stage (workers)
through a push in its queue, and the worker stage gets the task with a pop in its queue, as
shown in Figure 2.6. In this specific example, n replicas are activated (B.1, ..., B.n), each of
which receive data from the previous stage and sends produced results to the subsequent
stage. Communications between stages occur through shared queues. Depending on the
program, they may also use a collector (last stage), which gathers the results processed by
the stages. An example of a farm runtime parallelism in SPar is shown on the right-hand
side of Figure 2.5.

28

If a worker’s queue is full, the task scheduler will continuously try to add elements
to its queue. Each time the scheduler is unable to add a new value to a worker’'s queue,
there will be an event called a push lost. If the worker tries to get a new task by pop and it
fails, the event will be called a pop lost.

24 Control Theory

Control theory is focused on automated systems. The concepts used in this work
are based on [HDPTO04], which uses the term feedback control for monitoring aspects such
as throughput, latency or system utilization and, by triggering optimization in the next execu-
tion. Monitoring the outputs of the system and performing actions according to its behavior
results in an architecture is called feedback or closed loop [HDPTO04].

Control theory can be applied to stream processing applications in order to imple-
ment services that regulate their execution in order to optimize it. Yet a control framework is
required to manage execution [HDPTO04]. An example is a feedback control in computers is
using Queueing Systems mainly for performance modelling. A simple example is shown in
Figure 2.7, where the items are placed in a queue and processed by the servers (circle).

Service > () » _ Service
Requests Completions

Buffer Server
(Queue)

Figure 2.7 — Simple Example of Queueing System. Extracted from [HDPTO04].

Figure 2.8 shows an example of a feedback control loop to manage response times
in a queuing system. It is relevant to point out that such a system has a service-level objec-
tive (SLO) to maintain a given response time (constraint).

Reference Buffer Measured
Response Time Size . Response Time
—| Controller f— Qé‘;{ghqg >

A

Figure 2.8 — Example of Feedback Control. Extracted from [HDPTO04].

Streaming Media applications are growing and can take advantage of feedback
control in order to improve their services [HDPT04]. Due to the continuous delivery of data

29

in stream processing applications, they can monitor the output in order to optimize future ex-
ecutions. For instance, sometimes the throughput must be increased according to a service
objective. Figure 2.9 depicts two stream systems, each one applying different operations by
request.

Completions
Streaming »
Requests ()
Other System 1 Other System 2
Requests Requests

Figure 2.9 — Example of streaming. Extracted from [HDPTO04].

A closed loop using a feedback control is considered a simple system model that
can adapt to disturbances [HDPTO04]. Thus, it fits the requirements of a stream class of ap-
plications. Related studies by [MM16] and [GSHW14] have used the properties of feedback
control to optimize stream executions. In a similar vein, we are working with mechanisms to
adapt the degree of parallelism using a feedback loop that optimizes based on the previous
execution.

30

3. RELATED WORK

In this chapter the related studies that present strategies for adapting the degree of
parallelism are presented and contextualized. The scope and goals were analyzed in order
to select the most relevant among the variety of papers available in the area. Firstly, papers
addressing streaming applications were selected. In the following paragraphs, the related
studies are described and compared, such studies use adaptive (e.g., elastic, automatic,
self-aware, reconfigurable, dynamic, optimal) strategies for stream processing and discuss
adaptiveness in respect to degrees of parallelism.

Many researchers have assessed how to best determine the optimal number of
threads in parallel applications, of note are Pusukuri et al. [PGB11], Raman et al. [RKO*11]
and Sridharan et al. [SGS13]. However, these approaches deal with adaptivity in non-
stream processing applications. Thus, they are not feasible for streaming applications due
to the specific behaviors and constraints of they present, such as the nature of load fluctu-
ations, unpredictable input rates, and nonlinear behavior. Stream processing applications
therefore require specifically targeted solutions. In the literature, there have been some
works addressing the degree of parallelism problem in stream processing applications. We
will describe these approaches below. Another aspect used to consider if a study is related
or not is the presence of online adaptation (a.k.a. interruption-free [LDC*17]). Online adap-
tation is a relevant aspect of stream processing applications since it allows the system to
change the degree of parallelism during the execution, without requiring the applications to
rerun.

Sensi et al. [STD16, DST17, SMD17] explores stream systems, aiming to predict
performance and power consumption using linear regression as a learning technique. Their
goal was to reduce power consumption with “acceptable" performance losses. In order to
do so, they proposed and implemented an algorithm called NORNIR, which enabled the
application to change (number of cores, clock frequency) during run-time.

APPLICATION ce e > RECONFIGURATION
REQUEST
.7 . MONITORING
OPERATING |~ ~ . €« - > ou AT
ALGORITHM INTIME SQUEST/ DATA
cvsrin € ALGORITHM . P RUNTIME

Figure 3.1 — Proposed algorithm interactions. Extracted from [STD16].

The NORNIR algorithm was aimed to satisfy bounds in terms of power consump-
tion or performance, which must be defined by the user. It then triggers actions when it
detects changes in the input rate or application. NORNIR interacts with the operating sys-

31

tem (OS) and with the FastFlow’s runtime (Figure 3.1). Additionally, it is validated using
simulations and real executions (PARSEC) [Bie11].

In addition, Matteis and Mencagli [MM16] present elastic properties for data stream
processing to improve performance and energy efficiency (number of cores and frequency).
They argue that using the maximum amount of resources is expensive and inefficient, and
therefore promote elasticity support as a solution because it provides efficient usage accord-
ing to QoS requirements and thus reduces operating costs.

REPLICA i

“_- @move_outfk)
i y —n

-.
& Key &k [Koy K |7 |, e

thread

repLicaj | PGS

thread ‘ @ acquire state of key k
rea :

(@) move_in(k)

reconfiguration: new

rauting function.
thread

Figure 3.2 — Example of reconfiguration. Extracted from [MM16].

Their proposed model (Figure 3.2) is implemented in FastFlow’s runtime. This ap-
proach concerns stateful operators, which brings additional complexities when migrating the
thread states is required due to dependency among them. Figure 3.2 shows a reconfigu-
ration example of the implementation, which uses one controller thread for monitoring the
infrastructure and triggering changes. When the load increases, the controller instantiates
new threads (stream replicas). Moreover, the CPUs’ frequency is changed in order to reduce
energy consumption using the MAMMUT library. [STD17].

An approach regarding elasticity for streaming applications, was found in Schnei-
der et al. [SAG*09]. They extend SPADE [GAW*08], a language and compiler for develop-
ing stream processing applications, by adding elasticity support. It is implemented using a
dispatcher thread, which manages the stream system (load distribution, queues). The dis-
patcher thread feasibility is characterized as a component that “can increase the degree of
parallelism by creating new workers or waking up old ones, and it can also decrease paral-
lelism by putting workers to sleep"([SAG*09]). A key component of the system is the alarm
thread which “wakes up and tells the dispatch thread that it is time to reevaluate the thread
level"([SAG*09]). Figure 3.3 shows the architecture of this proposed approach.

32

Processing Element

ﬁperator {:ﬁ?
Alarm thread)

Figure 3.3 — Elastic architecture. Extracted from [SAG*09].

Bringing the term “self-aware" to stream processing applications, Su et al. [SST*15]
introduce StreamAware, which is a programming model with adaptive strategies targeting
dynamic environments. The aim is to allow the applications to automatically adjust during
run-time. This approach defines adaptivity as one of the most important features in paral-
lelism. The adaptive approach to stream processing applications is based on the MAPE-K
loop and uses concepts from autonomic computing [KCO03].

Data Stream Message

Detecting) Gathering

sf=]
i <>

Acting { | Analysing

Stream Graph Process Status

Figure 3.4 — Self-awareness properties. Extracted from [SST*15].

Su’s et al. [SST*15]'s mechanism to support adaptive features in stream processing
applications has four parts: detecting, gathering, analyzing, and acting, as shown in Figure
3.4. It adjusts stream parallelism by adding or removing worker threads. The adaptive
method is evaluated and validated using the Parsec benchmark suite.

On the other hand, Gedik et al. [GSHW14] use the term elastic auto-parallelization[SHGW12]
to locate and parallelize parallel regions. They also address adaptation of parallelism during
the execution. The paper highlights the question of the “profitability" of stream parallelism,

33

by asking “How many parallel channels provide the best throughput?" The term “parallel
channels" can be understood as a specific aspect related to the degree of parallelism.

run with N forget obsolete
channels information

(PB) (P3,P4)

. yes
congestion[N,]
?
remote
congestion
?

yes no throughput[N,,,]
unknown or higher

congestion[N,_,]
?

v
L__
(P5)

—

Figure 3.5 — Proposed algorithm [GSHW14].

Moreover, Gedik et al. [GSHW14] argue that the parallelism profitability problem
depends on workload changes (variation) and resource availability. They propose an elastic
auto-parallelization solution, which adjusts the number of channels to achieve high through-
put without wasting resources. It is implemented by defining a threshold and a congestion
index in order control the execution regardless of if more parallel channels are required.
This approach also monitors the throughput and adapts to increase performance. Figure 3.5
shows a flowchart describing their proposed control algorithm. P1 expands (increases) the
number of channels, P2 requests an action to decrease the number of channels, P3 means
that a congestion was detected, and P4 indicates changes in the throughput rate. More-
over, P5 is a congestion that does not affect the throughput and in this case the number of
channels are reduced. Lastly, P6 adds a set of channels.

Yet another approach to stream processing is provided by Heinze et al. [HPJF14].
This work emphasizes the complexity of determining the right point at which to increase or
decrease the degree of parallelism. The authors investigate issues of elasticity in the data
stream to meet requirements for auto-scaling (scaling in or out), workload independence,
adaptivity, configurability, and computational feasibility. They also explore latency aspects in
a distributed system, using metrics with fixed minimum, maximum, and target utilization.

Heinze et al. [HPJF14] classify the approaches for auto-scaling applications in five
groups: Threshold-based, time series, reinforcement learning, queuing theory, and control
theory. They argue that time series is not feasible for stream processing applications, be-
cause it considers historical data and the stream load is unpredictable. Queuing model was
also excluded due to its limited adaptivity. The remaining classes were then tested with

34

stream processing applications. Threshold approaches are characterized by the need for
the user set upper and lower bounds with respect to the resource utilization and/or perfor-
mance. On the other hand, reinforcement learning is based on the system state for taking
optimization actions, using a feedback control that monitors the execution and chooses an-
other configuration the next time. Control theory is based in an independent controller that
responses fast to input changes based on a feedback loop. The experiments show the
proposed techniques outperforming related approaches.

Selva et al. [SMMF15] shows an approach related to adaptation in run-time for
streaming languages. The Streamlt language is extended in order to allow the programmer
to specify the desired throughput and the runtime system controls for the execution. More-
over, it implemented an application and system monitor to check the throughput and system
bottlenecks. This approach is able to adapt the execution based on previous observation,
which classifies it as reactive.

Another related work is Gulisano et al. [GJPPM*12] that presents StreamCloud
to scale data stream processing applications in cloud environments. It implements paral-
lelism to process queries and distribute the data/tasks among nodes. A major concern of
this approach is to handle load balancing through optimized task distribution. Parallelism
optimizations are triggered considering the number of active nodes and their loads.

Table 3.1 — Related Work Overview.

Approach Goal System Mechanism Environment Applications Etf:;:dal
Sensi Performance and Linear regression
[STD16] Power NORNIR and mogitorin Multicore PARSEC Yes
consumption g
. Performance and - . . High-
16 Power “FastFiow | fuure tme horzon | Multcore | freauency | yes
consumption trading
. L Synthetic and
Schneider Throughput and Monitoring and . .
[SAG*09] CPU utilization SPADE applying changes Multicore a radécﬁ;tron- Yes
Su Performance per Autonomic MAPE L
[SST+15] Watt StreamAware K loop Distributed PARSEC Yes
Finance,
Gedik Congestion and Algorithm . Twitter,
[GSHW14] Throughput Implementation SASO acouracy Distributed PageRank and Yes
Network
Heinze Maximize Monitoring and
[HPJF14] utilization and System prototype aoolving chanaes Distributed Financial Yes
control the latency pplying 9
. Maximize I Performance
Gulisano e data stream Monitoring and I
[GJPPM*12] utilization and processing engine applying changes Distributed and load Yes
throughput balance
Selva N . Extension of the Monitoring System . Dataflow
[SMMF15] Quality-of-Services Streamlt language and applications Mutticore applications Yes
Parallelism Delt_:;ieon
This Abstraction Extension of SPar Applications and Multicore Person ’ No
approach (throughput and DSL runtime library Recognition
latency) and Pbzip

Table 3.1 shows an overview of related works. The main aspects considered were
the adaptation mechanism and the scenario of the applications evaluated in each study.
Each approach has specific goals, implemented strategies, and a target environment. The

35

applications evaluated vary among the approaches, but we selected only related works that
tested stream processing applications.

Our research differs from existing papers because we provide an adaptive degree
of parallelism support to the SPar DSL (Section 2.3). We share with Sensi et al. [STD16],
Matteis and Mencagli [MM16] the idea of using the FastFlow framework as the runtime li-
brary. However, Sensi et al.[STD16], and Matteis and Mencagli [MM16] address energy
consumption aspects. The selected related works share ideas in the same application do-
main, but we focused particularly on stream parallelism abstractions regarding the degree
of parallelism.

Moreover, the research problem presented in Gedik et al. [GSHW14] is closely
related to this work, since both approaches evaluate an optimized and adaptive degree of
parallelism. However, we have a different scenario and target architecture. While Gedik
et al. [GSHW14] and [GJPPM*12] address distributed stream systems, our approach tar-
gets stream parallelism in shared-memory multicore systems using FastFlow as runtime
library and SPar for parallelism abstraction. Consequently, we consider the algorithm imple-
mentations in related works to be limited due to their specific scenario and not sufficiently
abstracted for application programmers. We aim to go further by implementing the strategy
for adaptations during run-time and abstract from users the need to define the degree of par-
allelism. Also, the related works used an external thread to monitor execution and triggering
actions. However, our approach implements adaptation inside the runtime library to reduce
complexity and overhead.

In fact, the presently available solutions are complex even for experts in parallel
programming and do not focus on user interfaces. Consequently, there is a demand to
abstract the need to set degrees of parallelism from end-users and enable them to run their
applications transparently without manual often unfeasible and error prone interventions.
Additionally, using adaptation during run-time should provide an acceptable performance
defined by the user and, at the same time reducing the complexities for programmers.

36

4. ADAPTIVE DEGREE OF PARALLELISM: DESIGN AND
IMPLEMENTATION

Several stream processing applications run in parallel and also with load fluctu-
ations. One way to respond to load fluctuation is by adapting the degree of parallelism
during run-time. For instance, when the load increases, performance can be improved by
increasing the degree of parallelism. On the other hand, if the load decreases, the degree of
parallelism can be reduced by suspending active threads and therefore not wasting compu-
tational resources. This study is focused on the term profitability for fission dynamics (a.k.a.
adaptive) [HSS*14]. Fission determines the number of replicas (degree of parallelism) for
a given parallel region as well as the related parallelism profitability, which was also the
research problem in related studies [GSHW14].

SPar, which is the DSL extended in this work, already reduces programming effort
for parallel applications by generating parallel code. The parallel code generated by SPar
is skeleton-based (eg., farm, pipeline), used for exploiting parallelism in concurrent regions.
The replicate attribute (Section 2.3) may be filled with the number of replicas/threads or
by setting an environmental variable, the replicate represents the fission [HSS*14] as well
as the width of a given parallel region. Currently, the replicate attribute is a static integer
value that is used during the entire program’s execution, as shown in the example in Section
2.3. However, if the stream processing application presents fluctuations (e.g., performance,
environment, or input rates), this static execution can lead to inefficient resources usage
(waste) or poor performance’.

