
NUMA-ICTM: A Parallel Version of ICTM Exploiting
Memory Placement Strategies for NUMA Machines

Márcio Castro, Luiz Gustavo Fernandes
GMAP, PPGCC

Pontifı́cia Universidade Católica do Rio Grande do Sul
Porto Alegre - Brazil

{mcastro, gustavo}@inf.pucrs.br

Christiane Pousa, Jean-François Méhaut
Laboratoire d’Informatique Grenoble

Grenoble Université
Grenoble - France

{christiane.pousa, mehaut}@imag.fr

Marilton Sanchotene de Aguiar
GMFC, PPGInf

Universidade Católica de Pelotas
Pelotas - Brazil

marilton@atlas.ucpel.tche.br

Abstract

In geophysics, the appropriate subdivision of a region
into segments is extremely important. ICTM (Interval Cat-
egorizer Tesselation Model) is an application that cat-
egorizes geographic regions using information extracted
from satellite images. The categorization of large regions
is a computational intensive problem, what justifies the
proposal and development of parallel solutions in order
to improve its applicability. Recent advances in multi-
processor architectures lead to the emergence of NUMA
(Non-Uniform Memory Access) machines. In this work,
we present NUMA-ICTM: a parallel solution of ICTM
for NUMA machines. First, we parallelize ICTM using
OpenMP. After, we improve the OpenMP solution using the
MAI (Memory Affinity Interface) library, which allows a
control of memory allocation in NUMA machines. The re-
sults show that the optimization of memory allocation leads
to significant performance gains over the pure OpenMP
parallel solution.

1. Introduction

An adequate subdivision of geographic areas into seg-
ments presenting similar characteristics is often convenient
in Geophysics. This appropriate subdivision enables us to
extrapolate the results obtained in some locations within
the segment, in which extensive research have been done,
to other locations less explored within the same segment.
Thus, we can have a good understanding of the locations

which have not been thoroughly analyzed [3].
ICTM (Interval Categorizer Tessellation Model) is a tes-

sellation model for the simultaneous categorization of geo-
graphic regions considering several different characteristics
(relief, vegetation, climate, land use, etc.) using informa-
tion extracted from satellite images. The analysis of the
function monotonicity, which is embedded in the rules of
the model, categorizes each tessellation cell, with respect to
the whole considered region, according to its declivity sig-
nal (positive, negative or null). The first formalization of
ICTM, a single-layered model for the relief categorization
of geographic regions, called Topo-ICTM (Interval Catego-
rizer Tessellation Model for Reliable Topographic Segmen-
tation), was initially presented in [4]. Through this work,
it was possible to find out that the categorization of large
regions requires a high computational power, resulting in
large execution times over single processor machines.

Previous works investigated the possibility to parallelize
ICTM using distributed memory platforms such as clusters
and grids (see Section 2.2), however these platforms intro-
duce two important limitations to the ICTM parallelization:
(i) they do not allow parallel approaches which need in-
tensive processes communication, since the communication
cost is too significant, and (ii) such platforms usually do not
present nodes with large local memories, which are neces-
sary to compute very large regions.

Traditional UMA (Uniform Memory Access) architec-
tures present a single memory controller, which is shared
by all processors. This single memory connection often
becomes a bottleneck when many processors accesses the
memory at the same time. This problem is even worse

in systems with a higher number of processors, in which
the single memory controller does not scale satisfactorily.
Therefore, these architectures may not fulfill our require-
ments to develop an efficient parallel solution for ICTM.

NUMA (Non-Uniform Memory Access) architectures
appear as an interesting alternative to surpass the UMA
scalability problem. In NUMA architectures the system
is split into multiple nodes [6]. These machines have, as
their main characteristics, multiple memory levels that are
seen by the developers as a single memory. They combine
the efficiency and scalability of MPP (Massively Parallel
Processing) architectures with the programming facility of
SMP (Symmetric Multiprocessing) machines [9]. However,
due to the fact that the memory is divided in blocks, the time
spent to access the memory is conditioned by the “distance”
between the processor (which accesses the memory) and the
memory block (in which the data is allocated).

A parallel solution of ICTM for NUMA machines ex-
ploiting memory affinity in order to achieve better perfor-
mances is the aim of in this paper. First, we describe how
ICTM was parallelized using OpenMP. After that, consider-
ing the fact that OpenMP has been originally developed to
parallelize applications for UMA machines, we chose the
MAI (Memory Affinity Interface) library in order to control
de memory allocation and threads placement.

