Comput Sci Res Dev (2012) 27:147-166
DOI 10.1007/s00450-010-0134-0

SPECIAL ISSUE PAPER

Job profiling and queue management in high performance

printing

Luiz Gustavo Fernandes - Thiago Nunes -
Mariana Kolberg - Fabio Giannetti - Rafael Nemetz -
Alexis Cabeda

Published online: 29 September 2010
© Springer-Verlag 2010

Abstract Digital presses have consistently improved their
speed in the past ten years. Meanwhile, the need for docu-
ment personalization and customization has increased. As a
consequence of these two facts, the traditional RIP (Raster
Image Processing) process has become a highly demand-
ing computational step in the print workflow. Print Service
Providers (PSP) are now using multiple RIP engines and
parallelization strategies to speed up the whole ripping pro-
cess which is currently based on a per-page basis. Neverthe-
less, these strategies are not optimized in terms of ensuring
the best Return On Investment (ROI) for the RIP engines.
Depending on the input document jobs characteristics, the
ripping step may not achieve the print-engine speed creating
a unwanted bottleneck. The aim of this paper is to present

L.G. Fernandes ()

GMAP-PPGCC-PUCRS, Av. Ipiranga, 6681 — Pr. 32, Porto
Alegre, Brazil

e-mail: luiz.fernandes @pucrs.br

T. Nunes
ThoughtWorks, Porto Alegre, Brazil
e-mail: thiago.nunes @pucrs.br

M. Kolberg
GMAP-ULBRA, Porto Alegre, Brazil
e-mail: marianakolberg @ gmail.com

F. Giannetti
HP Laboratories, Palo Alto, USA
e-mail: fabio.giannetti@hp.com

R. Nemetz
GMAP-PUCRS, Porto Alegre, Brazil
e-mail: rafael.nemetz @pucrs.br

A. Cabeda
HP Brazil R & D, Porto Alegre, Brazil
e-mail: alexis.cabeda@hp.com

a way to improve the ROI of PSPs proposing a profiling
strategy which enables the optimal usage of RIPs for spe-
cific jobs features ensuring that jobs are always consumed
at least at engine speed. The profiling strategy is based on a
per-page analysis of input Portable Document Format (PDF)
jobs identifying their key components. This work introduces
a PDF Profiler tool aimed at extracting information from
jobs and some metrics to predict a job ripping cost based
on its profile. This information is extremely useful to raster-
ize jobs in a clever way. The computational cost estimated
using the information extracted by the PDF Profiler and the
proposed metrics is useful for the print jobs queue manage-
ment to improve the allocated RIPs load balance, resulting in
a higher throughput for the ripping step. Experiments have
been carried out in order to evaluate the PDF Profiler, the
proposed metrics and their impact in the print jobs queue
management.

Keywords Digital printing - Raster image processing - Job
profiling - PDF - Load balance - Print queue - Parallel
processing

1 Introduction

The introduction of Digital Presses has opened the publish-
ing market to new grounds. The increased speed of print-
ing and the removal of the plate-setting stage has enabled
publishers to reduce the size of their runs. This is a first
step towards an emerging trend of personalization and cus-
tomization. In the past, documents were produced for a large
number of recipients and once they were transformed to the
plates, the presses could go at full speed. Personalization
was not usual at this time. In the few cases it was applied,
the personalized documents should be printed on separate
devices.

@ Springer

mailto:luiz.fernandes@pucrs.br
mailto:thiago.nunes@pucrs.br
mailto:marianakolberg@gmail.com
mailto:fabio.giannetti@hp.com
mailto:rafael.nemetz@pucrs.br
mailto:alexis.cabeda@hp.com

148

L.G. Fernandes et al.

With the advent of Digital Presses, automated procedures
for document creation and transformation have become nec-
essary, in order to fulfil the personalization demand. A new
discipline—Variable Data Printing (VDP) [16]—has been
introduced, providing several techniques, technologies, con-
cepts and patterns to enable the creation of documents
with dynamic content. At the end of the whole print pro-
cess, documents need to be ripped to be transformed to a
bitmap. In the past, this was done only once for the en-
tire print run. With the introduction of VDP, it is required
for each page within the job. To give an order of mag-
nitude in a conventional printing environment, a 10 page
job sent to 1,000 recipients would require the 10 pages
to be ripped once. In a similar scenario, in a VDP con-
text, the ripping required can be as demanding as 10,000
pages.