[[spar::ToStream]]
while (true){

> @0®@E@6

If Parallelism Regulator 1
| |
i]
i i

item=read_item();

I Frozen threads Replicas pool

1 I R J
[[spar::Stage, spar::Input(item)]] {

[[spar::Stage, spar::Input(item), spar::Output(item), spar::Replicate(n)]]{

item=filter(item);

write_item(item);
} : O Thread p
v O streamitem
! —>» Communication !

}

Figure 4.1 — SPar - desired adaptive mechanism.

The term replicate is used to signal the degree of parallelism in SPar, and it may also be viewed as the
number of threads/workers in a given parallel region. Consequently, in this study, the terms number of replicas
and degree of parallelism have the same meaning and are used interchangeably.

37

Our desired adaptive mechanism is presented in Figure 4.1. The goal was to imple-
ment a strategy that monitors the execution and regulates the degree of parallelism during
run-time. We have implemented strategies for an adaptive degree of parallelism according to
the requirements and properties, shown respectively in sections 4.1 and 4.2. One strategy
is presented in Section 4.4 that monitors the run-time library and its queues for detecting
congestion. Other strategy were implemented to test the application’s throughput (Section
4.5) and Section 4.6 analyzes the latency of stream items.

It is important to note that the scope of the adaptive strategies addressed in this
study is limited to specific aspects. We are not discussing the placement problem [LQF15,
HSS*14]. Future work will focus on evaluating the impact of low-level aspects such as the
threads placement, CPUs affinity, and core frequency. Furthermore, the adaptive mecha-
nisms are meant to work on replicated (a.k.a fissioned) stages. Also, on-demand was the
scheduling strategy used to simulate fine task granularity and sensitive load balancing. The
experiments evaluating the implemented strategies were run on a machine with 8 cores (16
Hyper-threads) and 16GB of RAM.

4.1 Requirements for Adaptive Degree of Parallelism

Heinze et al. [HPJF14] proposed a set of requirements for auto-scaling strategies
for elastic data stream operators. The requirements for scaling data stream processing ap-
plications can be used to design the requirements in our specific case. These requirements
are:

» Workload Independence: A strategy that adapts the degree of parallelism is sup-
posed to be agnostic from the workload characteristics. We expect a mechanism to be
a generic solution that does not require customization for every workload.

» Adaptivity: The strategy is expected to adapt continuously on-the-fly according to the
workload and the fluctuations of different processing phases.

» Transparency: The techniques used should have configurability (be easy to configure
for users). However, we are working with parallelism abstraction and our goal is a
strategy that transparently adapts during the execution. This is required for us to reach
our goal, which includes avoiding the need to manually define the degree of parallelism.

« Computational Feasibility: The internal algorithm used by an adaptive strategy has
to be feasible enough to run and make decisions on-the-fly. Computational complexity
must be low enough to quickly respond to load fluctuations without using too many
resources, which would significantly affect execution.

38

* Low Overhead: The strategy should also not be too complex, consume too many
resources, or cause significant overhead. The overhead is expected to be negligible.
Approaches controlling the intrusiveness are considered overhead-aware. When the
adaptation process only changes the needed elements (replicas), non-intrusiveness is
easily met.

4.2 Desired Properties for Adaptive Degree of Parallelism

Several properties and interests can be included when designing adaptive strate-
gies. In this work, we consider SASO (Stability, Accuracy, Settling time, Overshoot) proper-
ties [HDPTO04]. Related approaches [GSHW14], [MM16] have also used SASO properties
when designing their solutions.

A relevant property for an adaptive system is stability, a system is stable if it pro-
duces the same configurations every time under given conditions. A system is accurate
if the “measured output converges (or becomes sufficiently close) to the reference input”
[HDPTO04]. accuracy is used in related studies to search for the degree of parallelism that
optimizes performance.

Moreover, a system is expected to present short settling times by quickly respond-
ing to changes and reaching an optimal state. When the load fluctuates, the response should
be rapid and maintain a service level objective. A strategy should also avoid overshoot by
only using the necessary amount of resources.

4.3 Implemented Design Goals

The previously presented requirements and desired properties for adapting the de-
gree of parallelism resulted in goals designed for our specific scenario, the SPar DSL. Ac-
cordingly, the main design goals are:

» High-level Parallelism Abstractions: SPar already prevents users from handling
low-level aspects when parallelizing applications. Our goal is to support parallelism
abstractions when defining the degree of parallelism. Consequently, meeting the prop-
erties of adaptivity and transparency.

* Flexibility: Flexibility support the implemented functionalities in a wide range of appli-
cations. It is not meet by implementing a solution only for a specific application. Thus,
we aim to support an adaptive degree of parallelism for any application parallelized
with SPar. This design goal meets the property of workload independence.

39

» Performance: The need for performance is twofold: Internally (in the mechanism) and
externally (running applications). The property of computational feasibility is relevant
for an adaptive execution to achieve the expected performance. Moreover, the internal
aspects of its implementation are expected to have a low overhead. Consequently, we
avoid using an external thread for the implemented strategies, because using exter-
nal threads requires additional implementations that can increase complexity and thus
resource consumption.

4.4 Adapting the Number of Replicas Based on Communication Queues

The requirements for an adaptive degree of parallelism were used to design and
implement adaptivity in SPar. We studied SPar’s runtime to find techniques to change the
number of replicas during run-time. In the stream processing context, an effective mecha-
nism is required to change a program’s execution on-the-fly without the need to recompile
or rerun. The first strategy was implemented using low-level calls to the runtime library to
change the status of the replicas (active, suspended). This first strategy uses a strategy that
considers metrics from the queues for adapting the degree of parallelism. Also, the strat-
egy is reactive because it monitors the queues and then acts, which uses the concept of
feedback closed-loop and controller from control theory.

4.41 Implementation

Figure 2.6 in Section 2.3.2 presented the the runtime library’s queues in a farm
skeleton. Figure 4.2 shows how we extended SPar’s runtime to implement our adaptive
strategy. The first stage that hosts the parallelism regulator. The regulator gets the status of
each queue by monitoring and collecting the push lost values?. It is assumed that when a
program is executing with a high number of push losses, its performance would be degraded
by the congestion. A high number of push losses occurs when the replica’s queues are
full, meaning that they are processing fewer elements than needed, resulting in congestion.
When a high number of push losses was detected, the the regulator triggered an action to
increase the number of replicas. On the other hand, if the number of push losses decreased,
the number of active replicas was reduced by suspending active replicas. This was in the
form of iteration, every time the regulator was run, it decided whether or not to change the
number of replicas.

2A push lost is characterized when the task scheduler fails to add a new item to a replica’s queue because
the queue is full.

40

Push Lost Monitoring

queue

[X X J pop [X X J

A

Frozen Workers

queue
o000 bop [X X]
[0
IS
©
o
) ° °
Get Status queue
Regulator a ¥ pop
000 [X X J
Wake up/Sleep Worker A

Figure 4.2 — Queues monitoring mechanism in SPar’s runtime.

The regulator is implemented in the first SPar stage to avoid the need to restart the
application when the number of replicas is changed. Algorithm 4.1 presents the regulator
implemented in the first stage, which runs within SPar’s task scheduler. The regulator has a
maximum value for the number of replicas, which is defined according to the machine’s CPU
availability. The execution is started by the task scheduler by sending tasks to the active
replicas. After a certain amount of time, the regulator collects monitoring data from the
queues and decides to increase, decrease, or maintain the same number of replicas. This
is performed in lines 4 and 7 of the regulator algorithm by adding (waking up) or removing
(suspending) threads until it reaches the minimum or the maximum number of replicas. The
task scheduler continues sending tasks and the regulator continues to monitor the push
losses until the execution ends (if it does end).

Algorithm 4.1 Parallelism Regulator based on Queues

1: procedure REGULATOR()

2 while true do

3 Sleep(timelnterval) > Wait until the next iteration
4: if pushLost > upperThreshold then > If true there is congestion
5: WakeUpReplica() > Add active replicas
6 else if pushLost < lowerThreshold then

7 SuspendReplica() > Suspend active replicas

41

4.4.2 Configuration Considerations

Despite the strong motivations for an adaptive degree of parallelism, an adaptive
execution tends to have additional complexities and challenges. For instance, when the
execution starts all replicas need to be suspended, and only the replicas required should be
awakened and then receive tasks. Consequently, the task scheduler and load balancer must
be aware of the number of active replicas.

The minimum and maximum number of replicas that a given parallel stage can use
must also be configured. If parallelism is required, we assume that the minimum degree is 2
(threads/replicas) and the maximum is defined according to the machine number of available
processing cores. The parallelism regulator determines the number of physical cores using
the UPL (Utility Performance Library) 3.

Another aspect of the configuration is the scaling factor (SF), which is how many
threads/replicas are added or removed when adjusting the degree of parallelism. In the
literature, the most commonly used scaling factor value is 1 (threads/replicas). Our adaptive
strategy is tested with scaling factors 1 and 2. We have chosen to test with 2 also to quickly
scale up or down to meet the short settling time property.

A challenge related to an adaptive degree of parallelism is when to change the
execution. Based on the related bibliography, it is possible to consider this aspect as an
unsolved problem. In related works, there is no consolidated solution to handle it, and each
approach addresses it according to its specific scenario. The most common approach is
time-driven, where it periodically runs in an arbitrary time interval (Tl), which can be viewed
as a sampling time. In [GSHW14, MM16, SHGW12, STD16] used time intervals ranging
from 0.1 to 5 seconds. We consider 0.1 seconds a too low an interval and 5 seconds too
high. Our adaptive strategy is tested with 0.5 and 1 second. This configuration was chosen
with the idea of avoiding excessive iterations, while at the same time maintaining a correct
level of sensitivity to potential workload fluctuations. Moreover, the impact of the different
time intervals is tested in the adaptive strategy.

Because this first implementation adapts the number of replicas considering the
runtime library’s queues, it uses a simple technique based on a threshold for deciding
whether or not an adaptation is needed. This configuration has to be sensitive enough
to detect application fluctuations. We are using a minimum and maximum number of push
losses as a threshold, ranging between 150 and 200 (thousand) occurrences. In this im-
plementation, the user has to define the tolerated number of push losses as well as when
it characterizes a congestion. Push losses may in fact vary from a machine’s capacity to
process (tic speed) and an application’s behavior. As a consequence, setting threshold con-

3https://github.com/dalvangriebler/upl

42

figurations can be challenging even for experts in parallel programming, which is a usability
limitation of this implementation.

Lane Detection - Input File Characterization

22 T T
—=— Serial

; i
16 T
|
|

14
12Kﬁ ZK??X

|
. |
WL B [P TV | Y
8 Mﬁiw&%&l ey

0 20 40 60 80 100 120 140 160 180
Time (s)

Throughput

Figure 4.3 — Throughput Characterization.

The strategy was tested by adding the adaptive part to a parallel version of the
Lane Detection video application (described in Section 6.2). We tested the strategy’s be-
havior under different configurations in a video stream processing application to understand
the implications of configurations and their impact on the application’s performance. The
aforementioned configurations used inside of our strategy were the time interval of 0.5 and
1 second and scaling factors of 1 and 2 replicas.

The throughput of a program is defined by how many tasks are processed in a
given time interval. In our primary tests, we used a video file as an input to simulate a typical
execution of a video streaming application. Figure 4.3 shows the throughput of a serial
execution with the tested input file. This characterizes the load and reveals the variation
during execution caused by the different time it took to process each task. The throughput
oscillated between 7 and 20 frames per second. In the parallel version, the variation tends
to be higher because multiple threads process at the same time.

An example of how this implemented strategy works, is shown in Figure 4.4. As
mentioned previously, the queues’ monitoring strategy adapts the degree of parallelism con-
sidering the number of push losses. The defined threshold of push losses is used by the
adaptive strategy to decide if an adaptation is needed (in terms of the degree of parallelism).
In this example, the execution started running with 8 replicas and kept increasing the degree
of parallelism until the sixth second. The degree of parallelism was maintained the same
while the push losses index was within the threshold, examples were between the eleventh
and the twentieth first second. Also, the degree of parallelism was decreased when the push
losses index went below the threshold, as occurred in the second 22.

Lane Detection — QM with SF 1 and TI 1

Threshold

I

—=— Push Losses

— Replicaé

250 /

200

150

Push Losses (thousands)

100

50

e

5

Time (

15

s)

20

25

Number of Replicas

Figure 4.4 — Lane Detection - Queues Monitoring.

S 100
C
[e]
(&]
[0
> 80
()
o
3
£ 60
©
3 40
ey
(@]
3
= 20
|_
0

Figure 4.5 — Time Interval and Scaling Factor - Throughput.

Lane Detection — Average of the Maximum Throughput

—/

Wz
SNy

i

Time Interval s) Scaliné Factor 1
s) Scaling Factor 2
Time Interval

(
Time Interval (
(
Time Interval (

STDEV

57.62

1
1

0.
0.

62.35

5s
5s

) Scaling Factor 1
) Scaling Factor 2

65.55

.

68.49

N

43

Figure 4.5 shows the average throughput from 10 executions using different con-
figurations. The configuration that achieved the best throughput was the one with a scaling
factor of 2 (it went up and down faster) and a time interval of 0.5s, the configuration was
more sensitive to application’s fluctuation. The configuration with time interval 0.5s and scal-
ing factor 1 also performed well. The configurations with a time interval of 1s also achieved
high throughput rates. Commonly, in stream processing applications, fast processing does
not actually mean that users will have a better experience. In these results, we are not
comparing which configuration yields the best performance. In fact, we are evaluating the
adaptive strategy and how the configurations impact performance. We also have shown the
standard deviation of the experiments. Considering this variation, the throughput is similar
in the different configurations.

44

Lane Detection — Average Number of Interactions
70

s) Scaling‘Factor 1
s) Scaling Factor 2

— Ti‘me Interval (1

1
0.5s) Scaling Factor 1
0.5s

60 | Time Interval
Time Interval

o~

b2} ====3 Time Interval) Scaling Factor 2
S 50
§ A2 39.5
[0
g 40 7
S 30|
8 25.2 23.4
E 20|
Z
10
o /

Time(s)

Figure 4.6 — Time Interval and Scaling Factor - Number of lterations.

The different configurations tested presented similar throughputs (Figure 4.5). How-
ever, in addition to showing performance results, in order to understand and discuss how
this adaptive strategy and its mechanism works, we also monitored several aspects (e.g.,
resources utilization, iterations, parallelism adaptations) while the application was running.
One relevant part of the adaptive strategy is an iteration. We consider iteration when the
parallelism regulator runs, which occurs after the sleeping period shown in line 3 of List-
ing4.1.This means that the parallelism regulator will verify if an adaptation of the degree of
parallelism is needed. As this routine is implemented inside the SPar’s task scheduler, it
can result in an additional overhead since the distribution of tasks can be delayed. Figure
4.6 shows the number of iterations for each configuration. The results reveal the impact of
shorter time intervals in the number of iterations, which was expected with 0.5 as the time
interval. Additionally, the results in Figure 4.5 shown that iterations do not degrade perfor-
mance, the two configurations with more iterations achieved the best throughput rates.

Figure 4.7 shows how many times that the number of replicas was changed. The
configuration with the best throughput has on average less than 7 adaptations. However, it
is not possible to infer that fewer adaptations result in better performance, since the lowest
throughput was not in the configuration with more adaptations. For instance, the negligible
impact of adaptation is highlighted when comparing the two configurations that both used
0.5s as a time interval, because they presented similar performance. However, the config-
uration with a scaling factor 2, had only half of the adaptations compared to scaling factor
1. In fact, the configuration with time interval 0.5s and scaling factor 2 achieved the best
throughput, because it increased the degree of parallelism more quickly.