This paper is structured as follows: Section 2 describes
the general workflow of ICTM and the related work about
ICTM parallel versions for other high performance plat-
forms. In Section 3, we briefly present how ICTM was par-
allelized using just OpenMP library, we describe the ma-
chines used to run our experiments and the case studies
used to evaluate its performance. In order to face the pure
OpenMP solution limitations, in Section 4 we introduce the
MAI functionalities to fine tune memory allocations. Fi-
nally, concluding remarks and future works are pointed out
in Section 5.

2. ICTM

ICTM is a multi-layered and multi-dimensional tessel-
lation model for the categorization of geographic regions
considering several different characteristics (relief, vegeta-
tion, climate, land use, etc.). The number of characteristics
that should be studied determines the number of layers of
the model. In each layer, a different analysis of the region
is performed. An appropriate projection of all layers to a
basic layer of the model leads to a meaningful subdivision
of the region and to a categorization of the sub-regions that
consider the simultaneous occurrence of all characteristics,
according to some weights, permitting interesting analyses
about their mutual dependency.

The input data is extracted from satellite images, in
which the information is given in certain points referenced

Satellite image Subdivision Tesselation

x

y

Average values

Input data

Figure 1. ICTM input data.

by their latitude and longitude coordinates. The geographic
region is represented by a regular tessellation that is deter-
mined by the subdivision of the total area into sufficiently
small rectangular subareas, each one represented by one cell
of the tessellation (Figure 1). This subdivision is done ac-
cording to a cell size, established by the geophysics or ecol-
ogy analyst and it is directly associated to the refinement
degree of the tessellation.

2.1. Categorization Process

In order to categorize the regions of each layer, ICTM
executes sequential phases, where each phase uses the re-
sults obtained from the previous one (Figure 2). The tesse-
lation showed in Figure 1 is represented as a matrix with nr

rows and nc columns.

Figure 2. ICTM categorization process.

In topographic analysis, usually there are too many data,
most of which is geophysically irrelevant. Thus, for each
subdivision, the average value of a specific feature at the
points supplied by radar or sattelite images is taken. The
first phase of the categorization process involves this input
data reading (average values) and these data are stored on a
matrix called Absolute Matrix.

The categorization proceeds to the next phase, in which
the data is simplified. The Absolute matrix is normalized
by dividing each element by the largest one, creating the
Relative Matrix. Considering the fact that the data that has
been extracted from the satellite images are very accurate,
the errors contained in the Relative Matrix come from the
discretization of the region into tessellation cells. Due to
this fact, Interval Mathematics techniques [8] are used to
control the errors associated to cell values (advantages of
using intervals can be seen in [3] and [5]). Thus, in the
next phase, two Interval Matrices are created in which the
interval values for x and y coordinates are stored.

2

The most important phase of the entire process is the
creation of the Status Matrix. In this phase, each cell is
compared to its neighbors in four directions. For each cell,
four directed declivity registers – reg.e (east), reg.w (west),
reg.s (south) and reg.n (north) – are defined, indicating the
admissible declivity sign of the function that approximates
it in any of these directions, taking into account the values
of the neighbors cells. The number of neighbors to be anal-
ysed in each direction is a parameter called radius.

For non-border cells: reg.X = 0, if there exists a non-
increasing approximation function between the cell and its
neighbors at X direction; reg.X = 1, otherwise. For east,
west, south and north border cells reg.e = 0, reg.w = 0,
reg.s = 0 and reg.n = 0, respectively.

Let wreg.e = 1, wreg.s = 2, wreg.w = 4 and wreg.n = 8
be weights to be associated to the directed declivity regis-
ters. The status matrix is defined as an nr×nc matrix where
each entry is the value of the corresponding cell state, cal-
culated as the value of the binary encoding of the corre-
sponding directed declivity registers, given as statuscell =
(1×reg.e)+(2×reg.s)+(4×reg.w)+(8×reg.n). Thus,
for a given cell, the correspondent cell can assume one and
only one state represented by the value statuscell = 0..15.

In the last phase, the Limits Matrix is created. A limit
cell occurs when the function changes its declivity, pre-
senting critical points (maximum, minimum or inflection
points). To identify such limit cells, a limit register asso-
ciated to each cell is used. The border cells are assumed to
be limit cells.