The “every page is different” paradigm introduces scal-
ability issues. Moreover, approximately every four years,
Digital Presses increase their speed at a constant rate of
two to three times faster their engine speed. This dra-
matic increase in performance has repercussions in the
printing workflow. The processing speed of the Raster Im-
age Processing engines (RIPs), storage devices and Local
Area Network (LAN) throughput are stretched, becoming
unsuitable for the task. In order to deal with this prob-
lem, more sophisticated workflows were proposed. Dis-
tributed and parallel systems have been deployed to en-
sure appropriate ripping and optimized press utilization.
Nevertheless, systems can only be tuned for the “average”
job. This means that many jobs fail to be ripped at en-
gine speed, delaying or even stopping production. This is
more evident in small and mid size PSPs for two rea-
sons: (i) their level of investment is lower: resulting in
less RIP engines; (ii) the nature of the jobs they pro-
duce have a wider spectrum and consequently less predicta-
bility.

This paper is structured as follows: Sect. 2 presents the
motivations and objectives of this paper. Section 3 describes
a PSP case study scenario introducing several kinds of in-
put documents that will be used to validate the Profiler
and the proposed metrics. Section 4 describes the work
carried out in implementing a tool capable of identify-
ing complexity for PDF jobs. It also presents a detailed
set of information that can be retrieved, how they are uti-
lized and correlated. The proposed metrics are presented
in Sect. 5. Section 6 evaluates the proposed metrics preci-
sion when estimating the computational cost to rip a PDF
job. Section 7 presents a case study to illustrate the im-
pact of the proposed metrics in the printing jobs queue
management and, finally, Sect. 8 describes the achieve-
ments of this work and discusses themes for future re-
searches.

@ Springer

2 Motivations and objectives

As introduced earlier, ripping is a crucial step in the Digital
Printing workflow. The increase in personalization has led to
the utilization of Page Description Languages (PDL), such
as the Portable Document Format (PDF) [1] to increase the
usage of reusable objects. Among the new formats that have
been introduced, the most successful is the PPML (Person-
alized Print Markup Language) [2]. PPML describes jobs
containing personalized content and reusable components
that can have a scope which spans from a page to the en-
tire document.

The usage of these formats reduces the potential amount
of content to be ripped. The success of these formats lies in
the ability of the Job Producer to capture the reusability and
of the Job Consumer to exploit them. Even in the case when
both producer and consumer are fully exploiting the format,
the issue of highly variable documents remains a problem.
In this case, the support of the PPML or PDF with reusable
objects is of little help since all the variable parts need to be
ripped anyway.

While these documents may appear very specific, in re-
ality they are very common. All the photo printing appli-
cations are a very simple case of “every page is different”
application on a per recipient basis.

The ripping time and throughput have repercussions for
the entire job capacity that a PSP can sustain. In order to
remain competitive, PSPs are forced to extract all the pro-
duction capability available from their investment as profit
margins decrease. This motivates investigating more effi-
cient ways to consume jobs, but also to predict the resources
required in order to rip these jobs at engine speed. This could
potentially help PSPs to achieve a better capacity planning
and cost estimates.

The PSPs task is to fully employ their Digital Presses
and other equipments. This literally translates into the num-
ber of jobs a PSP can produce in an hour/day. In order to
model the problem space, it is considered that the PSP man-
ages a queue of jobs to be processed for a given day. It
is imperative that all the activities related to a document’s
preparation must be finished at engine speed since the print-
ing machine speed is the physical bottleneck that cannot be
avoided. Moreover, PSPs usually employ presses in paral-
lel in order to increase the jobs consumption, this reduces
the risk of press failure and maintenance. This clearly im-
plies that the performance of the document pre-processing
phase must increase proportionally in order to fully satisfy
the combined engine speed.

However, none of the current ripping strategies (see
Sect. 7) can guarantee the best scheduling and load bal-
ancing. They often result in resources either being under or
over loaded and this directly impacts the overall RIP per-
formance. One possible strategy to solve these issues is to

Job profiling and queue management in high performance printing

149

predict the ripping computational cost for each job. This so-
lution would make it possible to allocate only the necessary
resources on a per job basis.

Strategies based on high performance computing tech-
niques were employed on previous works [12-14] to sig-
nificantly improve the document composition task perfor-
mance. It is our objective to employ similar techniques to
the ripping task, improving its performance through the op-
timization of the current parallel RIP strategies.