Another relevant aspect monitored during the execution was CPU usage. Figure
4.8 shows the percent of the average load collected every second in each configuration
scenario. These results demonstrate the impact of the number of replicas in CPU usage.

45

Lane Detection — Average Parallelism Adaptations

25 ‘ ‘ ‘
1 Time Interval (1s) Scaling Factor 1

2 Time Interval (1s) Scaling Factor 2
X} Time Interval (0.5s) Scaling Factor 1
g 20 | =3 Time Interval (0.5s) Scaling Factor 2 N
S
<
£ 15]
E 12.5
@ 10.8
8 10 | i
é 57 &8
5 .
2 i i
g 5
o}
Z

0

Figure 4.7 — Time Interval and Scaling Factor - Number of Parallelism Adaptations.

Lane Detection—Execution CPU Usage

160 | —=— Time Interval (1s) Scaling Factor 1 |
Time Interval (1s) Scaling Factor 2

< 140 | —=— Time Interval (0.5s) Scaling Factor 1 7
< ——-— Time Interval (0.5s) Scaling Factor 2
g 120 f 1
3
D 100 i M —a——— 1
» _ =/=/-— = ——a|
= 80]
(@)
© 60 1
©
© 40 1
<

20 1

Time(s)

Figure 4.8 — Time Interval and Scaling Factor - CPUs Utilization.

This was done to test efficiency and whether adding more replicas these threads would
actually process tasks. Thus, more replicas will certainly increase CPU usage, which with
a balanced number of replicas can improve the performance and/or with too many replicas
may cause resource contention and degrade the performance.as The execution with the
best throughput was that which most quickly increased CPU usage.

In addition to the CPU load, the total memory consumption was also monitored
and is shown in Figure 4.9. Despite the previously mentioned contrasts among the config-
urations, memory usage is very similar. Because each replica is a thread and needs some
additional memory, and therefore higher variation can occur.

46

Lane Detection — Average Memory

250 - —— Time Interval (1s) Scaling Factor 1
Time Interval (1s) Scaling Factor 2

Time Interval (0.5s) Scaling Factor 1

200 | S0 Time Interval (0.5s) Scaling Factor 2

o —+— STDEV
=
()
S 150 e I 7 ﬁ
(2]
o}
>
o 100 |
£
[0}
s
50

Figure 4.9 — Time interval and scaling Factor - Memory Usage.

4.5 Adapting the Number of Replicas Based on the Throughput

The previous section presented the first strategy for adapting the degree of par-
allelism in SPar. The limitations that were highlighted called for better ways to adjust the
number of replicas. The primary requirement (from Section 4.1) that caused this demand
was transparency. In the strategy based on the runtime library’s queue, sensitive parameters
still needed to be defined by the user, such as the threshold of push losses. However, this
is not feasible for application programmers since thresholds vary among applications and
require a deep understanding of workload characteristics [LBMAL12].

Defining a performance goal is presumably easier for application programmers than
defining a low-level parameter of the runtime system. Therefore, we studied ways to handle
the configuration challenges and abstract them from programmers to meet the requirement
of a transparent degree of parallelism. Hence, we implemented a strategy that adapts the
degree of parallelism based on the application’s throughput.

451 Implementation

This strategy optimizes the execution based on a closed-loop system from control
theory [HDPTO4]. It monitors the execution considering a performance metric to attempt
to optimize the execution in the next iteration. Figure 4.10 shows the design of the imple-
mented strategy with throughput as the performance goal. Even with many iterations, the
adaptations occur on-the-fly without the need to rerun the application.

47

Active Replicas

Output

Figure 4.10 — Regulator and Monitor in SPar’s runtime.

We implemented this strategy through an algorithm that changes the number of
replicas and continuously monitors the program’s execution, as represented in Algorithm
4.2. As shown in lines 4 through 7, the decision whether to change the degree of parallelism
is based on the target (expected) and measured (actual) throughput, which is the main
difference compared to the adaptation approach based on queues.

Algorithm 4.2 Parallelism Regulator based on Throughput

1: procedure REGULATOR()

2 while true do

3 Sleep(timelnterval) > Wait until the next iteration
4: if Throughput < Target then > If throughput is below the target
5: WakeUpReplica() > Add active replicas
6 else if Throughput > Target + Threshold then

7 SuspendReplica() > Suspend active replicas

The throughput value (tasks/second) is calculated in the last stage. Listing 4.3
shows a representation of the monitor that calculates the number of tasks processed in the
current iteration. The number of tasks processed in the current iteration is calculated by
subtracting the previous total number of tasks from the current total number of tasks. In
each iteration, the throughput is the result of dividing the number of processed tasks by the
execution time.

The regulator runs in the first stage along with the SPar’s task scheduler. The pool
of replicas is managed the same as the previous strategy. The difference lies in the last
stage, which gathers the tasks and also measures the throughput. The throughput rates are
stored and accessed by the regulator in the first stage. This flow provides information to the

48

Algorithm 4.3 Throughput Monitor

1: procedure MONITOR()

2 while true do

3: Sleep(timelnterval) > Wait until the next iteration
4 numOfProcTasks = currentTask — lastProcTask

5 Throughput = numOfProcTasks/timelnterval

regulator to decide if an adaptation is required. This strategy only requires the definition of
a target throughput.

The number of replicas is changed by freezing active threads if the throughput is
higher than the target. Furthermore, because throughput tends to oscillate, we aim to avoid
unnecessary adaptations. There is no consensus in previous works as to when to reduce the
degree of parallelism. Each approach is specific and implements the strategy considering
its scenario. In our strategy, we added a percentage value, acting as a threshold, which is a
value that can be tolerated when the actual throughput is higher, but close to the target. 20%
was the most suitable value for video applications during our empirical tests. The threshold
is used in line 6 of the Algorithm 4.2. However, it is important to note that this threshold
may not be as feasible with a significantly different workload. Also, the input file used to
simulate a real-world scenario presents oscillations in the time taken to process the frames.
The actual throughput is reduced because some frames require more time to be processed
and cause load fluctuations.

An essential assessment of the feasibility of this strategy was performed using
the same application and input used in Section 4.4. We simulated a potential condition
called dynamic throughput that occurs when the target performance is changed during the
execution.This requires the number of replicas in a parallel stage to be adapted to meet
the new performance goal. In this case, the number of replicas is changed considering
the number of tasks processed. In this video application, a task is a video frame. Also,
it is relevant to emphasize that this strategy allows one to test different conditions, which
is why this strategy presented more results than the previous one. Furthermore, the main
goal of these experiments was to evaluate the effectiveness of the adaptive strategy. Thus,
performance will be evaluated and discussed in the following chapters.

Figure 4.11 shows a simulated scenario where the target throughput is dynamic
during the execution, starting with an arbitrary value of 40 tasks as the target throughput.
In this simulation, when the execution time reaches 8 seconds, the target throughput is
changed to 18. At the 16 seconds, the performance goal is increased to 50. When the
execution reaches 13 seconds, the target throughput is changed to 70. Also, in this experi-
ment the strategy that adapts the parallelism is configured with a scaling factor 1 and a time
interval of 0.5 seconds. When this time interval occurs, an iteration is triggered to verify if
the degree of parallelism must be adapted. Also, the execution starts with replicate 2, which
is the degree of parallelism. This value was used to have a minimum degree of parallelism

49

and adapt continuously to pursue the target throughput by adding more replicas when the
throughput was below the target.

The input file used to simulate a real-world scenario presented oscillations in the
time taken to process the frames. Some frames required more time to be processed, result-
ing in load fluctuations because it reduced the actual throughput. For instance, throughput
fluctuations can be seen in Figure 4.3 and in Figure 4.11 between seconds 4 and 6 where
with the same number of replicas the throughput goes below the target throughput. Hence,
at 7 seconds, more replicas were activated in the poll aiming to increase the throughput.

Another relevant aspect is observed after 13 seconds, when the target throughput
was higher (70). The combination of the load fluctuations from the input and number of repli-
cas resulted in a high variation of the actual throughput. This strategy reacts to fluctuations
in the execution and predicting such load fluctuations is a challenge because streams items
are processed in real time under heavy and uncertain workload trends [HPJF14].

Lane Detection — Dynamic throughput with adaptive 1 replica and 0.5s
120

—+— Throughput (FPS) =~ —— Replicas | ‘
—— Target Throughput R

100

@ g \ g

5 o ﬂﬂ ﬂ i /ﬂwnf\ﬂyf V *\ J f

" z\/’\x/j\m T A0
QOJ /V\\k/\ [}lﬁ/ IE
/7 N I

Time (s)

Figure 4.11 — Dynamic throughput with scaling factor 1 and time interval 0.5s .

While Figure 4.11 had a scaling factor of 1, in Figure 4.12 the scaling factor was 2,
which means that two replicas can be added or removed on each adaptation. Consequently,
there are more throughput variations. Scaling factor 2 reacts faster to changes, which could
results in a short settling time at the price of less stability. Results show the need for a
balance between the requirements and desired properties.

In Figure 4.13, we present the same dynamic throughput simulation, the adaptive
degree of parallelism, and input video file. However, the time interval between each iteration
is 1 second in this experiment. A higher time interval means fewer iterations. The measured
performance tends to be stable since it is an average of a longer time period, but the settling
time tends to be increased. Comparing the different configurations, we conclude that the
configurations performed as predicted. Using a time interval of 1s, the actual throughput is
closer to the target, but it takes a more time to reach the target throughput. For example,

120

100

80

60

Throughput (FPS)

40

20

Figure 4.12 — Dynamic throughput with scaling factor 2 and time interval 0.5s .

Lane Detection — Dynamic throughput with adaptive 2 replicas and 0.5s

—+— Throughput (FPS)

— Replicas ‘

L
N A~ O

> Target Throughpu ‘
Ay
T m{\mrdv T
A A
[A A \./J]
A T
0 TP N T

12
10

Number of Replicas

50

at 16 seconds of the execution shown in Figure 4.11, the target throughput was updated to
50. This configuration with the time interval of 0.5s took 2.7 seconds to achieve the target
throughput. On the other hand, the configuration with the time interval of 1s took 5.8 seconds
to reach the target throughput. In short, these distinct settling times show how significantly
configurations affect applications’ performance.

120

100

80

60

Throughput (FPS)

40

20

Figure 4.13 — Dynamic throughput with scaling factor 1 and time interval 1s .

Lane Detection — Dynamic throughput with adaptive 1 replica and 1s

RRRRES e
I
| 4]
foN
P Nz [e
RN
ST N

Time (s)

35

L1 i
N A O

12
10

Number of Replicas

Comparing the Figures 4.14 and 4.13, we can see the same trends from scaling
factor 1. The time interval 1 presented fewer fluctuations since the average performance
is from a longer period. Also, the settling time was higher with 1s as a time interval. The
configuration with time interval 0.5s was more sensitive, and seems to be more suitable for

video streaming applications by responding fast to changes.

In Figure 4.15, we present an experiment with a static target throughput of 60
frames per second and a scaling factor of 1, using the same input video from previous

51

Lane Detection — Dynamic throughput with adaptive 2 replicas and 1s

100

—+— Throughput (FPS) ~ —— Replicas ‘

90 | —— Target Throughput
T \/ I
5 f/ / y T
o ks
5 50 Y A12 B
3 o
2 ol ‘\J \ / o E
Wl RN g g

30 7\& f 1s

E Y |o

20 \A‘/ \/ .

10 1 _/\\._/ 12

0

5 10 15 20 25 30 35
Time (s)

Figure 4.14 — Dynamic throughput with scaling factor 2 and time interval 1s .

Lane Detection —~Target Throughput 60 with adaptive degree 1
130

—+— Throughput (FPS) —+— Replicas

120 | —— Target Throughput 4 T\
@ 100 R H ,A 8
A
AT
g Ll o AN VL) f
N O T Sl U I O LA T | I Y
RN s R
40 W 10
30"‘“"‘;‘—/ 8

Figure 4.15 — Target throughput 60 with scaling factor 1 and time interval 0.5s.

experiments. In the tested machine,the number of replicas used varies from 8 to 14. As the
number of replicas impacts the actual throughput, we decided to start the execution using
half of the total available cores* (with Hyper-threads). We started the execution with more
replicas because the target throughput was higher. In previous experiments, it is possible to
notice a need to increase the number of replicas right after the execution starts.

Figure 4.16 shows an experiment again using 60 as a target throughput with a scal-
ing factor of 2 replicas. A comparison between Figures 4.15 and 4.16 showed no significant
contrasts in the throughput caused by the differences in the scaling factor. The load from the
input file caused most of the throughput fluctuations. Both configurations reacted to changes
and pursued the target throughput. It is noteworthy that in some specific instances, even us-
ing the maximum number of replicas, it was not possible to achieve the target throughput.

4Using the UPL library

120

110

100

90

80

Throughput

70

60

50

40

30

Figure 4.16 — Target throughput 60 with scaling factor 2 and time interval 0.5s.

Lane Detection —~Target Throughput 60 with adaptive degree 2

—— Thf'oughput
—— Target Throughput

— ‘Replicas ﬁ

v

|
|
|

aml

|
|
L)
\

lafl)

S E——
I

b
7
A

P

)
\M/J/ X\/ - |
L L\
5 10 15 20 25
Time (s)

Number of Replicas

52

However, it was not caused by the adaptive mechanism, but is a consequence of the ma-
chine’s limited processing capability.

160

140

120

100

Throughput

80

60

40

20

Figure 4.17 — Target throughput 80 with scaling factor 1 and time interval 0.5s.

Lane Detection —~Target Throughput 80 with adaptive degree 1

—a— Thrdughput
—»— Target Throughput

— Repl‘icas

A

f
|

——
T~

]
»>

K.

o<

><<»
?"

'q

//

N

Time (s)

14

112
9 10

Number of Replicas

Also, an experiment with a higher target throughput, 80 tasks, is shown in Figures
417 and 4.18. The machine could not always meet the target throughput with this high-
performance demand, even when using the maximum replicas. This is due to the hardware
and scalability limits of the tested application. Both configurations started with 8 replicas
and the number was increased to improve the throughput. The maximum number of replicas
(14) was the most commonly used configuration. We observed that the scaling factor of 2
achieved a shorter settling time (2 seconds) and scaling factor of 1 only used all replicas at

the fourth second.

In this Section, we have seen experiments with different configurations and target
throughput. It was shown that the throughput is affected by the configurations. In addition,

53

Lane Detection —Target Throughput 80 with adaptive degree 2
140

—— Thrdughput e Repl‘icas
—— Target Throughput 7\ /T
I

N |1l
" g \//

LNV
TN

20

Throughput
Number of Replicas

Time (s)

Figure 4.18 — Target throughput 80 with scaling factor 2 and time interval 0.5s.

we aim to evaluate how the final throughput (average of an entire execution) can be affected
by configurations, which will be presented in the next section.

4.5.2 Comparison of Configurations

We saw in previous experiments that using different target throughput and config-
urations. Applications and their inputs vary a great deal. Therefore, it is a challenge to have
a configuration suitable for all scenarios. The possible configurations of the adaptive strat-
egy are the time interval, between each monitoring, and the scaling factor, concerning the
number of replicas added or removed from the pool. However, it is not intuitive for appli-
cation programmers to define these parameters. As a consequence, we need to test and
characterize the impact on performance caused by configurations in order to abstract the
complexities involved.

Figure 4.19 presents the throughput performance of the four configurations related
to the adaptive strategy. In this case, a high target throughput was set to achieve the max-
imum performance. It is worth nothing that the throughput presented is an average of the
entire execution. When an execution ended, the throughput was calculated considering the
number of tasks processed and the total time used. The result of each configuration is there-
fore an average of 10 runs as well as error bars showing the standard deviation, which is the
factor of variation in the throughput results.