The categorization of extremely large regions has a high
computational cost. Its cost is basically related to two pa-
rameters: the matrices number of cells and the number of
neighbors that are analyzed during the categorization pro-
cess in each layer (radius).

2.2. Related Works

In [12], the authors have presented a parallel version of
ICTM for clusters. In that work, the authors have used
the master-slave model to compute layers in parallel, since
there is no data dependence between layers. However, con-
sidering the fact that each slave process calculates a given
layer of the model, the maximum size of each layer is lim-
ited by the memory size of the node in which the slave pro-
cess is running. As a consequence, very large regions can
not be categorized using this kind of decomposition method.

On the other hand, in [11] the authors have shown a par-
allel version of ICTM for grids. This paper presents two
different ways to parallelize the ICTM model: using cen-
tralized or distributed data. The second solution is more ap-
propriated for grids, since it reduces drastically the commu-
nication between computing nodes. Nevertheless, the data
must be previously stored in each machine of the grid.

In brief, these two previous solutions have presented dif-
ferent ways to parallelize ICTM, showing interesting re-
sults. However, they have their limitations, specially when
the categorization of extremely large regions is required. In
this scenario, shared memory architectures appear as an at-
tractive alternative to achieve better results. Additionally,
the specific utilization of NUMA machines allows the use
of a larger number of processors.

3. ICTM Parallelization with OpenMP

OpenMP is a standard widely used API (Application
Programming Interface) for the development of parallel ap-
plications for shared memory environments [13]. It has
been developed for UMA architectures and it does not make
any assumptions about the physical location of data in mem-
ory or threads [13, 13]. Aiming to solve this problem, sev-
eral extensions of the standard OpenMP for NUMA archi-
tectures were proposed [2, 1, 7]. However, none of these
extensions became a standard.

In this work, we have used OpenMP to parallelize ICTM.
We have chosen OpenMP because of its simplicity, since
the sequential code can be parallelized with few modifica-
tions. One of its main advantages is that any operation of
creation/destruction of threads is done transparently by the
API. Moreover, OpenMP uses the fork-join model, which
allows the existence of several sequential and parallel re-
gions in the source code. This model can be easily used
with the ICTM sequential code, allowing the parallelization
inside each step of the categorization process.

3.1. Parallel Approach

The ICTM categorization process can be basically di-
vided into two parts. The first part is the data initializa-
tion, in which the information read from the satellite im-
age is written among the Absolute Matrix cells. The second
part is the categorization and it is composed by several other
phases. In this paper we focus on the second part, since it is
the most computational intensive one.

As mentioned before, each phase executes some compu-
tation over all cells of its respective matrix, modifying their
values. In a simplified way, it was implemented using a
two nested for loops structure. So, it is possible to use the
omp parallel for directive inside each phase to distribute the
work among the threads. Thus, each thread will compute a
subset of the respective matrix rows, as follows:

pragma omp p a r a l l e l f o r
f o r (i = 0 ; i < rows) ; i ++)

f o r (j = 0 ; j < columns) ; j ++)
/ / c o m p u t a t i o n

3

The pragma directive is responsible for threads creation,
work distribution among them and threads destruction (af-
ter the end of the computation). We believe that this is a
simple and elegant solution, since we have not done many
changes in the sequential source code. However, OpenMP
directives do not allow to control memory allocation among
the NUMA nodes and threads migration. Those procedures
are done according to the Linux kernel policies.

3.2. Performance Evaluation

In this section we present the performance evaluation
of the parallel ICTM using the OpenMP. We describe two
NUMA platforms and the case studies we have used in our
experiments to evaluate the OpenMP solution. The reason
for the use of two different NUMA machines is to evalu-
ate the impact of different NUMA factors 1 in the choice of
memory allocation strategies.

3.2.1 NUMA Machines

The first NUMA machine is an eight dual core AMD
Opteron 2.2 GHz and 2 MB of cache memory for each pro-
cessor. It is organized in eight nodes and has in total 32 GB
of main memory. This memory is divided in eight nodes
(4 GB of local memory) and the system page size is 4 KB.
Each node has three connections which are used to link with
other nodes or with input/output controllers (node 0 and
node 1). These connections give different memory laten-
cies for remote access by nodes (NUMA factor from 1.2
to 1.5). A schematic figure of this machine is given in Fig-
ure 3. From now onwards, we will use the name Opteron
for this machine.

Figure 3. AMD Opteron machine.