In order to achieve this objective, the work here presented
describes the necessary intermediate steps. First of all, con-
sistent metrics are defined in order to measure the computa-
tional effort to rip a job. Moreover, a PDF Profiler tool [11]
is introduced and used to gather all the information needed
to apply the given metrics. This tool analyzes the PDF inter-
nal structure and provides information at the page/fragment
level. As mentioned before, this is important to optimize and
to guide the splitting process before the pages/fragments are
sent to the RIPs. After that, a study exemplifies the possible
performance improvements that can be achieved by apply-
ing the metrics obtained through the PDF Profiler tool to or-
ganize the printing jobs queue. A further aspect is to design,
around the Profiler information, an Adaptive Job Router tool
capable of segmenting a job into portions that are optimized
for the RIP, and not merely by order, taking full advantage
of the distributed strategies.

3 PSP scenario—input documents

As mentioned in the introduction, small and mid sized PSPs
are more sensitive to the situation in which jobs fail to be
ripped at engine speed: they have less RIP engines and the
jobs they produce are more diversified making unappropri-
ated the adoption of an “average” job strategy.

This section introduces a set of different types of input
documents these PSPs may deal with. These documents will
be further used in this paper to help the evaluation of the
profiler performance and to validate the proposed ripping
cost estimation metrics.

The jobs selected are distributed among 8 types of in-
put documents, that are commonly used within the PSPs.
Among these types, it should be noted that many of them
present similar elements in their content. An example of
each document type is shown in Fig. 1. Characteristics of
the 8 types of documents are:

1. Letter: a letter contains one or more pages with a large
amount of text and few pictures. These images are typi-
cally logos, stamps or signatures;

2. Newsletter: a newsletter differs from a standard letter be-
cause it usually contains several images. These images
are used for advertisements and news on products and
services. The number of pages in this case can vary de-
pending on the message to be delivered to the customer;

3. Cards: business cards, containing background images
and little text. A page of such document may have several
cards or a single instance of them;

4. Postcard: postcards are used for the exhibition of a place,
product or service. In this sense, texts and images are
used to compose each page. In general, postcards con-
tains two pages (front and back) and several can be
printed on one page;

5. Flyer: these documents are used to present and advertise
products, ideas, events, among others. Generally each
document contains two pages usually printed on the front
and back sides of a sheet of paper. Both images and texts
are used in such kind of document;

6. Brochure: this document usually consists of a large num-
ber of pages rich in images and text. At the end of print-
ing, the pages of a brochure document will be assembled
in order to form a kind of booklet;

7. Newspaper: document containing information and news
headlines. This document type can have one or more
pages, each one containing texts and images;

8. Poster: this type of document has typically only a large
size page. A poster can contain only images, only texts
or a mix of both.

For our experiments, 20 customers jobs used in PSPs
were chosen among these 8 types as input documents. These
jobs not only have documents with text and images, but also
documents with graphical objects, such as paths and shading
patterns (introduced later in Sect. 4.1). The full list of jobs
is presented in Table 1, highlighting their characteristics.

The selected set of documents presents a large variabil-
ity in number of pages, text and images. It represents a wide
range of different rip computational costs. This high vari-
ability reflects the reality of most small to mid sized PSPs
where jobs come from various customers.

4 PDF profiler

The PDF Profiler has been developed to analyze a PDF
document and to extract the relevant information needed to
optimize the ripping phase. The tool is implemented using
the PDFBox Java library [15] to navigate and find PDF el-
ements. Some studies were performed analyzing the PDF
format [3, 17] to overcome the existing issues of the ripping
phase but none employed a profiling and “cost” metrics. The
main objective of the PDF Profiler is to gather the necessary
information about the input PDF documents which will be
used to estimate their computational costs (Sect. 5).

This section first introduces an analysis of the PDF for-
mat and its main objects which will be manipulated by the
PDF Profiler. After that, the profiler architecture is described
and each one of its modules is explained. Finally, an evalua-
tion of the profiler additional computational cost against the
ripping process is introduced.

@ Springer

L.G. Fernandes et al.