The highest average throughput was achieved by the configuration with a time in-
terval of 0.5 and scaling factor of 2, which was the only execution with a visible but minimal
standard deviation. The short settling time and rapid scaling of this configuration, which was
observed in previous results, explains why it had the best performance. In this experiment,

54

Lane Detection — Average of the Maximum Throughput

—— Time Interval‘(1s) Scalingj Factor 1
S 100 I Time Interval (1s) Scaling Factor 2
2 wzzzza Time Interval (0.5s) Scaling Factor 1
8 === Time Interval (0.5s) Scaling Factor 2
3 —— STDEV
e 80
g 66.28 68.73 68.74 70.06
8 —+
= 60
g
3 40t
<
(o))
3
= 20
|_

Figure 4.19 — Maximum throughput of each configuration.

we did not consider efficiency or resource consumption. The goal was to simulate a sce-
nario demanding maximum performance. In Chapter 6, we compare the performance and
resource consumption of an adaptive degree of parallelism to static executions.

4.6 Adapting the Number of Replicas Based on the Latency

In the previous section we discussed the strategy for adapting the number of repli-
cas according to a target throughput. Latency is another relevant aspect for stream pro-
cessing applications [MM16, Gri16]. In this study, we consider latency as the time taken to
process a stream item. It is quite relevant because stream items can be sensitive to latency,
thus quick response time may be a performance requirement for several stream processing
applications. For instance, a lane detection application may need to process video frames
and detect the lanes under a specific latency constraint. Because this application could be
used by an autonomous car in order to detect the lanes and use the results of the pro-
cessed feed to keep the car on the road. Proper responses to the detected lanes can not be
determined if the latency is too high.

When latency is a constraint, the number of replicas can be regulated for manag-
ing the time to process the stream items. In the previous section, we discussed aspects
for adapting the parallelism without considering the impact of the number of replicas in the
latency. There can be a correlation between throughput and latency. Achieving a high
throughput using many replicas tends to increase the latency. On the other hand, using
too few replicas decreases the throughput and latency. Consequently, there is a trade-off
between throughput and latency, which tends to require a balance between the two perfor-
mance goals.

55

The challenge is that a high throughput is commonly pursued, and at the same
time low latency may also be necessary. Throughput and latency are shown on the left side
of Figure 4.20, which adds the monitored latency in the configuration shown in Figure 4.18.
Here when the throughput increased, the latency decreased and vice- versa. These aspects
highlight that the workload from the input video was the primary source of load fluctuations.
The throughput decreased because fewer frames were processed in a given instant. The
frames demanded more resources and delayed the output, which also resulted in higher
latency.

Lane Detection —Throughput 80 with adaptive degree 2 Lane Detection — Number of Replicas

600
—a— Thrc;ughput (FPS) e Laténcy (ms) ' 16 [—— Replicaé
—»— Target Throughput

500 14

PV
) CRAN RS

200 / 3 200

Latency (ms)

Replicas
© 8
P~

Throughput (FPS)

100

-/ 100

&/ \jMW Vi vl \/ 2

5 10 15 20 0 5 10 15 20
Time (s) Time (s)

Figure 4.20 — Latency and throughput of stream items (Left) and number of replicas (Right).

The throughput tends to increase when more replicas are added. In the right side
of Figure 4.20 shows the number of replicas used during the execution. By comparing the
latency and number of replicas it is possible to identify a relation between them. For instance,
from the beginning of execution until the third second, the number of replicas is increased
to improve the throughput. However, this also significantly increased latency. This same
event also occured in the time interval between seconds 20 and 23. The relation between
the number of replicas and latency can also be seen after the 18 seconds when the number
of replicas decreased from 14 to 10 and the latency dropped from 400 to 200 milliseconds.

The effect of the number of replicas was also tested in this study with a static
number of replicas, a fixed degree of parallelism that a given program runs during its entire
execution. Figure 4.21 shows the latency of executions during the first 35 seconds of the lane
detection application, using the same input of the previous experiments. Moreover, because
the number of replicas changes the performance, some executions ended before others
according to the number of replicas. Ignoring the total execution time, the best latencies
can be seen in executions ranging from 2 to 6 replicas, because 6 is a degree that had one
thread per physical core (8) considering the 2 additional/required threads (one for the runtime
library scheduler and other to gather tasks). This comparison is relevant to demonstrate the
optimal number of replicas that can be used when latency is a constraint.

Complementing the representation of the execution shown in Figure 4.21, Figure
4.22 shows the average latency concerning each execution with different numbers of repli-

Latency (ms)

1000

800

600

400

200

Figure 4.21

Latency (ms)

Figure 4.22 — Average latency of executions with replicas.

700 |

600

500

400

300

200

100

Lane Detection - Latency

-

5

1 Replica 6 Replicas —=— 14 Replicas

2 Replicas 8 Replicas 16 Replicas |
3 Replicas 10 Replicas

4 Replicas 12 Replicas

|
X —x

Xk)&f&y <
S B < ek
ST B A — ~
W] %& N

— Impact in latency caused by the number of replicas.

Lane Detection — Average Latency

— Létency (rhs) '

4 6

Number of Replicas

8

10

12

14

16

56

cas. In this machine, the latency started to increase when more than 7 replicas were used.
A significant increase in latency was observed with 15 and 16 replicas, because of the lim-
ited number of Hyper-threads resulted in additional concurrency between the parallel region
and the other sequential stages (scheduler and gather). The additional overhead, using
more than 14 replicas, changed the number used as the maximum degree of parallelism in
the adaptive strategies to the total number of cores (with Hyper-threads) reduced by 2. For
instance, in a machine with 24 cores, the maximum number of workers in a given parallel

region would be 22.

57

4.6.1 Implementation

In this section, we have discussed how the number of replicas affects the latency of
stream items. Measuring and understanding the latency of stream processing applications
is a complicated and time-consuming task. We aimed to abstract the parallelism challenges
for latency sensitive applications. We proposed a new strategy for transparently managing
the latency by monitoring the latency of stream items and managing execution by adjusting
the number of replicas. Figure 4.10 shows the strategy we used for adapting the number of
replicas, considering the monitored throughput. The same logic was also used for adapting
the number of replicas in our latency strategy. However, instead of monitoring the through-
put, the latency of stream items was monitored and accessible to the regulator in the first
stage.

The mechanism for changing the number of replicas is similar to the previous strat-
egy. When latency is a constraint, the use of the Hyper-threads will be avoided due to the
additional overhead caused. Moreover, the number of replicas can vary from 2 to the total
number of physical cores less 1. In Figure 4.22 (where 8 is the number of physical cores),
the best latencies were between 2 and 7 replicas. For example, in order to optimize the la-
tency, if a machine has 12 physical and 24 Hyper-threads, the maximum number of replicas
will be 11.

Algorithm 4.4 shows the implementation for controlling the latency by adjusting
the number of replicas. Unlike a throughput strategy that increases the number of replicas
for improving performance, this strategy reduces the number of replicas when the latency
is higher than the target. However, using only a few replicas causes a lower throughput.
Therefore, it requires a balance to be struck between throughput and latency constraints.
The main part of this algorithm is shown between line 4 and 7 in Algorithm 4.4, where the
latency is periodically verified and the number of replicas is modified when necessary.

Algorithm 4.4 Parallelism Regulator

1: procedure REGULATOR()

2 while true do

3 Sleep(timelnterval) > Wait until the next iteration
4: if Latency > Constraint then > Latency is too high
5
6
7

SuspendReplica()
else if Latency < Constraint then
WakeUpReplica()

Moreover, it is relevant to note that latency is monitored for each task. This ap-
proach still acts like a feedback loop that has a monitor() in the last stage, calculating the
average latency of the tasks processed in the current iteration. The calculated latency is

58

saved so that the regulator() in the first stage can decide if the number of replicas must be
adapted.

Lane Detection — Latency 230 ms Scaling Factor 1 Lane Detection — Number of Replicas
300

—— Létency (ms) ' —— ‘Throughput (#PS) — Replicas
e

Target Latency 8
250 < 250 7
IRy Y T DL
—]
& 6
& 200 Fy 200 @
£ . @
= - s 5
: EAramn /
e =
% 150 150 Ed & 4
4 e
=
¢l \ /
100 100 3 /
2
4
50 /,,Z 50
1
POV S
0 0 0
10 20 30 40 50 10 20 30 40 50

Time (s) Time (s)

Figure 4.23 — Latency Constraint of 230 ms (Left) and Replicas used (Right).

Executing a stream processing application with the maximum throughput without
controlling the latency is not suitable for several of these applications. At the same time,
using a minimum number of replicas to reduce latency tends to result in poor throughput
performance. Therefore, the latency strategy for adapting the number of replicas tries to
improve the performance by increasing the number of replicas when the latency is below the
target. We tested our strategy for latency with the same application and input used by the
previous strategies. The left side of Figure 4.23 shows the throughput and latency, and the
right side presents the number of replicas used during the execution.

Lane Detection — Latency 240 ms Scaling Factor 1 Lane Detection — Number of Replicas
300

—— ‘Latency (ms)‘ — Throughpht (FPS) — Réplicas

—— Target Latency 8
250 250 7
==
& 6
_. 200 200 @
[™
E = 35
Iy 3 2
5 150 S g
5 150 2 e,
- <
=
100 100 3
AN _A/H/\A/J -y 2
50 50
1
0 0 0

5 10 15 20 25 5 10 15 20 25
Time (s) Time (s)

Figure 4.24 — Latency Constraint of 240 ms (Left) and Replicas used (Right).

In Figure 4.23, the rigorous latency goal of 230 milliseconds was not always achiev-
able due to the machine processing limits, which was also observed with static parallelism
in Figure 4.21. The relevant aspect of this strategy is that it reduced the number of replicas
when the latency increased. For instance, between 15 and 45 seconds , the target latency
was not achieved, but our strategy did reduce the number of replicas to the minimum, trying
to reduce latency. After 45 seconds, when the latency decreased, the strategy increased the
number of replicas, thereby, improving the throughput.

59

Figure 4.24 shows an experiment that tolerates higher latencies (240 milliseconds).
Consequently, it was possible to increase the number of replicas and throughput. In this
case, the target latency was met using 7 replicas, which resulted in a significantly higher
throughput rate. Comparing Figures 4.23 and 4.24 it is possible to see significant contrasts in
terms of latency, throughput, and number of replicas. However, the target latency difference
was only 10 milliseconds, and the strategy had to make different decisions regarding the
degree of parallelism. These results demonstrate the effectiveness of the strategy to meet
the target latency as well as how sensitive the execution is to 10 milliseconds in the definition
of the target latency. Also, these results show that the latency strategy is quite accurate and
emphasize how susceptible the execution is to an incorrect parameter.

4.7 Adapting the Number of Replicas Without User-Defined Parameters

Previously, we presented an approach for adapting the number of replicas regard-
ing a target throughput (Sections 4.5). We demonstrated that is possible to adapt the par-
allelism and optimize the performance during run-time. The strategies presented used a
target performance to compare with the actual performance and therefore adapt the number
of replicas. As a consequence, the programmer has to know and define the target perfor-
mance. Yet, this can be a usability challenge since application programmers often have no
performance expertise. Thus, the previous approaches met the requirement for adapting the
degree of parallelism, but lead to a demand for a potentially complex definition of a target
performance.

Itis a challenge for an adaptive strategy to adapt the degree of parallelism without a
target performance. It is expected to be a trade-off between the complexities for defining pa-
rameters and a complete transparent execution. Defining parameters according to specific
demand increases the flexibility at the price of additional complexities. On the other hand,
running transparently increases the abstraction level by reducing complexities, but tends to
result in less flexibility as well as poorer performance.

Algorithm 4.5 Parallelism Regulator without user-defined parameters

1: procedure REGULATOR()

2 while true do

3 Sleep(timelnterval) > Wait until the next iteration
4: if Throughput < OneOfPrevious then > If throughput is lower than a previous
5 WakeUpReplica() > Add active replicas
6 else if Throughput > AverageOfPrevious then

7 SuspendReplica() > Suspend active replicas

In Algorithm 4.5 is presented as a new strategy for a regulator algorithm. It adapts
the number of replicas without demanding a target performance. Instead, it considers other

60

information during the execution. It can use the maximum number of replicas, as an abstrac-
tion. However, this can result in an overshoot. This implemented strategy decides whether
to adapt the number of replicas by comparing the performance in the previous three execu-
tions. For instance, this strategy continuously monitors the throughput and, if the throughput
is lower than one of the previous executions, it increases the number of replicas. On the
other hand, if the current throughput is higher than the average throughput of the previous
executions, it reduces the number of replicas. Also, this strategy uses a throughput monitor
in the last stage that calculates the actual throughput, shown in Algorithm 4.3. Consequently,
this implementation is a new strategy derived from the throughput strategy, shown in Section
4.5.

Lane Detection — Abstracted Parallelism Scaling Factor 1

100 T T —
—=— Throughput —+— Replicas f\ T

) I\
U

AV VAR Y
VIR AVAYR L

Throughput
Number of Replicas

X
4 \MJ / SN _/\\ 112
410
0L~ //\/ \// 9
\/ 7
20
5 10 15 20 25
Time (s)

Figure 4.25 — Adaptive Strategy without user-defined parameters - Scaling Factor 1.

Figure 4.25 presents the results of the throughput and the number of replicas used
during execution using the strategy without user-defined parameters. Our experiment had
a scaling factor of 1 replica and monitoring time interval of 1 second. As observed in the
previous experiments, the throughout oscillates during the execution, which is mainly caused
by workload trend. It is notable that the number of replicas is not always stable since it
varies during the execution. We decided to rely on the previous 3 executions to be sensitive
enough to the workload fluctuations. In addition to that, when the execution started, there
was no prior information to analyze. In this specific experiment, the number of replicas
varied too much because it adapted based on the actual application’s throughput. However,
under more stable throughput conditions it is likely that there would be fewer changes in the
number of replicas, but this depends on the application and its input characteristics.

In Figure 4.25 it is again possible to identify throughput fluctuations. Moreover,
this strategy for adapting the degree of parallelism successfully adjusted the execution. The
number of replicas varied from 7 to 12 and the throughput oscillated from 40 to almost a 100
frames per second. The final performance of this strategy will be evaluated in Chapter 6.

61

Lane Detection — Abstracted Parallelism Scaling Factor 2
120

*A—‘Throughput - Replicas ‘ T\

" /
90 /\ / \\
A Ly
ol A

A
NRVAVAVER S

Throughput

—
>
Number of Replicas

X
40 //\ AN TR AN W e A\ A 14
AV VAN V4 V N
30/ 10
18

20

5 10 15 20
Time (s)

Figure 4.26 — Adaptive strategy without user-defined parameters - Scaling Factor 2.

In Figure 4.26, a similar experiment to Figure 4.25 is presented. Yet here we did
not have a scaling factor of 2. In this case, the execution faster scaled up or down. However,
under the throughput oscillations, it is not possible to identify settling patterns in the number
of replicas. This number was changed several times between 12 and 14 replicas. This
strategy tries to use a number of replicas according to the workload characteristics without
user-defined parameters. However, it may result in performance losses, which is the trade-
off for fully abstracting the target performance.

Lane Detection — Average of the Maximum Throughput

100 | ——J Time Interval‘(1s) Scalingj Factor 1
— Time Interval (1s) Scaling Factor 2
2 wzzzza Time Interval (0.5s) Scaling Factor 1
8 go | T Time Interval (0.5s) Scaling Factor 2
2 —+— STDEV
o 64.68 65.58 65.84 65.14
o —F— ¥
8 60
IS
o
= 40
Qo
Ny
D
]
o 20
e
'_

0

Figure 4.27 — Maximum throughput of each configuration.