The operating system is the Debian distribution of Linux
version 2.6.23-1-amd64 with NUMA support (system calls

1The NUMA factor is obtained through the division of remote latency
by local latency.

and user API numactl). The compiler for the OpenMP code
compilation is the GNU Compiler Collection (GCC).

Figure 4. Itanium 2 machine.

The second NUMA machine used is a sixteen Itanium
2 with 1.6 GHz and 9 MB of L3 cache memory for each
processor. It is organized in four nodes of four processors
each and has in total 64 GB of main memory. This mem-
ory is divided in four blocks for each node (16 GB of local
memory). Nodes are connected using a FAME Scalability
Switch (FSS). This connection gives different memory la-
tencies for remote access by nodes (NUMA factor from 2
to 2.5). A schematic figure of this machine is given in Fig-
ure 4. From now onwards, we will use the name Itanium 2
for this machine.

The operating system is the Red Hat distribution of
Linux version 2.6.18-B64k.1.21 with NUMA support (sys-
tem calls and user API numactl). The compiler for the
OpenMP code compilation is the ICC (Intel C Compiler
version 9.1.045).

3.2.2 Case Studies

The case studies have been chosen in terms of memory us-
age and computing power necessity. Considering the total
amount of memory in both NUMA machines, we have se-
lected four sizes of matrices. Moreover, in order to compre-
hend the influence of the radius in our parallel solution, we
have done experiments with three different values of radius.
These case studies are shown in Table 1 and they have been
used to measure the overall performance of our solution.

Table 1. Case studies.
Name Size of matrices Memory usage Radius
Case 1 4,800x4,800 1 GB 20, 40, 80
Case 2 6,700x6,700 2 GB 20, 40, 80
Case 3 9,400x9,400 4 GB 20, 40, 80
Case 4 13,300x13,300 8 GB 20, 40, 80

The results presented for each case study in Sections
3.2.3 and 4.3 were obtained through the average of 10 ex-
ecutions, excluding the best and the worst execution times.

4

These averages presented a low standard deviation, since
all experiments have been done with exclusive access to the
NUMA machines.

3.2.3 OpenMP Results

In this section we show the results that we have obtained
with both Opteron and Itanium 2 NUMA architectures.
First, we have fixed the matrix size in order to show how
the OpenMP parallel solution behaves varying the radius.
After, we have fixed the radius to compare the speed-ups
varying the matrices sizes according to the case studies.
The chosen matrix size and value of radius for these ex-
periments were respectively dimension 6,700 (Case 2) and
40. According to a previous analysis of the obtained re-
sults, we have noticed that this configuration presents the
best balance between the input image size and the level of
details required for a useful analysis in terms of computa-
tional cost.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sp
ee

d−
up

number of processors

ICTM − OpenMP − Matrix 6700x6700

Radius = 20
Radius = 40
Radius = 80

ideal

Figure 5. Speed-ups over Opteron (Case 2).

Figure 5 shows the speed-ups we have obtained over
Opteron with a fixed matrix size. As it can be observed,
when we have used higher radiuses we have got better
speed-ups. However, as the number of processes is in-
creased we can see a considerable speed-up decrease (spe-
cially with lower radiuses). The reason for that is the bad
memory allocation control done by the operational system,
since the data is not placed in such a way that performance
gains can be extracted from the Opteron machine.

Table 2. Speed-ups on Opteron (radius = 40).

NP Case study
1 2 3 4

4 3.81 3.86 3.87 3.98
8 7.02 7.13 7.55 7.64

12 9.08 9.52 10.34 10.65
16 10.18 10.73 12.18 12.90

The influence of the matrices sizes over Opteron can be
seen in Table 2, where NP stands for number of processors.
One can notice that speed-ups are higher when we use larger
input matrices. Due to the fact that this machine has a low
NUMA factor (from 1.2 to 1.5), even if the data is stored
away from the processor which accesses it the time spent
for this operation does not have a significant impact on the
overall performance.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
sp

ee
d−

up

number of processors

ICTM − OpenMP − Matrix 6700x6700

Radius = 20
Radius = 40
Radius = 80

ideal

Figure 6. Speed-ups over Itanium 2 (Case 2).