150
Letter Newsletter Card
QWP Banner text
s tSWT&T/MT - text, text
ext, text, text, text, text, text
text, text, text, text, h lg:t TZ:((T
text, text, text, text, ; text, text Postcard
text, text, text, text, 1] text, text B
text, text, text, text, Z text, text Background [:I
text, text, text, text, text, text Fi
text, text, text, text — ' gure
i text, text,
— text, text,
text, text, text, text, text, text text, text
text, text, text, text, ey text, text
text, text, text, text, 2 text, text
text, text, text, text, O | text, text text, text,
text, text, text, text, Z | text, text text, fext,
text, text, text, text text, text text, text,
y text, text,
S‘W Footnote J text, text
Brochure

text, text,
text, text

]

text, text, text,
text, text, text,
text, text, text,

text, text, text,
text, text, text,
text, text, text,
text, text, text,

Flyer

Figure

text, text, text

Newspaper

text, text
text, text

[]

text, text
text, text

text, text
text, text

Poster

Figure

text, text, text,

text, text, text, text, text, text,

Fig. 1 Examples of the analyzed document types

4.1 PDF format objects

In an effort to identify metrics for predicting the computa-
tional cost of the PDF jobs, it is indispensable to better un-
derstand what are the PDF objects and how they influence
the ripping of each job. Therefore, the PDF format was stud-
ied in detail in order to provide a better understanding of its
objects and how they can be represented by such metrics.

The PDF format is a document description language that
uses vector graphics to represent the content, providing sev-
eral advantages to the PSPs, such as the document resolution
independence. The PDF specification [1] has specific com-
mands to define or use primitive types, for instance, integer
and floating point numbers, strings, boolean values, etc. Fur-
thermore, through the usage of these commands, it is also
possible to define and to utilize the elements which will be
painted on the pages of a document.

The objects can be classified into 5 distinct subtypes:

— path objects: represent arbitrary shapes, trajectories, re-
gions and paths;

— external objects (xObjects): represent elements that can
be reused. Three subtypes of xObjects are available:

@ Springer

text, text, text
text, text, text

A text, text, text

text, text, text

— images xObjects describe bitmap images, that use a
pixel matrix in order to present the content;

— postscript xObjects define the content based on PS
commands. These objects are no longer used on the
PDF format;

— groups (form) xObjects define groups of graphic ob-
jects, used to set common properties to the objects
within the group.

— inline image objects: define an image directly in the con-

tent stream of the PDF, which cannot be reused. This ob-
ject has several limitations, of which the most relevant one
refers to the image size;

— shading pattern objects: describe a geometrical shape that
has its color defined by an arbitrary function;

— text objects: describe the text portions of a document. This
includes text formatting and content characteristics, such
as: font, size, space between characters, etc.

Moreover, the PDF format provides various ways to per-
form geometrical transformations (in order to scale, skew
and rotate the objects) and the application of transparency

Job profiling and queue management in high performance printing

Table 1 Jobs characteristics

Job Documents Pages Images Pages with text
Brochure 1 9 108 162 108
Brochure 2 200 1000 1800 1000
Brochure 3 300 600 2700 600
Card 1 400 200 800 200
Card 2 40 40 40 40
Flyer 1 80 160 320 160
Flyer 2 100 200 400 200
Flyer 3 250 500 750 500
Flyer 4 75 150 150 150
Letter 1 130 390 130 390
Letter 2 400 800 800 800
Letter 3 90 450 0 450
Newsletter 1 220 440 3740 440
Newsletter 2 170 340 680 340
Newspaper 1 400 400 2000 400
Newspaper 2 150 900 2700 900
Postcard 1 500 250 4000 250
Postcard 2 20 40 120 40
Poster 1 500 500 2000 500
Poster 2 70 70 140 70

(opacity reduction). These features are obtained throughout
the definition of the graphics state.

4.2 Profiler architecture

The PDF Profiler is capable of extracting a copious amount
of information from the input document. This information
comes from the number of objects and their related prop-
erties, the number of pages and their corresponding sizes.
Therefore, this tool can provide an in-depth analysis of the
PDF documents, if necessary. Clearly this has a computa-
tional cost which is directly proportional to the amount of
information that will be extracted. Thus, it is important to
find a compromise between the amount of information ver-
sus the speed of analysis. For such purpose, the PDF Profiler
receives as input a XML (Extensible Markup Language) [4]
file configuring the level of details of the profiling informa-
tion returned. Figure 2 illustrates the architecture and com-
ponents of the Profiler and the existing relationship between
them.