We also evaluated the four configurations used for testing the adaptive degree of
parallelism. Figure 4.27 shows the average throughput of 10 runs for each configurations.
We noticed small contrasts as well as a low standard deviation. The average throughput
was similar in the distinct configurations. The performance and resources consumption of
this strategy will be evaluated in the Chapter 6.

62

4.8 Remarks

In this chapter, we discussed the motivations and requirements for an adaptive
degree of parallelism and the implemented strategies were characterized using the Lane
Detection application. Also, we tested the strategies for adapting the number of replicas with
different configurations, considering two time intervals and scaling factors of 1 and 2.

The first strategy considering the runtime library’s queues, highlighted that it is
possible to adjust the program during run-time and adapt the number of replicas on-the-
fly. This strategy demonstrated the alternative of using different configurations. Despite
the demand for configuring low-level parameters, this strategy has met the requirements
and desired properties. However, we demonstrated that is not intuitive nor is it suitable for
application programmers to configure low-level parameters.

Therefore, we implemented an improved strategy that pursued a given performance
by adapting the number of replicas based on throughput. In Section 4.5, we presented a
solution that required a target throughput as a configuration and optimized the execution.
The experiments revealed that the target performance might vary during execution as well
as the demand for resources. The time interval and scaling factor impacted settling time.
Moreover, balancing between the desired properties to achieve low settling times, stability,
and avoiding overshooting is also required. In Section 4.6, we demonstrated the impact on
latency caused by the number of replicas. Here we also proposed a strategy based on the
latency of stream items.

Furthermore, we implemented a strategy that adapts the number of replicas without
the need to set a target performance. Because many application programmers do not have
performance expertise, this strategy tries to maximize the throughput without a user-defined
parameter (Section 4.7). The advantage of more abstraction comes at the price of less
flexibility.

Considering the requirements for an adaptive degree of parallelism (Section 4.1),
the strategies also met the goals for adaptive and transparent executions. The overhead
and computational feasibility as well as the workload independence will be demonstrated
in Chapter 6. The overhead and feasibility are tested by monitoring the consumption of
resources, and workload independence is shown by using different applications and their
inputs.

The desired SASO properties were also met by the strategies. The execution of the
strategies is stabilized by explicitly comparing the target and actual performance to adapt
the degree of parallelism. The strategies are also stabilized by using time intervals between
iterations and the short settling times are pursued by using short time intervals and rapid
scaling configurations. Also, overshoot is avoided by decreasing the degree of parallelism
when suitable.

63

We designed transformation rules for SPar based on the implemented strategies.
These rules are for generating parallel code with support for an adaptive number of replicas.
We intend to offer the option for users to define how to adapt the number of replicas. The
more suitable approaches are based on target throughput and latency as well as the strategy
without the user-defined parameter. Our idea is that a compilation flag will allow the user to
choose between adaptation based on the latency or throughput.

The following chapters will present the transformation rules for supporting an adap-
tive degree of parallelism in SPar in addition to an assessment of the performance of the
adaptive strategies compared to the static case under different real-world applications.

64

5. ADAPTIVE NUMBER OF REPLICAS IN SPAR

In this chapter, we introduce how the adaptive degree of parallelism in the previous
chapters can be integrated into SPar. It already generates parallel code with a static num-
ber of replicas. Our goal is to design transformation rules for generating custom code that
support our proposed adaptive strategies.

5.1 Source-to-Source Transformation Rules

Transformation rules are used within SPar to perform parallel code generation.
These rules are related to the SPar runtime shown in Section 2.3.2 and according to the
chosen parallel patterns. As described in Section 2.3, SPar transforms an annotation se-
guence into parallel code by composing parallel patterns. This can be represented using
functional semantics.

51.1 SPar Existing Rules

According to [GF17, Gri16, GDTF17], a farm parallel pattern can be expressed us-
ing a functional semantics as follows. Farm() accepts one to three arguments (farm(B), farm(
A, B), farm(A, B, C)). The arguments represent the farm task scheduler (known as “emitter”,
A) that sends input tasks to the workers, the farm worker (B) that computes the tasks, and
the farm collector (C) that gathers results from the workers. The emitter and the collector are
optional. When the emitter and collector are not present, default scheduling and gathering
policies are implemented in the farm. Each one of the three elements only accepts a code
block/sequence of commands as an argument.

[[spar ::ToStream]]{
f1.0);
[[spar ::Stage,spar:: Replicate (N)]]{
f2.();
}
}

= farm(A(f1),B(f2));

SPar Rule 1.

SPar already has transformation rules to represent the code generation. Rule 1 rep-
resents a code generation from a SPar annotation to a farm parallel pattern. The ToStream
code region is the first stage with the £1 (a sequence of commands), which is assigned to

65

the task scheduler (emitter) (A(...)). Furthermore, £2 (a sequence of commands) is the sec-
ond stage, which is replicated (B(...)). The Replicate attribute in the Stage annotation (f2)
defines the parallelism with a given degree N.

Rule 2 has one more Stage annotation, which is another sequence of commands
represented by £3. It is still a transformation from a SPar’s sentence to the farm parallel
pattern. However, £3 is assigned to C that gathers the tasks, £2 to B, and f1 to A.

[[spar::ToStream]]{

f1.();

[[spar :: Stage,

spar :: Replicate (N)]]{
f2();

}

[[spar::Stage]]{
f3 ();

}

= farm(A(f1), B(f2), C(f3));

SPar Rule 2.

5.1.2 Adaptive Rules

In addition to the existing rules, we designed new rules that cover the adaptive
degree of parallelism for the SPar DSL. Adaptive Rule 1 is similar to Rule 1, but A also
runs the adaptive strategy. The adaptive part is included by using the regulator method.
RegulatorQ() is a new method of class A from the queues strategy (shown in Listing 4.1).
This regulator returns the replica IDs to send to the next task, and also monitors the runtime
queues to decide if the parallelism degree needs to be adapted.

The goal of Adaptive Rule 1 is that the £1() code block is the same as in Rule
1. In this case, without C is difficult to collect the actual performance during the execution
because each worker replica outputs its own result independently, which is the reason this
rule is related to the queues (two-stage) strategy.

farm (A(f1),B(f2))
U
farm (A(f1).RegulatorQ(), B(f2));

Adaptive Rule 1.
Adaptive Rule 2 was designed with one more stage than Adaptive Rule 1, to gather

the tasks from the replicas. A and C have the code implementing the adaptive number
of replicas. This rule is designed for Farm(A, B, C). There is a method inside A that has

66

the code from the Listing 4.2, represented by RegulatorT(). The regulator and the monitor
of Adaptive Rule 2 are called RegulatorT () and MonitorT() because they are based on the
throughput strategy. RegulatorT () returns to A the ID of the replica to send the next task, and
the regulator periodically accesses the data collected by MonitorT() and decides whether
the number of replicas should be adapted. In C, MonitorT() implements the code shown in
Listing 4.3.

farm (A(f1), B(f2), C(f3));
J
farm (A(f1).RegulatorT (), B(f2), C(f3).MonitorT ());

Adaptive Rule 2.

Adaptive Rule 3 has the same logic of Adaptive Rule 2. The difference is that
Adaptive Rule 3 uses another regulator and monitor which implement the adaptive strategy
based on latency. The RegulatorL() returns the ID of the replica to send to the next task,
while the MonitorL() periodically measures and stores the latency accessible to the regulator.
The interactions between the monitor and regulator achieve the feedback loop properties for
adapting the degree of parallelism.

farm (A(f1), B(f2), C(f3));
4
farm (A(f1).RegulatorL (), B(f2), C(f3).MonitorL ());

Adaptive Rule 3.

We designed these rules to enable the strategies for adaptive degree of parallelism
in SPar. The experiments with the strategy shown in the previous Chapter were manually
coded, after generating the default SPar parallel code. However, one goal of this study was
to generate a custom parallel code using SPar that runs with an adaptive number of replicas.
It is possible to use these rules to implement the adaptive part into SPar’s code generation
inside of its compiler infrastructure. In the next Chapter, we will evaluate the performance of
the adaptive executions by comparing them to the static case.

5.2 Flags for Adaptive Number of Replicas

Compilation flags are a way of enabling the user to exploit a supported capability.
The previously presented strategy and transformations rules should be available for SPar
users through flags in order for them to customize their parameters. Adaptive Rule 2 and 3
can generate the code required, and the user can customize according to the following flags:

67

» spar_adaptive-throughput [target] [scaling_factor] : This flag accepts the target
throughput in tasks/second as well as the scaling factor as parameters, which aims to
provide customization to user. The number of replicas will be regulated to meet the tar-
get throughput. Furthermore, if the parameters have not been defined, this approach
will exploit the strategy without user-defined parameters. The number of replicas will
be regulated transparently, aiming to maximize performance without overshooting.

» spar_adaptive-latency [constraint] [scaling_factor]: This configuration adapts the
number of replicas by latency, it accepts the latency constraint and scaling factor as
parameters. If the parameters are not defined, the strategy transparently monitors
latency and controls the number of replicas. This approach tries to use the maximum
number of replicas to maximize performance while meeting the latency constraint.

Moreover, when a farm only has two stages, and the adaptive flags are defined,
the compiler and runtime can be configured to use the strategy based on queues. In this
case, the degree of parallelism is adaptive, although it will not be possible to meet a target
performance.

68

6. RESULTS

In this chapter, we introduce a set of experiments aimed to evaluate the strategies
and their mechanisms for an adaptive degree of parallelism. We tested the strategies under
different supported configurations and also compared these results to executions with a
static degree of parallelism. Section 6.1 describes the experimental methodology and we
then evaluate the performance and consumption of resources using real-world applications.

6.1 Experimental Methodology

This Section presents the methodology used for conducting the experiments. We
present the applications used to test the adaptive strategies as well as the machine used in
the test environment. Furthermore, we describe the performance metrics for evaluating the
strategies.

6.1.1 Test Applications

The strategies were evaluated by implementing them in existing parallel applica-
tions. In fact, real world applicability was the key criterion for selecting applications. In ad-
dition, applications were selected with different application characteristics and QoS require-
ments. For instance, some applications chosen perform simple processing and outputting
results under a regular workload trend, while other applications can perform more complex
processing under an irregular (variant) workload trend. We aim to validate our strategy,
which was created with the goal of making any application parallelizable using SPar and
exploiting the strategies for an adaptive number of replicas. The tested applications are:

» Lane Detection: is a video application for detecting lane lines, targeting self-driving
cars.

* Person Recognition: is a video application for detecting and identifying people. The
recognizer part uses a database of images to verify if a detected person is known.

» Bzip2: is a data compression application. We used a parallel version of Pbzip2 from
POSIX-Threads adapting it to SPar.

69

6.1.2 Test Environment

We used the same machine to test the performance of different tested applications.
The tests were run on a multicore machine with 2 Sockets Intel(R) Xeon(R) CPU 2.40GHz
(8 cores-16 threads), which has a memory of 16GB - DDR3 1066 GHz. Moreover, the
operating system used was Ubuntu Server 16.04. Also, this environment was dedicated for
this experiments, which means that no other workload was run at the same time.

6.1.3 Performance Evaluation

The characteristics of the adaptive strategies considering the desired properties
were presented in Chapter 4. Here we evaluate the adaptive strategies by comparing their
maximum performance to hand-coded static parallel applications. Therefore, we ran a set
of experiments to evaluate the effectiveness of the adaptive strategies. The following perfor-
mance aspects were evaluated:

« Throughput: is calculated from the number of processed items and time. Here we
present the final throughput, which derived by taking the total number of processed
elements in a given execution divided by the time.

« CPU Consumption: is related to the utilization of computing power. This value is
presented as a percentage from 0 to 100. It is calculated considering the load from
each of the CPUs.

* Memory Usage: is collected at the end of a given execution, which an amount of
memory space used for the specific execution.

Runtime library: several aspects can be monitored from the runtime library. In this
work, we collected statistics from the pop losses. In Section 4.4 we used the push
losses, which are a different metric. A pop lost (shown in Section 2.3.2) is collected
from the replica queues and a count of how many times this occurred during a given
execution. A pop loss is characterized when a replica (worker thread) tries to get a
new stream item to process from its queue and it fails, meaning the task scheduler is
unable to send tasks fast enough to all replicas. We monitored this aspect to evaluate
the adaptive strategy, because in this scenario the task scheduler is also in charge
of regulating the number of replicas. This additional demand can overload the task
scheduler.

Each execution was repeated 10 times and the results presented are an arithmetic
means of these. Moreover, the results are presented in terms of throughput as well as

70

their respective standard deviation. We also address parallelism aspects at a higher and
abstracted level. For instance, when our mechanism adds a new replica, the operating
system will do its best to place the thread in available cores.

6.2 Lane Detection

Lane Detection is an application for self-driving vehicles that recognizes and writes
linear patterns [GHDF17] to a video file. The application iterations are shown in Figure 6.1.
The Capture() function generates a sequence of images, every image is an actual frame
and implements computer vision functions [GHDF17]. The function Segment() processes
the images bottom area, which is where the lane tends to appear. Moreover, the function
Canny() applies a filter to detect the edges and then the HoughT() filter detects the strait
lines and the number of elements in HoughP(). The fifth step is the Bitwise() function that
marks the lines and the Writer() function writes the output image to a file.

Video Stream

=
k“f_i"{t:aptur%l-—{ : Segment 2H

Figure 6.1 — Lane Detection - Workflow. Extracted from [GHDF17].

A real-world example of a Lane Detection output is shown in Figure 6.2. In Chapter
4 we used Lane Detection to present our adaptive strategies. In this approach, we imple-
mented the strategies for an adaptive number of replicas (presented in Chapter 4) to a paral-
lel version of the Lane Detection application. Moreover, we used the ordering implemented
in SPar [GHDF18] to maintain the order of the video frames.

Figure 4.3 in Chapter 4 presented the throughput of input 1 that is used in this com-
parison as well. Additionally, we used another input file called input 2 with more variations,
characterized as a serial execution in Figure 6.3.

6.2.1 Performance of Adaptive Strategies

We ran a modified version of Lane Detection that received the code modifications
from the adaptive strategies in its first and last stage. Figures 4.19 and 4.27 in Chapter 4
show the throughput performance of configurations of the adaptive strategies using input 1.

71

Figure 6.2 — Lane Detection - Processed Image.

Lane Detection Input2 Characterization

T
—— Serial

) W%\ ikl
T
|
Jr

%@fi

3.5

Throughput

W

S
/ ik %’ﬁ Xk

o | |

50 100 150 200 250
Time (s)

Figure 6.3 — Throughput Characterization input 2.

The goal was to achieve maximum performance. As a consequence, a high target through-
put was set for the strategy based on throughput. Moreover, it is relevant to note that the
throughput is an average of the entire time used, considering the number of tasks processed
and the total time taken.

In addition to the results with input 1, we wanted to assess performance trends with
a different input. Therefore we used input 2, which has more load fluctuations demanding
a varied amount of resources. If we had used this input for validating the strategy in Chap-
ter 4 the fluctuation would have caused more parallelism degree adaptations. However, in
this evaluation our goal was to achieve maximum performance of the adaptive strategies.
Consequently, the strategies were expected to use the maximum number of replicas.

72

Lane Detection — Average of the Maximum Throughput

—— Time Interval (1s‘) Scaling Factor 1
Time Interval (1s) Scaling Factor 2
. 20 Time Interval (0.5s) Scaling Factor 1]
g ===3 Time Interval (0.5s) Scaling Factor 2
8 —+—— STDEV
[0}
2]
o 151 13.43 13.38 13.58 13.82 |
» = = N
(O]
S
o
= 10 i
5
Q.
e
(@]
3
S St |
—
0

Figure 6.4 — input 2 - Performance of Target Throughput Configurations.