The speed-ups we have obtained over Itanium 2 with a
fixed matrix size can be seen in Figure 6. Similarly to Fig-
ure 5, one can see that we have better speed-ups with higher
radiuses. However, when we compare Figures 5 and 6, one
can notice that in Figure 6 we have got better speed-ups
with lower radius (20 and 40). This is a consequence of
the higher NUMA factor of this machine. The higher is the
radius, the higher will be the number of remote accesses,
since there is not a specific control to place data close to
the processors which accesses them. Consequently, by us-
ing lower radiuses, we reduce the remote accesses impact
resulting on better speed-up factors in comparison to those
presented in Figure 5.

Table 3. Speed-ups on Itanium 2 (radius = 40).

NP Case study
1 2 3 4

4 3.57 3.54 3.53 3.53
8 6.86 6.79 6.68 6.67

12 9.70 9.58 9.36 9.35
16 11.83 11.46 11.27 11.22

In contrast to the Opteron results, Itanium 2 showed
worse speed-ups when the matrix size was increased (Ta-
ble 3). Analogously to the radius variation experiments, the
high NUMA factor of this machine (from 2 to 2.5) influ-
ences considerably on the overall performance, since the
data locality is not controlled properly by the Linux kernel.
Therefore, the high number of remote accesses reduces the
speed-up factor as we increase the matrix size.

5

3.3. Discussion

The OpenMP ICTM parallel version has presented
speed-ups around 12 for 16 processors over both machines.
One can easily conclude that the lack of a better memory
allocation strategy is the reason for the performance loss.
As mentioned before, it is not possible to control data local-
ity and threads placement using only OpenMP directives.
A better control of data locality and threads placement can
reduce the interference of non-uniform memory accesses,
making it possible to improve significantly the performance
gains on NUMA machines.

4. Memory Affinity Improvement

In this section, we introduce a new ICTM parallel ver-
sion using memory affinity which is called NUMA-ICTM.
In this solution, we have added several different memory
policies provided by a library named MAI (Memory Affin-
ity Interface). This improvement allows a better use of
NUMA machines, making the categorization of large ge-
ographic regions even faster.

An alternative for the use of the MAI library would be
the NUMA support present in several operating systems,
such as Linux and Solaris. This support can be found at the
user level (administration tools or shell commands) and at
the kernel level (system calls and NUMA APIs) [6].

The user level support allows the programmer to spec-
ify a policy for memory placement and threads scheduling
for an application. The advantage of using this support is
that the programmer does not need to modify the applica-
tion code. However, the chosen policy will be applied in
the entire application and we can not change the policy dur-
ing the execution.

The NUMA API is an interface that defines a set of sys-
tem calls to apply memory policies and processes/threads
scheduling. In this solution, the programmer must change
the application code to apply the policies. The main advan-
tage of this solution is that it is possible to have a better con-
trol of memory allocation. However, developers must know
low level details about the application and the architecture
to manipulate directly structures such as memory pages or
blocks.

4.1. MAI Interface Library

In order to provide an easy way to manage memory affin-
ity keeping a fine control, MAI library was proposed [10].
MAI is a library developed in C that defines some high level
functions to deal with memory affinity in NUMA architec-
tures. This library allows developers to manage memory
affinity for each variable/object of their applications. This

characteristic makes memory management easier for devel-
opers, since they do not need to care about pointers and
pages addresses like in the system call APIs for NUMA (lib-
numa in Linux for example [6]). Furthermore, with MAI
it is possible to have a fine control over memory affinity:
memory policies can be changed through application code
(different policies for different phases). This feature is not
allowed in user level tools like numactl in Linux.

The library implements four memory policies: cyclic,
cyclic block, bind all and bind block. In cyclic policies, the
memory pages, in which the variable/object data are stored,
are placed in physical memory following a round-robin
strategy to store them over the memory blocks. The main
difference between cyclic and cyclic block is the amount of
memory pages used to do the cyclic process. In bind all and
bind block policies, the memory pages are placed in mem-
ory blocks specified by the developer. The main difference
between bind all and bind block is that in the latter pages
are placed in the memory blocks that have the threads/pro-
cesses which will make use of them.

Besides the memory policies control, MAI also allows
memory pages migration in order to optimize any incorrect
memory placements.

4.2. ICTM with MAI Library

After implementing a parallel solution using OpenMP
directives, we have added specific MAI functions in the
code to apply memory policies and threads placement. Ba-
sically, we have modified the initialization process, in which
the matrices are allocated. Two groups of functions were
used to control memory and threads affinity.