The GRestore and GSave modules are directly related to
the graphics state scope. In a PDF document, graphics states
can be restored and saved (see Sect. 4). The last defined
graphics state is the one that will be applied to the graphic
objects. These two modules handle this control by using a
stack, piling up the graphics states whenever they are saved
and removing from the top the first one whenever there is a

PaintXObject \

151
PDF

input - Profiler Modules - ------ ‘
file i |
| ‘ GSave I :
L, / ; ‘ GRestore ‘ 3
Profiler /, 1
\‘ |
— \ ‘ TextShow ‘ 1

Fig. 2 PDF Profiler architecture

restore command. Thus, the top of the stack will always rep-
resent the current graphics state being applied to the graph-
ics objects. With this kind of control, it is possible to check
for every graphic object that it is being verified whether it is
transparent or not.

The TextShow module evaluates if the current page in-
cludes text or transparent text. This module is instantiated
whenever there is text being painted on the PDF document.
Once created, it checks the current graphics status to verify
if there is any transparency being applied. If it is the case,
the current page is marked with the presence of transparent
text.

The Paint xObject module deals with the image xOb-
jects. Its main goals are (i) to check if the xObject is be-
ing reused or not, (ii) to verify if it is transparent or not and
(iii) to retrieve the objects area. In order to accomplish the
first function, this module contains a map with the already
painted images. Thus, whenever a new image is painted, it
first checks this map to verify if the image is being reused
or not. In the case where it is the images first instance, that
image is inserted on the map and the xObject is marked as
non-reused. Otherwise, the object is marked as reused to ver-
ify if transparency is being applied or not, the graphics state
is recovered from the stack and evaluated.

Finally, the PDF Profiler recovers all the properties of
the image xObject, through the xObjects dictionary using
the name of the object (which is mandatory in the paint-
ing command). Then, the tool picks the width and height of
the image from the recovered properties in order to prop-
erly calculate the area. With all the tasks completed, this
module adds the computed value to the right accumulator:
transparent reusable images area, non-transparent reusable
images area, transparent non-reusable images area or either
non-transparent non-reusable images area.

4.3 Profiling cost

This section introduces an evaluation of the profiling time
against the total ripping time. Table 2 shows the times

@ Springer

152

L.G. Fernandes et al.

Table 2 Jobs profiling cost

Job Ripping time (s) Profiling time (s) Percentage (%)
Brochure 1 41.844 4.08 9.75
Brochure 2 1907.12 5.86 0.31
Brochure 3 1399.97 4.64 0.33
Card 1 830.23 18.89 2.28
Card 2 13.402 0.92 6.86
Flyer 1 375.92 2.05 0.55
Flyer 2 276.67 0.69 0.25
Flyer 3 862.21 5.11 0.59
Flyer 4 572.58 1.41 0.25
Letter 1 841.30 2.26 0.27
Letter 2 1703.20 10.63 0.62
Letter 3 874.15 2.46 0.28
Newsletter 1~ 1614.08 14.49 0.90
Newsletter 2 879.18 7.42 0.84
Newspaper 1 1358.73 3.04 0.22
Newspaper 2 1830.28 33 0.18
Postcard 1 959.20 1.56 0.16
Postcard 2 16.47 0.96 5.83
Poster 1 877.05 10.6 1.21
Poster 2 50.004 1.54 3.08

(in seconds) obtained for the profile analysis of different
jobs, as well as the ripping time for each of them. The last
column of the table indicates the percentage the profiling
time represents when compared to the total ripping time.
Looking closely at the figures presented in Table 2, it is
possible to notice that the profiling time for some jobs is
much higher than others. This fact is directly related to the
existing number of objects in the PDF file itself (not just the
graphics). The higher the number of occurrences of these
objects, the larger is the interpretation time to convert the file
into the PDFBox library format. Two other factors impacting
the profiling time can be mentioned: (i) the size of the PDF
file (ii) the amount of images, text and pages for each job.
In most of the cases, the job profile analysis time does
not exceed 2.00% of the total ripping time. These results
confirm the viability of using the Profiler tool. However, for
some jobs like Poster 2, Postcard 2, Cards 2 and Brochure
1 the profiling time represents higher percentages of the to-
tal ripping time (approximately 3%, 6%, 7% and 10% re-
spectively). The reason for this is the fact that these jobs are
ripped in a short time, suffering proportionally much more
the influence of I/O operations during the profiling time.

5 Metrics

To estimate the computational ripping cost of a PDF job,
this section proposes several metrics. These metrics are re-

@ Springer

lated to a set of PDF objects and features which are relevant
for the ripping process. A RIP is responsible for generating
a bitmap image for each page in the input job. In order to
compose the output images, the RIP must interpret each one
of the objects within the PDF and, paint them on the corre-
sponding image.