Figure 6.4 shows the throughput of input 2, using the adaptive target performance
strategy. In this case, the goal was to maximize throughput. Again, the best throughput was
achieved by the configuration with time interval 0.5s and Scaling Factor of 2, because this
configuration scaled faster and, as shown in Chapter 4, the additional number of iterations
did not affect the performance. It is important to note that the standard deviation was minimal
and the performance of the different configurations is similar. The minor contrast between
the configurations was only caused by the different settling times.

Moreover, the configuration of the strategy for an adaptive degree of parallelism
without user-defined parameters was tested with input 2. Figure 6.5 presents the perfor-
mance of each configuration, and there is a higher standard deviation than the strategy
with a target throughput. This deviation certainly occurred because of the variations in the
throughput that caused the strategy to trigger more reconfigurations. However, the minor
performance contrast concerning the configurations was caused by the different settling
times. Also, the throughput achieved by the different configurations was very similar, which
can be placed inside the standard deviation range.

6.2.2 Performance Comparison

This Section compares the adaptive strategies to regular parallel executions that
use a static (a.k.a. fixed) number of replicas, ranging in this machine from 2 to 16 repli-
cas. It is important to note that in this evaluation we only considered performance, aiming

73

Lane Detection — Average of the Maximum Throughput

20 T T T
1 Time Interval (1s) Scaling Factor 1
)

(1
Time Interval (1s) Scaling Factor 2
zzzzzd Time Interval (0.5s) Scaling Factor 1
===3 Time Interval (0.5s) Scaling Factor 2
15 | ——— STDEV |

13.10 13.09 13.27 13.12
T T T

i<}

c

o

O

3

o T i / \

o

(%}

£

5 10 1
=

o

<

S

s o 1
<

—

0

Figure 6.5 — input 2 - Performance of the strategy without user-defined parameters.

to evaluate the impact of the abstractions for an adaptive and transparent degree of paral-
lelism. The adaptive strategies tend to have a more elaborated execution with monitoring
and adaptations, which can reduce the overall performance.

Figure 6.6 presents the results using input 1 of the lane detection application. As
expected, in the static executions the throughput increased as the number of replicas was
increased until it reached the maximum performance of the application. We plotted results
from the two adaptive strategies shown in the previous section. In the machine used, the
adaptive executions started using 8 replicas, since it is the half of the total number of avail-
able cores collected in the adaptive algorithm. The throughput results are an average of the
final throughput and the error bars are plotted representing the standard deviation.

The throughput of the static executions is shown regarding each number of repli-
cas. However, the throughput from adaptive executions is the same for all replicas, since any
number of replicas could be used during the execution. Figure 6.6 shows the throughput of
the different executions using input 1. When comparing the two tested adaptive strategies,
it is notable that the strategy with a target performance achieved a better throughput than
the strategy without user-defined parameters. This is because the target performance ap-
proaches scales faster and with high target performance it uses the maximum number of
replicas.

In the executions with static parallelism, the highest throughput was achieved with
14 replicas. The performance of the adaptive strategy with target performance was almost as
good as the best static parallelism configuration (14 replicas). This demonstrates that even

74

Lane Detection — Average Throughput
80

oI oI SRR S O S

60
"
50 e

o
30 /

20

Throughput (frames per second)

10

2 4 6 8 10 12 14 16

Number of Replicas
+—e— STDEV

—=— Static Parallelism
— - — Adaptive Parallelism — Target Throughput Mechanism
-— -- Adaptive Parallelism — Without User-Defined Parameters

Figure 6.6 — Lane Detection - input 1 Throughput.

with the additional parts implemented the adaptive strategy can achieve great performance,
similar to the best static.

Figure 6.7 shows the result of another experiment with the lane detection applica-
tion using a different input. This input uses a video with a higher resolution, which requires
more computation and decreases the frame processing rate. Comparing the three sce-
narios, it is notable that the execution with a static number of replicas achieved the best
throughput with 13 replicas and it was higher than the adaptive strategies when using be-
tween 10 and 14 replicas. The two adaptive strategies perform similarly, the approach with
a target throughput was slightly better than that which lacked user-defined parameters.

Using the different inputs in the lane detection application achieved the same per-
formance outcome. For input 1, the best static performance was 4.52% better than the
adaptive strategy with target throughput, while input 2 was 5.95%.

Figure 6.8 shows the utilization of CPUs from the execution of Figure 6.6. The
executions using a static number of replicas tend to use a similar percentage of CPU re-
sources since their execution does not change. On the other hand, the executions using an
adaptive number of replicas present variations because the number of replicas changes and
consequently, the resource usage. According to the regular characteristics of witnessed in
the static execution, we decided for the sake of visual clarity, to only plot the results with 10
or more static replicas.

The CPU utilization results are calculated as an average from the load of each
core. For instance, to achieve a 100% average utilization, all cores must have 100% utiliza-
tion. Moreover, it is relevant to emphasize that the result from CPU utilization came from

Throughput (frames per second)

Average CPUs Utilization (%)

100
95
90
85
80
75
70
65
60

Lane Detection - Input 2 Average Throughput

—=— Static Parallelism
— - — Adaptive Parallelism — Target Throughput Mechanism
Adaptive Parallelism — Without User-Defined Parameters

__________ I f—:»/‘—'___._ﬁ’_*_’?&._._
—4
e
2 4 6 10 12 14 16
Number of Replicas
+—e— STDEV

Figure 6.7 — Lane Detection - input 2 Throughput.

Lane Detection Input 1 — CPU

PO R R R

PSRRI TN

?—v—v—v—v—ﬁ—v——vﬁ*?\v\v/v\v/v_ﬂ

(—WH——X;—WW(\X—X—%NHH

5

Static Parallelism — 10 Replicas
Static Parallelism — 11 Replicas
Static Parallelism — 12 Replicas
Static Parallelism — 13 Replicas
Static Parallelism — 14 Replicas
Static Parallelism — 15 Replicas
Static Parallelism — 16 Replicas

10

15 20

Time

Adaptive Parallelism — Target Throughput

Adaptive Parallelism — Without User-Defined Parameters

25 30

Figure 6.8 — Lane Detection input 1 - Average CPU utilization.

75

monitoring an execution from each scenario, and the data was collected every 1 second and
plotted in a timely fashion. Previously, in the throughput of the adaptive strategies, we se-
lected the best performing configuration to compare with the static executions. In this part,
it was not feasible to present results monitoring all configurations and the performance of
the different adaptive configurations was almost the same. As a consequence, we selected
from both adaptive strategy the configuration with scaling factor of 2 and time interval 1 as a
representative configuration that was compared to the static executions.

76

In Figure 6.8, which is the CPUs’ average utilization from the input 1, it is possible to
note that the adaptive strategies consumed less resources than the static execution, and yet
achieved a similar performance. Furthermore, the same trend can be viewed in Figure 6.9,
which is the CPUs’ average from input 2. In this experiment, the contrasts are even higher.
For instance, the small performance difference seen previously is because the static exe-
cution consumed more resources and consequently processed faster. However, mainly the
strategy without user-defined parameters optimized the usage of resources by decreasing
the number of replicas when suitable, as revealed in Section 4.7 of Chapter 4.

Lane Detection Input 2 - CPU

PO R e —

ISR Y
b A ~ N
N /" /‘*\"\./W Y

80 k%M/ﬁ\ N R e
75

/.
70

65

Average CPUs Utilization (%)

60
5 10 15 20 25 30

Time

—+— Static Parallelism — 10 Replicas
—<— Static Parallelism — 11 Replicas

Static Parallelism — 12 Replicas

Static Parallelism — 13 Replicas

Static Parallelism — 14 Replicas
—e— Static Parallelism — 15 Replicas
—e— Static Parallelism — 16 Replicas
—— Adaptive Parallelism — Target Throughput
—e— Adaptive Parallelism — Without User-Defined Parameters

Figure 6.9 — Lane Detection input 2 - Average CPU utilization.

Furthermore, several aspects from the execution are relevant to evaluate the strate-
gies’ executions. We have already presented results of the CPUs’ utilization, these results
are complemented with the memory usage because it is relevant to evaluate the amount of
resources that a given program demands in order to run. We collected the total memory
usage using the UPL library, and the results are shown as an average of the executions.

Figure 6.10 shows the memory usage of the execution from lane detection using
input 1. It shows how the number of replicas impacts memory usage. For instance, 2 replicas
needed an average of 100 MB, while 12 replicas used 150 MB. The adaptive strategies
used almost the same amount of memory and less than the static execution with more 13
replicas '. As adaptive strategies have additional processing parts, they could use additional
memory. Yet, the results from memory usage of the adaptive strategies demonstrated no
additional resource demands, which is essential to meet the requirement for running under
a low overhead.

these executions achieved a higher throughput

77

Lane Detection — Average Memory
500

450 // k
400

350 /
|

o

=

< 300

g 250 /
[0}

= 200

150 [s T R S S T S T S R e e g L"—"’_

100
50

2 4 6 8 10 12 14 16

Number of Replicas
—e— STDEV

—— Static Parallelism
— - — Adaptive Parallelism — Target Throughput Mechanism
-—-- Adaptive Parallelism — Without User-Defined Parameters

Figure 6.10 — Lane Detection input 1 - Average Memory Usage.

Lane Detection — Average Memory

3000 //
2500

<. 2000 /
= .
2 .
2 1500 >/‘41/“/,/'
1000 ------ o _--_--:_/-57-—/--1_ ----- T T
500 o
i—/_‘/qa—/’"
2 4 6 8 10 12 14 16

Number of Replicas
—e— STDEV

—=— Static Parallelism
— - — Adaptive Parallelism — Target Throughput Mechanism
-—-- Adaptive Parallelism — Without User-Defined Parameters

Figure 6.11 — Lane Detection input 2 - Average Memory Usage.

The memory usage of input 2 is shown in Figure 6.11. In this results, the adaptive
strategies consumed even less memory compared to the static executions, again following
the trend from the number of replicas used. However, in this input, the throughput contrast
between adaptive and static executions was slightly higher. Moreover, input 2 consumed
much more memory than input 1. This aspect is not related to the parallelism strategies but
to the input load.

78

6.3 Person Recognition

This application is used to recognize people in video streams. The workflow of
this applications is shown in Figure 6.12. It starts with the Capture() operation that receives
the frames as well as detects the faces using the Detector() part. The detected faces are
marked with a red circle, which the Recognizer() function compares with the training set of
faces. When the face comparison matches, they are marked with a green circle. The output
is produced by the Writer() that writes the frames and adds the marked faces.

‘ _ Trainning Set
Video stream "'AHEE!’@
— =] l 7 Writer';‘—lf
capture M1 Detector 2| —| Recognizer®|—] (Avi/CSV)

Figure 6.12 — Person Recognition - Workflow. Extracted from [GHDF17].

6.3.1 Performance of Adaptive strategies

The lane detection application was extensively evaluated in Chapter 4 and com-
pared to executions with different configurations. However, we assumed that the proposed
strategy should also be tested under different application’s performance trends. People
recognition has different behavior than lane detection. On the one hand, lane detection
only detects and marks road lanes. On the other hand, person recognition has a more com-
plex execution that processes the video detecting faces and comparing them to a database
of images. The performance of person recognition was evaluated with an MPEG-4 video of
1.36MB (640x360 pixels) using a training set of 10 images with faces to be recognized in the
video.

The code blocks that implemented the adaptive degree of parallelism for each strat-
egy were easily integrated to the parallel version of person recognition. Also, following the
structure from lane detection, we first compared the impact of the configurations on the
adaptive strategies and then distinguished between the adaptive and static executions.

The strategy with a target performance, which was high to maximize performance
in this case, and its configuration is shown in Figure 6.13. The throughput from different
configurations was very similar, placed between 5.3 and 5.5 frames per second. In Chapter
4 we saw how the different settling times impact on throughput. However, here we presented
the final throughput from executions that were normalized by the average calculation.

79

Person Recognizer — Average of the Maximum Throughput

8 T T T
1 Time Interval (1s) Scaling Factor 1
Time Interval (1s) Scaling Factor 2

— 7 [wzzm Time Interval (0.5s) Scaling Factor 1 T
g ===3 Time Interval (0.5s) Scaling Factor 2
8 6| —— STDEV |
o 5.39 530 5.41 548
g 5| / |
[%2]
£
s 4 |
5 3 .
Q.
e
S
s 27 |
<
—

1l |

0

Figure 6.13 — Person Recognition - Performance of Target Throughput Configurations.

Person Recognizer — Average of the Maximum Throughput

— Time Interval (135 Scaling Factor 1
Time Interval (1s) Scaling Factor 2
7| zzzm Time Interval (0.5s) Scaling Factor 1 i
g ——===3 Time Interval (0.5s) Scaling Factor 2
8 6| —— STDEV i
o 5.35 5.96 5.36 532
g 5| 5 / :
[}
2
s 4 |
5 3¢]
Q.
<
S
o 21 I
c
|_
1 - .
0

Figure 6.14 — Person Recognition - Performance of the strategy without user-defined param-
eters.

Moreover, the configurations of the adaptive strategy without user-defined parame-
ters were tested as shown in Figure 6.14. Once again, the contrast between configurations
was minimal, from 5.2 to 5.3 frames per second. Considering the standard deviation in the
error bars, it was not possible to demonstrate differences. However, even the standard de-
viation was minimal. In short, the adaptive strategy under the different configuration proved
stable and had similar performance.

80

6.3.2 Performance Comparison

In this Section, we compare the performance of adaptive strategies to executions
with static parallelism. Figure 6.15 shows the throughput average. As this application differs
from lane detection, the results were also a bit different. The best throughput of static exe-
cutions was achieved with 8 replicas, which is the number of physical cores. Regarding the
performance of the adaptive strategies, the one with a target throughput again outperformed
the strategy without user-defined parameters.

Person Recognizer — Average Throughput

8
=)
c
g7
@
Zlg_ 6 ¢ ® e S
7] F— L L T T = ="
g5
o
= 4
>
g yd
33
o
£

2§

1

2 4 6 8 10 12 14 16
Number of Replicas
+—e— STDEV

—=—— Static Parallelism
— - — Adaptive Parallelism — Target Throughput Mechanism
-— -- Adaptive Parallelism — Without User-Defined Parameters

Figure 6.15 — Person Recognition - Average Throughput.

It is relevant to note that this performance result is certainly very dependent on
the tested machine. For instance, in the performance of the static execution of this applica-
tion, we can see a different result than in [GHDF17]. The adaptive executions with target
throughput achieved a throughput similar to the static using 7 replicas. Moreover, this adap-
tive strategy had a throughput 7.28% lower than the best static execution.

Moreover, we monitored the consumption of resources while the application was
running. Figure 6.16 shows the CPUs’ utilization for each execution. In short, the utilization
trends are very similar the results of lane detection. However, in this application more re-
sources does not entail better performance. The static execution with 8 replicas that yielded
the best throughput utilized less CPU than the other static executions with higher degrees of
parallelism.