Threads affinity is controlled by using the MAI
bind threads () function. With this function we can spec-
ify where each thread must be physically placed in terms
of processors or CPU cores. Thus, we assure that threads
migration will not occur.

x

y

Matrices NUMA
physical

allocation

M0 Node 0

M1 Node 1

M2 Node 2

memory block
memory page

Figure 7. Bind block policy.

Instead of using malloc() functions to allocate the matri-
ces (as we did in OpenMP parallel solution), we have used
a MAI specific function, which is called alloc 2D () . In few

6

words, this function uses the system call mmap() to make
a mapping of the physical RAM to a virtual memory. The
amount of memory and the type of data to be allocated are
passed through alloc 2D () parameters, similarly to malloc()
function. By using alloc 2D () function, we can set a specific
memory policy which will be applied to the matrices.

Figure 7 shows how the bind block memory policy
can be applied to ICTM matrices (the matrices cells were
grouped in terms of memory pages). The memory pages, in
which the matrices data are stored, are physically allocated
on the NUMA memory blocks according to the work dis-
tribution done by the omp parallel for directive. Thus, each
thread will access memory pages stored in the same node,
reducing the number of remote accesses. On the other hand,
with the bind all policy, we can specify a set of memory
blocks in which the matrices memory pages can be stored.
However, the Linux kernel is responsible for selecting in
which memory block each page will be physically allocated.

x

y

Matrices NUMA

physical
allocation

memory block
memory page

memory pages

...

M2 Node 2

M1 Node 1

M0 Node 0

Figure 8. Cyclic policy.

When a cyclic policy is applied, the memory pages are
physically allocated as shown in Figure 8. These memory
pages are distributed among the NUMA nodes by a cyclic
way: the first memory page of each matrix is physically
stored on Node 0, second page on Node 1, third page on
Node 2, fourth page on Node 0 and so on. A similar behav-
ior occurs when we apply the cylic block policy. However,
sets of memory pages are distributed, instead of distributing
page by page.

4.3. Performance Evaluation

This section shows the results obtained with NUMA-
ICTM over the same platforms described in Section 3.2.1.
Experiments have been done with the four memory poli-
cies implemented by MAI library. In order to compare
the performance of NUMA-ICTM with different policies in
both NUMA platforms, we have used the same specific case
study and radius value of the Section 3.2.3: Case 2 with ra-
dius 40. Thus, we can compare the OpenMP ICTM parallel
version with NUMA-ICTM.

Figure 9 shows a comparison of the four memory poli-
cies over Opteron. The bind all and bind block policies
have presented worse speed-ups. On the other hand, one can
observe that cyclic and cyclic block have presented similar
results. As mentioned before, the difference between cyclic
and cyclic block policies is the amount of memory pages
used to do the cyclic distribution among memory blocks. In
these experiments, the block size of the cyclic block policy
was a group of 10 pages. Other experiments have shown
worse speed-ups as we increased the block size. Thus, it is
better to use the cyclic policy in this machine, which dis-
tributes page by page.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sp
ee

d−
up

number of processors

bind_all
bind_block

cyclic
cyclic_block

ideal

Figure 9. Speed-ups over Opteron (Case 2).

Due to the fact that Opteron has a network bandwidth
problem, it is better to spread the data among NUMA mem-
ory blocks. By using this strategy, we reduce the number
of simultaneous accesses on the same memory node. As
a consequence of that, we can have a better performance.
More detailed information about the best memory policy for
Opteron machine (cyclic) can be seen in Table 4, in which
the speed-ups of different case studies are compared.

Table 4. Cyclic policy over Opteron.

NP Case study
1 2 3 4

4 2.80 3.50 3.39 3.58
8 7.71 7.32 6.74 7.10

12 11.66 10.74 10.30 10.52
16 15.34 14.01 13.67 13.50

We have done the same experiments over Itanium 2 and
the results of the memory policies comparison are shown in
Figure 10. One can see that these results are quite different
when we compare to those obtained over Opteron (Figure
9). By allocating the rows of the matrices on the mem-
ory blocks closer to the processors which computes them,

7

we decrease the high NUMA factor impact. As a result,
bind block was the best policy for this machine.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sp
ee

d−
up

number of processors

bind_all
bind_block

cyclic
cyclic_block

ideal

Figure 10. Speed-ups over Itanium 2 (Case 2).

Table 5 shows more information about the performance
of the best memory policy over Itanium 2 (bind block).

Table 5. Bind block policy over Itanium 2.