Several metrics are proposed and experiments were car-
ried out to verify the hypotheses. These results were ob-
tained though an average of 20 executions, with the usage
of the open-source RIP converter from ImageMagick [6].
Furthermore, these results were normalized (to a scale be-
tween O and 1), generating a relevance factor for each test
case. Through these experiments it is possible to establish a
formula to calculate the computational cost associated with
each of the analyzed feature. It is important to point out that
the metrics represent an approximation of these costs and
not the exact values. The estimated cost obtained by the ap-
plication of these metrics to the information extracted from
a PDF job by the PDF Profiler gives an approximation of the
total computational cost for each job. The most representa-
tive elements to formulate metrics to evaluate a PDF job are
now presented.

5.1 Pages

The number of pages in a PDF document is directly related
to the number of images generated at the end of the ripping
process. Therefore, the higher the number of existing pages,
the higher will be the quantity of I/O operations that must
be performed by the RIPs. The cost of blank pages (with-
out any graphical objects) is now analyzed in order to verify
their impact on the overall ripping process. Distinct page
sizes have been considered (with their respective sizes de-
noted as “width x height” in pixels): Postcard (283 x 416),
Note (540 x 720), A4 (595 x 842) and Tabloid (792 x 1224).
Figure 3 presents the weighted costs obtained through the
addition of more pages in a PDF document.

To establish the ripping computational cost for a single
page, the weighted cost increment is analyzed as more pages
are added. Note that the higher are the page dimensions (or
the page area), the higher is the increment of the weighted
cost. This occurs because pages with larger areas generate a
larger output image resulting in more I/O operations.

The cost of a page is denoted as cPag,p,,, Where tPag
represents the dimensions of the corresponding page. The
approximated (average) costs obtained for the experiments
were: cPagigsvale = 0.007, cPagsqgx7o9 = 0.019,
cPagsgsy g4 = 0.026, cPagqg, 1204 = 0.053. In order to es-
tablish the cost cPag,p,, for any tPag, the smallest cost ob-
tained in the experiments has been chosen: cPagsg;41¢6- Let
area;pyg be the area of a rectangle with dimensions defined
by tPag. Therefore, the cost of a page with the size tPag will

Job profiling and queue management in high performance printing

153

Fig. 3 Blank pages 0.6

Tabloid —@—
A4 —l—
Note —>¢—
Postcard —&—

0.55 H

0.5 -

T3 VSRR S S SN S SO SN S

/15 NS RS SN N SR S S - SUU S

Relevance Factor

VIR S S S —

T S s

0.05 [

. . areapag . .
be obtained through the proportion Tredmiciie which will

result in a factor that will be multiplied by the cost. This
strategy is presented in (1) as follows:

areapyg

cPagp,, = * cPagyg3a16-)]

areang3x416

Considering the direct relation between page and the
weighted cost increment, the above equation is capable of
approximating the weighted cost. Therefore, the cost of all
pages of a given document may be calculated throughout the
sum of the cost of each page. Thus, as shown in (2), the cost
of all pages of a PDF document is obtained through the cost
of the sum of the pages sizes (denoted as tPagTot):

aredtpagTot

* cPagyg3416- 2
areazgix 416

CPagtPagTot =

5.2 Images

The following experiments take into account a PDF docu-
ment containing only one A4 page and images with different
sizes. The images are defined using xObjects due to its ca-
pability to encapsulate images with no size restrictions. The
selected image sizes were (described as “width x height”
in pixels): 1190 x 1684, 1785 x 2526, 2380 x 3368 and
2975 x 4210. The first chosen image size is twice the dimen-
sions of an A4 sized page (595 x 842). Furthermore, distinct
types of images were considered, such as (high resolution)
photos and artistic images (with gradients and graphical ef-
fects), and reusability features for the xObjects.

3 4 5 6 7 8 9 10
Number of Pages

5.2.1 Non reusable images

For the experiments presented on this section, each image
object is used only once to avoid reusability. The following
image objects aspects are analyzed: coverage (area) over the
page, image dimensions, number of objects and the use of
transparency.

The first experiment carried out is the page coverage. For
this purpose, four test cases containing a single image were
created (using the dimensions previously specified), varying
its coverage percentage over the page from 1% up to 100%.
Figure 4 illustrates the obtained results.

The results indicate that the coverage of an image object
is irrelevant to the ripping process since increasing the cov-
erage percentage does not result in a higher cost. However,
the results also show that image dimensions are relevant for
such process once larger images present higher weighted
costs. The RIP must interpret the image content, convert it in
the selected output format, scale it down and finally paint the
image. All these operations are directly related to the image
dimensions.