Memory usage was also collected from each execution, as shown in Figure 6.17.
The usage of the adaptive strategy was similar and in the same range of static execution
with 12 to 14 replicas. The best static performance with 8 replicas also consumed less

81

Person Recognizer - CPU

100 : o ‘
i |
§ \
E %0 nyavfwwﬁv%mdwv‘% - AV Vi % o N
3 80 o
?j WM—&WW«W + A A
g 70
o
D
< 60
50
10 20 30 40 50 60 70 80
.)) Time
—+— Static Parallelism — 10 Replicas
—— Static Parallelism — 11 Replicas
—v— Static Parallelism — 12 Replicas
Static Parallelism — 13 Replicas
Static Parallelism — 14 Replicas
—eo— Static Parallelism — 15 Replicas
—e— Static Parallelism — 16 Replicas
—— Adaptive Parallelism — Target Throughput
—e— Adaptive Parallelism — Without User-Defined Parameters
Figure 6.16 — Person Recognition - Average CPU utilization.
Person Recognizer — Average Memory
300 :
250 | o S e p— /_Ef
a LT
= 200 ,/(/
> , ——*
S 450 T
€ i /0/
§ u/"’i
100
50
0
2 4 6 8 10 12 14 16
Number of Replicas
—e— STDEV

—— Static Parallelism
—-— Adaptive Parallelism — Target Throughput Mechanism
-—--- Adaptive Parallelism — Without User—Defined Parameters

Figure 6.17 — Person Recognition - Average Memory Usage.

memory space. The results from this application demonstrated that it would be relevant for
the adaptive strategies to consider the performance variations from different machines and
applications to pursue potential performance optimizations. In fact, the adaptive strategies
abstract complexities at the price of performance losses. The challenge is that it is almost
impossible for a single approach to have optimal performance in all possible scenarios (e.g.,
applications, machines, architectures, inputs).

82

6.4 Bzip2

Bzip2 is a data compression application that uses Burrows-Wheeler algorithm for
sorting and Huffman coding. This application is built on top of libbzip2, which is a library for
data compression [Sew07, GHL*17]. The compression has a workflow based on entities,
as shown in Figure 6.18. The first step is completed by reading the input, followed by a
compression stage, and finally writing to the output channel. The arrows represent the
communication between the stages.

Read

Figure 6.18 — Bzip2 Compression - Workflow. Extracted from [GHL*17].

The compression step can be viewed as a pipeline, the read stage, the parallel
compression stage and, the sequential writing stage. The parallel version of Bzip2 (Pbzip2)
using SPar is shown in [GHL*17], and this parallel version with the static replicate attribute
is used in this work. We implemented the strategies for an adaptive degree of parallelism in
this parallel version. We evaluated this new adaptive implementation regarding performance
and resource consumption with respect to the original parallel version.

6.4.1 Performance of Adaptive Strategies

A parallel version of Bzip2 was also used for evaluating the adaptive strategies.
This application is distinguished from the one previously tested because the goal is to com-
press the files as quickly as possible. As a consequence, Bzip2 is evaluated regarding its
throughput. Moreover, we used an ISO file of 704.2 MB as input to simulate a workload.

We first evaluated the throughput of the adaptive strategies. Then the performance
of the adaptive strategies were compared to executions with a static number of replicas.
Figure 6.19 shows the performance of the four configurations of the adaptive strategy with
a target throughput. In this case, the target performance is how many tasks are expected
to be processed in a given time interval (1 second). Thus, to achieve a high throughput, the
configurations were defined to process as many tasks as possible.

40

35

30

25

20

Throughput (MBPS)

15

10

Figure 6.19 — Compression - Performance of Target Throughput Configurations.

Pbzip2 — Throughput

—/

2277777774
SN

I

Time Interval (1s) Scaling Factor 1
s) Scaling Factor 2
5s) Scaling Factor 1
5s) Scaling Factor 2

Time Interval
Time Interval
Time Interval
STDEV

22.78
T
L

(
(1

(0.
(0.

23.83
I

24.09
T

/

23.36

83

The performance of configurations with a target throughput were similar. The best
throughput, in MegaBytes per second (MBPS), came from the configuration with a time
interval of 0.5s and scaling factor of 1. However, when considering the impact of the standard
deviation, it is difficult to identify contrasts between the configurations. In this application,
configurations with time interval 0.5s could react quickly, while scaling factor of 2 can be too
sensitive to load fluctuations.

40

35

30

25

20

Throughput (MBPS)

15

10

Pbzip2 — Throughput

—/

227777772
SN

I

Time Interval (1s) Scaling Factor 1
s) Scaling Factor 2
5s) Scaling Factor 1
5s) Scaling Factor 2

Time Interval
Time Interval
Time Interval
STDEV

22.65
T
T

(1
(1

(0.
(0.

23.17
I

22.60
T

/

Figure 6.20 — Compression - Performance of the strategy without user-defined parameters.

84

Figure 6.20 shows the performance of configurations for an adaptive degree of
parallelism without user-defined parameters. Again, when comparing the different configu-
rations there are only minor performance differences as well as a low standard deviation.
The maximum contrast between the best and worst performing configurations was 2.47%.
The configuration that achieved the best performance used a time interval of 1s and scaling
factor of 2. Contrasting with the previous applications, Bzip2 tends to perform better with a
time interval of 1s. This is due to the fact that Bzip2 is more regular, not requiring constant
iterations with short time intervals.

6.4.2 Performance Comparison

Performance is a relevant aspect of the executions using an adaptive number of
replicas. A suitable and reasonable way is to compare with static and hand coded parallel
executions. In this section, we compare Pbzip2’s performance with adaptive strategies to
the performance of executions with a static number of replicas.

Pbzip2 Compression — Average Throughput

40
35
2 30
QEJ i/‘\!s
= 25 o I e e S i
g 7V P . gl e, Sl s el T p—
Q.
5 20 /
>
2 15
ey
= -
10 //
5
2 4 6 8 10 12 14 16
Number of Replicas
—e— STDEV

—=— Static Parallelism
— - — Adaptive Parallelism — Target Throughput Mechanism
-— -- Adaptive Parallelism — Without User—Defined Parameters

Figure 6.21 — Compression - Average Throughput.

Figure 6.21 shows the throughput of the adaptive strategies as well as the static
execution under several numbers of replicas. The strategy with a target throughput was
slightly better than without user-defined parameters. The static executions show the impact
of the number of replicas on performance. In fact, throughput increased from 7 MBPS with 2
replicas to 28 MBPS with 15 replicas. It is noteworthy that in this application, the throughput
was achieved with 15 static replicas, this number of replicas in the same machine resulted

85

in significant performance losses in the previous tested applications. Consequently, even
with the executions with a static degree of parallelism it is possible to identify contrasts in
applications’ performance.

Moreover, the standard deviation was plotted with the executions. However, it is
not possible to identify it since the deviation was minimal. The adaptive strategy performed
similar from 8 to 11 replicas. The static parallelism execution with 15 replicas was signifi-
cantly better than the throughput of the adaptive strategies. In this application, the highest
difference in performance was 14.27% between the best static and the adaptive executions.
The major source of higher performance differences was the small input, the execution time
of the adaptive strategies was around 30 seconds. Short execution time is more affected by
the settling times of the adaptive strategy, which varies from 2 to 6 seconds. During settling
times, the adaptive strategies run with a sub-optimal degree of parallelism, which decreases
the average performance.

Pbzip2 Compression — CPU

100

5 A atee e ess SR\
i savie Seseslll
/7

©
o

. . . e |
{

70

Average CPUs Utilization (%)

60

50

5 10 15 20 25 30
. .) Time
—+— Static Parallelism — 10 Replicas
—<— Static Parallelism — 11 Replicas

Static Parallelism — 12 Replicas
Static Parallelism — 13 Replicas
Static Parallelism — 14 Replicas
—eo— Static Parallelism — 15 Replicas
—e— Static Parallelism — 16 Replicas
—*— Adaptive Parallelism — Target Throughput
—e— Adaptive Parallelism — Without User-Defined Parameters

Figure 6.22 — Compression - Average CPU utilization.

CPUs’ utilization during the execution was also monitored while the application was
running. Figure 6.22 shows the average CPU utilization collected every second of each ex-
ecution. The execution with the adaptive number of replicas, on average, presented more
variation. For instance, the adaptive executions started using 8 replicas resulting in a lower
CPU utilization. The execution with a target throughput took around 6 seconds to achieve
100% CPU utilization, which means this was the settling time to reach the optimal number of
replicas and maximum performance. Moreover, the execution without user-defined parame-
ters took even longer, almost 9 seconds to achieve the highest degree of parallelism. Thus,
again, the executions with adaptive strategies increased the execution time. However, they
consumed less CPU than the best performing static executions.

86

Pbzip2 Compression — Average Memory

250

___________________7/_%155_

150 //%//'
100 A
n/‘/
50 /“/§/‘
L

2 4 6 8 10 12 14 16
Number of Replicas

Memory (MB)

0

—e— STDEV

—— Static Parallelism

— - — Adaptive Parallelism — Target Throughput Mechanism
-— -- Adaptive Parallelism — Without User-Defined Parameters

Figure 6.23 — Compression - Average Memory Usage.

The memory usage was also collected. Again, it is possible to see that the adaptive
strategies consume less memory. In fact, resource usage is based on the number of replicas
used. The best performing static executions consumed significantly more memory space.

Table 6.1 shows the number of pop loss events, a pop lost was introduced in Sec-
tions 2.3.2 and 6.1.3. We decided to collect the number of pop losses to understand the
impact on run-time caused by the adaptive strategies. In short, a pop loss occurs when the
task scheduler is unable to send tasks to the replicas fast enough, which can be caused by
different factors. However, because the adaptive strategies have additional parts, several
iterations run inside the task scheduler, which could result in performance overhead.

The results shown in Table 6.1 represent a million occurrences. In lane detection
with input 1, the adaptive strategies did not have the highest pop losses. However, with input
2 both adaptive strategies presented a significantly higher number of pop losses, and the
same result occurred in person recognition and pbzip2.

The percentage of performance contrasts between static and adaptive strategies
varies in many ways, depending mainly on the number of replicas and application charac-
teristics. It is not possible to neglect the negative impact of pop losses on performance.
However, its impact is not very clear, since the performance is affected by many aspects
with pop loss being only one of them. For instance, monitoring the CPU utilization it was
possible to conclude that the adaptive strategy consumed less resources and consequently
achieved a lower performance. Moreover, there are cases where a high number of the pop
losses did not degrade performance. An example of such an event was in pbzip2, where the

87

static execution with more pop losses was with 16 replicas. However, pbzip2 with 16 replicas
yielded one of the best performances (Figure 6.21).

Table 6.1 — Average Number of Pop Losses (in Millions).

X O Lane_ Detection - Lane_ Detection - Perso_r! szip2_
input 1 input 2 Recognition Compression
Static Parallelism 2 13.08 11.4 9.6 0.019
Static Parallelism 3 12.8 11.07 11.5 0.032
Static Parallelism 4 12.1 9.6 10.2 0.039
Static Parallelism 5 12.2 9.7 8.1 0.044
Static Parallelism 6 9.4 8.6 7.6 0.051
Static Parallelism7 11.08 10.3 9.1 0.074
Static Parallelism 8 10.6 10.7 9.3 0.075
Static Parallelism 9 10.02 9.9 8.9 0.17
Static Parallelism 10 104 9.8 8.1 0.10
Static Parallelism 11 8.9 8.6 7.6 0.09
Static Parallelism 12 9.9 8.7 8.2 0.28
Static Parallelism 13 10.1 8.3 5.7 0.24
Static Parallelism 14 7.2 7.4 5.3 0.26
Static Parallelism 15 15.3 15.8 14.5 0.76
Static Parallelism 16 14.7 15.1 12.2 1.3
Adaptive Strategy - Target 10.4 22 1 17.9 33
Throughput
Adaptive Strategy - without 16 20.4 28.4 5.4
user-defined parameters
6.5 Performance Overview

In Chapter 4 the adaptive strategies were characterized demonstrating their effec-
tiveness to adapt the degree of parallelism on-the-fly. Moreover, in previous sections of
this chapter several performance results were presented, these results evaluated the per-
formance of adaptive strategies compared to executions with a static degree of parallelism.
Indeed, it is challenging to properly evaluate the adaptive strategy because so many exper-
iments were run. As a consequence, in this section, we present a performance overview of
the adaptive strategies.

Figure 6.24 shows the average throughput regarding the different configurations of
the adaptive strategies. In this Figure, QM refers to the queues’ monitoring strategy, TT to
the strategy based on a target throughput, and WUDP is related to the abstracted strategy
without user-defined parameters. In general, the configuration a with a scaling factor of 2
(goes up and down faster) and a time interval of 0.5s achieved slightly better performance
because it is more sensitive to application fluctuations. The configuration with time interval
0.5s and scaling factor 1 also performed well. The configurations with a time interval of 1s
also achieved high throughput rates. In these results, we are not comparing which config-
uration yielded the best performance, instead we are evaluating how the adaptive strategy
behaved under different configurations.

A summary of the performance results from the tested application is shown in Fig-
ure 6.25. The results are summarized for three strategies: the two tested in this chapter

80

Machine 1-Average Throughput of the Mechanisms

70

60

50

40

30

20

Throughput (frames per second)

Figure 6.24 — Throughput Average - Configuration of the strategies.

80
Lane Detection ﬂ gg §|E.12 e
TI1SF1 e | 70
TI1SF2 m—
1 60
41 50
1 40
Pbzip2
e
] 30
) v N
Lane Detection] :‘5:5
______________ ¢ [0gh%s
0% Sl TSl ——————————— K K]
N M I I 10
R | Gl | ke 5 Wl
Dl | Dl | DR K] pE | DK 0
% % % % % 2, Q 4,
P Py R Ry, Ry, Ry, v %,
Y Ro Ry R, R R, R, %
N O N @
Do Ds N

Throughput (MBPS)

88

related to the target and to the strategy without user-defined parameters, and the strategy
based on queues (shown in Section 4.4). In order to summarize the results of the static
executions, we only present the most relevant degree of parallelism. The adaptive strate-
gies with a target throughput (TT) had better performance. However, in each scenario the
static degree of parallelism with a variant number of replicas performed slightly better. For
instance, in Lane Detection and Person Recognizer applications, the best performance was
achieved by 14 static replicas. On the other hand, in Pbzip2 the best performing configura-
tion was with 16 static replicas.

80
70
60
50
40
30
20
10

Throughput (frames per second)

Machine 1-Average Throughput

80
Static4 —
o Static8 == - 70
i 7 Static12 ===
/) Static14 ==mmm | 60
7 Static16 ———
7 QM zzz=zz 1 90
TT ooy
\7 WUDP 1 40
/)
7
\ 1 20
\%
/)
7 41 10
)
y 4 0
%,
QOQ(

Figure 6.25 — Summary of Average Throughput.

Throughput (MBPS)

89

The difference in performance between the configurations tends to be small. We
expect different configurations to be better for each scenario, which is the reason we offer
this customization. If transparent execution is desired, scaling factor 2 performs better (than
1), while the quick changes in configuration using time interval 0.5s also tends to improve
performance.

The results from the previous experiments can also be compared to the best static
execution. Consequently, the results were plotted in a graph for each application, the per-
centage relates to each adaptive strategy and is calculated compared to the best performing
static execution. For instance, a high percentage would mean that the adaptive strategy
significantly reduced the final performance of a given application. Figure 6.26 shows the
percentage of performance losses of adaptive strategies in the Lane Detection application.
The left-hand side shows the results from input 1, which demonstrate that the highest losses
(10.2%) occurred with the strategy without user-defined parameters. The best performing
strategy in input 1 was based on the target throughput, while with input 2 the best perfor-
mance was achieved by the queues strategy. It is important to emphasize that for each
application the queues strategy required a manual definition of the threshold configuration,
which had to be sensitive enough to adapt to the degree of parallelism.

Lane Detection Input1 — Performance Losses (%) Lane Detection Input2 — Performance Losses (%)

ez Adaptive Parallelism — Queues Monitoring Mechanism ez Adaptive Parallelism — Queues Monitoring Mechanism
777771 Adaptive Parallelism — Target Throughput Mechanism 777771 Adaptive Parallelism — Target Throughput Mechanism

20| Adaptive Parallelism — Without User-Defined Parameters | o0 | Adaptive Parallelism — Without User-Defined Parameters |

Percentage (%)
Percentage (%)

4.52

Mechanism Mechanism

Figure 6.26 — Performance Losses (%) Compared to the Best Static Static Execution in Lane
Detection - input 1 (Left) and input 2 (Right).