NP Case study
1 2 3 4

4 3.75 3.78 3.73 3.75
8 7.45 7.53 7.29 7.00

12 11.10 11.18 10.76 10.59
16 14.55 14.64 13.95 13.36

5. Conclusion and Perspectives

In this paper we have presented NUMA-ICTM: a parallel
version of ICTM exploiting memory placement strategies
for NUMA machines. First, an initial version using only
OpenMP has been proposed. This solution has shown limi-
tations, since data locality and threads placement could not
be controlled. After, we have introduced the idea of mem-
ory optimization using MAI interface. MAI specific func-
tions have been used to apply memory policies, increasing
the scalability and performance of the initial version.

We have observed an overall average of 12.1% of per-
formance gain using memory optimization in both architec-
tures. Moreover, a higher performance gain was obtained
as the number of processors was increased (average of 18%
from 8 to 16 processors). The performance gain was about
23.2% if we only compare the results with 16 processors.
These results were expected, since when the number of
nodes increases, the number of remote accesses also grow.
Thus, memory allocation policies optimizations became im-
portant.

As future works we highlight: a new version using
OpenMP 3.0 and a distributed implementation to be exe-
cuted in clusters of NUMA nodes.

References

[1] A. Basumallik, S.-J. Min, and R. Eigenmann. Towards
OpenMP Execution on Software Distributed Shared Mem-
ory Systems. In ISHPC ’02: Proceedings of the 4th Interna-
tional Symposium on High Performance Computing, pages
457–468, London, UK, 2002. Springer-Verlag.

[2] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris,
C. A. Nelson, and C. D. Offner. Extending OpenMP for
NUMA Machines. In SC ’00: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing, pages 48–48,
Dallas, Texas, USA, 2000. IEEE Computer Society.

[3] D. Coblentz, V. Kreinovich, B. Penn, and S. Starks. To-
wards Reliable Sub-Division of Geological Areas: Interval
Approach. In NAFIPS ’00: Proceedings of the 19th Inter-
national Meeting of the North American Fuzzy Information
Processing Society, number 0-7803-6274-8, pages 368–372,
Atlanta, GA, USA, 2000. IEEE Computer Society.

[4] M. S. de Aguiar, G. P. Dimuro, and A. C. da Rocha Costa.
ICTM: An Interval Tessellation-Based Model for Reliable
Topographic Segmentation. Numerical Algorithms, 37(1–
4):3–11, 2004.

[5] R. B. Kearfott and V. Kreinovich. Applications of Inter-
val Computations. Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1996.

[6] A. Kleen. A NUMA API for LINUX. Technical Report
Novell-4621437, Novell, April 2005.

[7] S.-J. Min, A. Basumallik, and R. Eigenmann. Optimizing
OpenMP Programs on Software Distributed Shared Memory
Systems. Int. J. Parallel Program., 31(3):225–249, 2003.

[8] R. E. Moore. Methods and Applications of Interval Analysis.
Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 1979.

[9] T. Mu, J. Tao, M. Schulz, and S. A. Mckee. Interactive Lo-
cality Optimization on NUMA Architectures. In SOFTVIS
’03: Proceedings of the ACM 2003 Symposium on Software
Visualization, San Diego, CA, USA, 2003. ACM.

[10] C. P. Ribeiro and J.-F. Mhaut. MAI: Memory Affinity Inter-
face. Technical Report 0359, INRIA, 2008.

[11] R. K. S. Silva, M. S. de Aguiar, C. A. F. D. Rose, and
G. P. Dimuro. Extending the HPC-ICTM Geographical Cat-
egorization Model for Grid Computing. In B. Kågström,
E. Elmroth, J. Dongarra, and J. Wasniewski, editors, PARA,
volume 4699 of Lecture Notes in Computer Science, pages
850–859. Springer, 2006.

[12] R. K. S. Silva, C. A. F. D. Rose, M. S. de Aguiar, G. P.
Dimuro, and A. C. R. Costa. HPC-ICTM: a Parallel Model
for Geographic Categorization. In JVA ’06: Proceedings of
the IEEE John Vincent Atanasoff 2006 International Sympo-
sium on Modern Computing, pages 143–148, Washington,
DC, USA, 2006. IEEE Computer Society.

[13] C. Terboven, D. an Mey, and S. Sarholz. OpenMP on Multi-
core Architectures. In A Practical Programming Model for
the Multi-Core Era, pages 54–64. Springer, 2008.

8