In order to complement the previous experiment, test
cases were generated by varying the number of image ob-
jects on a single page from 1 to 8. Thus, it was possible to
discover the cost associated to an image object. In Fig. 5, it
is possible to verify that the weighted cost becomes higher
as the number of objects within a page grows. The larger the

@ Springer

L.G. Fernandes et al.

30 40 50 60 70 80 90 100
Coverage Percentage

2975x4210 —a&— j j j j ‘ j

0.7 [

154
Fig. 4 Images coverage
0.5 T T
1190x1684 —@—
1785x2526 —il—
2380x3368 —>¢—
2975x4210 —A—
045 -
S
o
@©
(T8
8 035
®©
>
Ko}
[0]
12
0.2 Il Il
0 10 20
Fig. 5 Number of image .
objects 1 L| 1190x1684 —@—
1785x2526 —l—
2380x3368 —»¢—
09
S
o
©
(T8
Q
[&]
& 06
>
K
Q
0.2 i |
0 1 2

area of the inserted object, the higher the increment on the
weighted cost.

The method previously established defines the cost of an
image object, with size tIm. The cost of the image objects of
a PDF can be obtained from the sum of the individual cost
for each object. Thus, the total cost can be obtained through
the cost of the sum of the #/m sizes of the objects (denoted

@ Springer

3 4 5 6 7 8
Number of Objects

as tImTot) as follows:

aredmTot

clmymtor = * clmy190x 1684- (3)

area190x 1684
The application of transparency over the graphic objects
is the last aspect to be evaluated. In order to perform this
analysis, experiments were carried out considering two dif-

Job profiling and queue management in high performance printing

155

Fig. 6 Transparent image 08
objects ' ; -
1190x1684 10% Opacity —@—
0.75 L| 1190x1684 30% Opacity ——
: 1190x1684 50% Opacity —¢—
1190x1684 70% Opacity —a—
0.7 H 1190x1684 90% Opacity
1785x2526 10% Opacity —&—
1785x2526 30% Opacity —H=—
0.65 || 1785x2526 50% Opacity
1785x2526 70% Opacity —&—
1785x2526 90% Opagcity —&—
0.6 - - -
S
S : : :
e S S
Q
[S]
j H H H
g 0.5 [
Qo
[0
¥ ; ;
045 [o
0.4 |
0.35 [
0.25 !
0 1

ferent image sizes with 5 different levels of opacity each.
Figure 6 shows the obtained results.

Comparing the results of experiments with dimensions
1190 x 1684 and 1785 x 2526 in Fig. 6 with the results pre-
sented in Fig. 5 for the same images, it is possible to observe
that the application of transparency increases the weighted
cost. On the other hand, it also can be noticed that the degree
of opacity does not affect the computational cost of a given
image. The additional cost associated to transparency is re-
lated to the composition of the color of transparent objects
based on their color overlapping with page and other objects
colors. Furthermore, it can be seen that the larger the area of
the transparent object, the greater is the associated weighted
cost. Applying the same strategy, based on the increment of
the weighted cost, is possible to define the cost for comput-
ing a transparent image object as cImTj, 7. Thus, similarly
to the image objects without transparency, this factor can be
calculated as =T and the total cost of transparent im-

1190x 1684
age objects can be obtained through the cost of these objects
total size tImTTot, as follows:

areagmTTot

areaioox1684

cImT iyt = * cImT 1190% 1684 - “4)

5.2.2 Reusable images

The test cases presented in this section are based on a single
image reused as many times as necessary (implemented as
a single instance of an image xObject previously defined).
This makes it possible to analyze the impact of the reusabil-

3 4 5 6 7 8
Number of Objects

ity feature on the ripping computational cost. The obtained
results are presented on Fig. 7.

As it can be noticed, the results presented follow the same
behavior of the ones without reusability, however the cost
added as more objects are inserted is lower. Let the cost of
reusable objects be denoted as cRe;g.. Considering that once
again there is a relation between the area of the added object
with its associated cost, the total computational cost of ob-
jects can be computed by the cost of the object sizes sum.
Therefore, tReTot refers to the total size of the reused ob-
jects. Equation (5) demonstrates how the cost for such ob-
jects is computed:

aredReTot

cReReTor = * CRe1190x 1684-)

aredair90x 1684

The same way as for the objects without reusability, some
experiments were carried out considering the application of
transparency for the reusable objects. Figure 8 illustrates the
obtained results.