The left-hand side of Figure 6.27 shows the results from the Person Recognizer
application, which is the percentage of performance that each strategy lost compared to
the best static execution. Again, the best performance was achieved by the strategy with
a target throughput. On the other hand, the queues strategy presented the highest loss
(10.2%), which shows that this strategy and its threshold was unable to achieve the best
performance considering only the queues from the runtime library.

Moreover, the highest performance losses of the adaptive strategies occurred in the
Pbzip compression, shown on the right-hand side of Figure 6.27. This application was more
affected by the adaptive strategies because its behavior is more regular, constantly adapting
the degree of parallelism degraded the performance. This type of application potentially

90

does not require iterations and changes to the configurations periodically or for short time
intervals. Consequently, this application could take advantage of a steady period that would
enable the application to run for longer time intervals without adaptive iterations.

Person Recognizer — Performance Losses (%) Bzip2 Compression — Performance Losses (%)
gz Adaptive Parallelism — Queues Monitoring Mechanism gzzz Adaptive Parallelism — Queues Monitoring Mechanism
t7z771 Adaptive Parallelism - Target Throughput Mechanism t7z771 Adaptive Parallelism - Target Throughput Mechanism

Adaptive Parallelism — Without User-Defined Parameters | Adaptive Parallelism — Without User-Defined Parameters |

20 20 b

15 14.27

Percentage (%)
Percentage (%)

Mechanism Mechanism

Figure 6.27 — Performance Losses (%) Compared to the Best Static Static Execution - Per-
son Recognizer (Left) and Pbzip2 Compression (Right).

The impact on performance caused by the adaptive strategies is different in each
application. In some cases, the performance losses in adaptive strategies were high. How-
ever, we have to consider several aspects. The performance of executions with a static
degree of parallelism also varied between applications and machines. The best perfor-
mance of each application was achieved with a different number of replicas. A significant
or even a huge amount of time would be needed for a programmer to manually find the
number of replicas that achieves the best performance for a specific application and ma-
chine. Moreover, the best performing configuration in stream processing applications often
varies due to input and environmental changes, which further complicates using a static de-
gree of parallelism. Thus, even with losses in performance, the adaptive strategy can be
suitable for stream processing applications, which transparently and continuously adapt the
applications’ execution.

Pbzip2 Compression Input 2 — Average Throughput Bzip2 Compression Input 2 — Performance Losses (%)
40
ez Adaptive Parallelism — Queues Monitoring Mechanism
__ 35 777771 Adaptive Parallelism — Target Throughput Mechanism
Adaptive Parallelism — Without User-Defined Parameters
30 e 20 1
Q e
=3 = s i;j;;a?ﬂtﬁ{f,,f, =
=] g 15
3 /‘/ g
= 15 c
IS 3
10 1)
o 10 - 9.44
5
2 4 6 8 10 12 14 16
Number of Replicas 5t
—e— STDEV
—=— Static Parallelism
— - — Adaptive Parallelism — Target Throughput Mechanism

7777 Adaptive Parallelism — Without User-Defined Parameters Mechanism

Figure 6.28 — Pbzip2 Compression input 2 - Throughput (Left) and Percentage (Right) .

The significant performance losses seen on the right-hand side of Figure 6.27 in-
stigated efforts towards a deeper understanding of its causes. A potential reason of such

91

contrasts is the input used, which is small and only took a few seconds to be processed.
Consequently, such short executions could increase the execution time in adaptive strate-
gies because of the settling times when the program starts its execution. This affirms that
if the adaptive execution uses a sub-optimal degree of parallelism it can significantly reduce
the overall performance in short executions. We decided to evaluate the compression with a
larger input. The selected input is a file with 6.3GB composed of a dump of all the abstracts
from the English Wikipedia, previously used by [STD16]. Figure 6.28 shows the additional
Pbzip results, on the left-hand side the throughput and on the right-hand side the percent-
age of performance losses compared to the best static execution. In this experiment, it was
possible to note that the adaptive strategies achieved better performance. The throughput
was closed to 13 static replicas, while in the worst case the strategy without user-defined
parameters had 12.18% performance degradation with respect to the best static execution.

Moreover, we also included the results from the strategy based on queues, which
also had a fair performance. The best performing adaptive strategy used a target throughput.
It is important to note that in this specific application and machine, the best performance
was achieved with 16 static replicas, while the adaptive strategy used 14 as the maximum
number of replicas. The static execution with 14 replicas was only 4.38% better than the
adaptive strategy using a target throughput. However, the fact that in this specific case
the performance was not optimized using adaptations cannot be neglected. Consequently,
future efforts in performance optimizations must find the best performing configurations for
applications with regular characteristics.

6.6 Remarks

Several experiments were conducted in this study. Our key outcomes are the fol-
lowing:

 The final performance of adaptive strategies is not significantly affected by time inter-
vals (0.5 - 1 second) or scaling factors (1 - 2 replicas).

» The performance trends of an application tend to be similar, even with different inputs.

« The number of replicas that yielded the best performance with static parallelism exe-
cutions varies depending on different applications and machine architectures.

» The adaptive strategies have shown a reasonable overhead regarding performance
and without consuming more resources (CPU and memory). In fact, the tolerated over-
head depends on the programmers’ performance objectives and their skills in parallel
programming. How much performance can be sacrificed in order to have adaptive and
high-level parallelism abstractions, depends on the specific demands and scenarios.

92

7. CONCLUSION

In this study we introduced the concept of adaptive degrees of parallelism in SPar,
which is a new parallelism abstraction. It is crucial to employ an adaptive degree of paral-
lelism for stream processing applications because the workload varies. Yet, this is complex
for application programmers.

We aimed to provide adaptive capabilities in SPar. Our main contribution was to
eliminate the need for programmers to provide the number of replicas manually. We im-
plemented strategies to monitor the execution and adapt the degree of parallelism when
needed. Thus eliminating the need for manual, complex, and time-consuming definition of
the degree of parallelism in SPar.

Moreover, we presented different strategies and their mechanisms for adapting the
number of replicas on-the-fly. Our strategies considered different information for deciding if
optimization is required, using performance metrics such as throughput, latency, and queue
congestion. Thus, we presented an option that does not require users to enter any parame-
ters, neither the number of replicas nor a performance goal. Therefore, the programmer has
the flexibility to choose whether they want to define target performance.

The adaptive strategies that were implemented can be generated along with the
SPar parallel code, by using the designed transformation rules. Consequently, real-world
stream processing applications can benefit from the adaptive degree of parallelism support.
The performance of adaptive strategies that were implemented in our applications was eval-
uated and compared to the executions with a static degree of parallelism. Experiment results
demonstrated the effectiveness of our solution when adjusting the number of replicas during
the execution time. When running with a static number of replicas, it tends only to outperform
the adaptive strategy if using the maximum amount of resources. Also, it is important to note
that the static number of replicas requires a manual definition of the degree of parallelism.

With the achieved results, we concluded that the adaptive strategies increased the
level of abstraction without compromising the performance or consuming more computa-
tional resources. The strategy based on a target throughput achieved the best performance.
The option without user-defined parameters was easier to use, but had slightly inferior perfor-
mance. The programmer needs performance expertise to use the strategies based on target
performance (throughput, latency), which is why an alternative without a target performance
was provided.

The requirements and implementations presented are specific to the problem of
abstracting parallelism in SPar. Moreover, the methods used for controlling the number
of replicas may only be effective in the SPar runtime. The results from executions using
an adaptive degree of parallelism are only related to the tested applications, but there are

93

similar trends for other stream processing applications. Other aspects from different levels
such as thread placement, affinity, and core frequency are not considered in this study.

We intend to extend this study in many ways. Firstly, we aim to test on different
machines and implement in other real-world applications. Moreover, we hope to continue
improving the adaptive strategies, most of the essential parts involve balancing between
stability and performance, and also analyze other ways to introduce a grace period between
interaction under a stable workload. Moreover, efforts could optimize the performance of the
adaptive strategies. When performance is the primary goal, it would be relevant to implement
a statistical methodology for testing the results. Furthermore, the techniques used in related
works could also be implemented and tested in our scenario.

In the future, the adaptive strategies could be implemented using online learning
to adapt the degree of parallelism. For instance, the strategy using the runtime library’s
queues could use a learning algorithm instead of the threshold. Thus, the need for high-
level abstraction as well as performance could be met. Furthermore, the strategy can be
extended to run in distributed cluster environments as well as in cloud and fog environments,
increasing the flexibility of the strategies by taking advantage of elastic properties from the
infrastructure level.

[AGT14]

[AMT10]

[Bie11]

[Col89]

[Col04]

[CQO9]

[DST17]

[FAG*17]

[Fas17]

[GAW*08]

[GDTF15]

94

REFERENCES

Andrade, H.; Gedik, B.; Turaga, D. “Fundamentals of Stream Processing:
Application Design, Systems, and Analytics”. Cambridge University Press,
2014, 558p.

Aldinucci, M.; Meneghin, M.; Torquati, M. “Efficient Smith-Waterman on Multi-
core with FastFlow”. In: Proceedings of the Euromicro Conference on Parallel,
Distributed and Network-based Processing, 2010, pp. 195-199.

Bienia, C. “Benchmarking Modern Multiprocessors”, Ph.D. Thesis, Department
of Computer Science, Princeton University, Princeton, 2011, 153p.

Cole, M. I. “Algorithmic Skeletons: Structured Management of Parallel
Computation”. Pitman London, 1989, 137p.

Cole, M. “Bringing Skeletons out of the Closet: A Pragmatic Manifesto for
Skeletal Parallel Programming”, Parallel Computing, vol. 30-3, Mar 2004, pp.
389-406.

Chakravarthy, S.; Qingchun, J. “Stream Data Processing: A Quality of Service
Perspective: Modeling, Scheduling, Load Shedding, and Complex Event
Processing”. Springer US, 2009, 324p.

Danelutto, M.; Sensi, D. D.; Torquati, M. “A Power-Aware, Self-Adaptive Macro
Data Flow Framework”, Parallel Processing Letters, vol. 27-01, Mar 2017, pp.
1-20.

Floratou, A.; Agrawal, A.; Graham, B.; Rao, S.; Ramasamy, K. “Dhalion: Self-
Regulating Stream Processing in Heron”, Very Large Data Base Endowment,
vol. 10-12, Aug 2017, pp. 1825—1836.

FastFlow . “FastFlow (FF) Website”. last access in Dec, 2017, Source: http:
//mc-fastflow.sourceforge.net/, 2017.

Gedik, B.; Andrade, H.; Wu, K.-L.; Yu, P. S.; Doo, M. “SPADE: The System
S Declarative Stream Processing Engine”. In: Proceedings of the ACM
International Conference on Management of Data, 2008, pp. 1123—-1134.

Griebler, D.; Danelutto, M.; Torquati, M.; Fernandes, L. G. “An Embedded
C++ Domain-Specific Language for Stream Parallelism”. In: Proceedings of
the International Conference on Parallel Computing - Parallel Computing: On
the Road to Exascale, 2015, pp. 317-326.

[GDTF17]

[GF17]

[GFDF18]

[GHDF17]

[GHDF18]

[GHL*17]

[GJPPM*12]

[Gri16]

[GSHW14]

[GSV*18]

95

Griebler, D.; Danelutto, M.; Torquati, M.; Fernandes, L. G. “SPar: A DSL for
High-Level and Productive Stream Parallelism”, Parallel Processing Letters,
vol. 27-01, Mar 2017, pp. 1739-1741.

Griebler, D.; Fernandes, L. G. “Towards Distributed Parallel Programming
Support for the SPar DSL”. In: Proceedings of the International Conference
on Parallel Computing - Parallel Computing: On the Road to Exascale, 2017,
pp. 110-120.

Griebler, D.; Filho, R. B. H.; Danelutto, M.; Fernandes, L. G. “High-Level and
Productive Stream Parallelism for Dedup, Ferret, and Bzip2”, International
Journal of Parallel Programming, vol. 10766, Feb 2018, pp. 1-19.

Griebler, D.; Hoffmann, R. B.; Danelutto, M.; Fernandes, L. G. “Higher-Level
Parallelism Abstractions for Video Applications with SPar”. In: Proceedings
of the International Workshop on Reengineering for Parallelism in
Heterogeneous Parallel Platforms, 2017, pp. 698—707.

Griebler, D.; Hoffmann, R. B.; Danelutto, M.; Fernandes, L. G. “Stream
Parallelism with Ordered Data Constraints on Multi-Core Systems”, Journal
of Supercomputing, vol. 75, Jul 2018, pp. 1-20.

Griebler, D.; Hoffmann, R. B.; Loff, J.; Danelutto, M.; Fernandes, L. G. “High-
Level and Efficient Stream Parallelism on Multi-core Systems with SPar for
Data Compression Applications”. In: Proceeding of the Simpdsio em Sistemas
Computacionais de Alto Desempenho, 2017, pp. 16-27.

Gulisano, V.; Jimenez-Peris, R.; Patino-Martinez, M.; Soriente, C.; Valduriez,
P. “StreamCloud: An Elastic and Scalable Data Streaming System”, IEEE
Transactions on Parallel and Distributed Systems, vol. 23—12, Jan 2012, pp.
2351-2365.

Griebler, D. “Domain-Specific Language & Support Tool for High-Level Stream
Parallelism”, Ph.D. Thesis, Faculdade de Informatica, PUCRS, Porto Alegre,
2016, 243p.

Gedik, B.; Schneider, S.; Hirzel, M.; Wu, K.-L. “Elastic Scaling for Data Stream
Processing”, IEEE Transactions on Parallel and Distributed Systems, vol. 25—
6, Jun 2014, pp. 1447—-1463.

Griebler, D.; Sensi, D. D.; Vogel, A.; Danelutto, M.; Fernandes, L. G. “Service
Level Objectives via C++11 Attributes”. In: Proceedings of the Euro-Par:
Parallel Processing Workshops, 2018, pp. 1-12.

[GVM*18]

[HDPT04]

[HPJF14]

[HSS*14]

[KCO3]

[LBMAL12]

[LDC*17]

[LQF15]

[MM16]

[MMPM14]

[MRR12]

96

Griebler, D.; Vogel, A.; Maron, C. A. F; Maliszewski, A. M.; Schepke,
C.; Fernandes, L. G. “Performance of Data Mining, Media, and Financial
Applications under Private Cloud Conditions”. In: Proceedings of the IEEE
Symposium on Computers and Communications, 2018, pp. 1-7.

Hellerstein, J. L.; Diao, Y.; Parekh, S.; Tiloury, D. M. “Feedback Control of
Computing Systems”. John Wiley & Sons, 2004, 456p.

Heinze, T.; Pappalardo, V.; Jerzak, Z.; Fetzer, C. “Auto-scaling Techniques
for Elastic Data Stream Processing”. In: Proceedings of the International
Conference on Data Engineering Workshops, 2014, pp. 296-302.

Hirzel, M.; Soulé, R.; Schneider, S.; Gedik, B.; Grimm, R. “A Catalog of Stream
Processing Optimizations”, ACM Computing Surveys, vol. 46—4, Apr 2014, pp.
46:1-46:34.

Kephart, J. O.; Chess, D. M. “The Vision of Autonomic Computing”, Computer,
vol. 36—1, Jan 20083, pp. 41-50.

Lorido-Botran, T.; Miguel-Alonso, J.; Lozano, J. A. “Auto-scaling Techniques for
Elastic Applications in Cloud Environments”, Master’s Thesis, Department of
Computer Architecture and Technology, University of Basque Country, Basque
Country, 201