The presented graph demonstrates that for the reusable
objects with transparency the same increase of the weighted
cost could be observed. Applying the same methodology
as before, the total cost of the transparent reusable objects
can be computed though the cost of the sum of their sizes
(tReTTot), as demonstrated on (6) as follows:

arediReTTot

———— * cReT1190x 1684- (6)
areai190x 1684

cReT' R0t =

@ Springer

156 L.G. Fernandes et al.
Fig. 7 Reusable image objects 085
. I I T T T T T
1190x1684 —@— i
0.8 |H 1785x2526 —l— E
2380x3368 —¢—
2975x4210 ——d—
0.75 HL=2° ‘ i
0T Z2 S S SO 4
£ 06} -
©
L : : :
8 055 b s
j
©
8 05k N
2 .
& :
0.45 i s
04 | .
0.35 |y -
03| .
0.25 oo T .
2 3 4 5 6 7 8
Number of Objects
Fig. 8 Transparent reusable 07
. . . T T T T T T T
image objects 11901684 10% Opacity —@—
1190x1684 30% Opacity —ill—
0.65 1190x1684 50% Opacity —>6— i
’ 1190x1684 70% Opacity —&—
1190x1684 90% Opacity
1785x2526 10% Opacity ——
0.6 Ll 1785x2526 30% Opacity —B— i
“© [1785x2526 50% Opacity
1785x2526 70% Opacity —&—
1785x2526 90% Opacity —&—
o 055 [.
o
[$]
©
[T
8 o5t -
®©
>
<
Q
e .
04| & .
0.35 |t -
03 i i i i i i i

5.3 Texts

Document personalization usually involves text change and
re-flow. In PDF, the text content is represented using text ob-
jects. The variability of text objects is represented through
the amount of contained text, font sizes and the applica-
tion of transparency. Tests files have been created using A4

@ Springer

4 5 6 7 8
Number of Objects

page(s) and 70 individual fonts, applying bold, italic or both
styles. Overall, about 200 tests for each feature have been
analyzed. In order to illustrate the obtained results, 10 fonts
(representing the common behavior among all test cases)
have been chosen.

The first aspect considered was the impact on the rip-
ping cost when the amount of text in a PDF document is

Job profiling and queue management in high performance printing

157

Fig. 9 Text amount

Hira Min Pro W3 e N

Verdana Bold alic ——@—— |-

e L e e e —

0.07 T T
Arial —@—
Comic Sans Bold —ill—
Courier New ltalic —>¢—
Georgia Bold ltalic —#&—
0.06 H
Koz Go Pro Bold —&—
Tahoma —H—
Times New Roman ltalic
Trebuchet Bold —&—
0.05 -
S ‘
|8} :
© :
(TR :
§ 0.04
©
> ; ; ;
< : : :
[0
e & o ‘
0.03 (S —— ~ —©-
0.01 i i

XS G

increased. Figure 9 demonstrates the obtained results. It is
worth mentioning that for these experiments a phrase corre-
sponds to a text object.

Although the presence of text has a higher influence on
the ripping time compared to the blank page test cases (as
illustrated in Fig. 3), the amount of text objects does not in-
dicate any substantial impact on the ripping computational
cost. This can be observed in Fig. 9, in which it can be seen
that the increase in text objects does not show any change
in performance for the 10 test cases. Additional experiments
varying the font sizes (from 10 to 100 points) indicate that
the font size does not affects the ripping time since the
weighted cost remains the same for all font sizes tested.

Another finding is the existence of three different font
groups in terms of computational cost. The first group
presents the highest computational cost and includes 5% of
all the fonts tested (e.g., Hira Min Pro W3). The second
group represents 9% of the tested variations (such as Koz Go
Pro Bold) with a medium influence on the weighted cost. Fi-
nally, the third group is composed of 86% of the font types
and represents the smallest influence on the weighted cost.

These differences among the fonts weighted costs is re-
lated to each font design and amount of details. Documents
may present several font variations and therefore the anal-
ysis of font complexity could compromise the metric defi-
nition process. In order to simplify this scenario, a constant
cost for each page will be assigned when the presence of
text is detected, independently of the number of text objects
and fonts. This cost will be obtained through an overall av-
erage of the individual costs for each of the three previously

40 50 60 70 80
Number of Objects

mentioned font groups. Thus, a cost c¢Txt = txt is going to
be computed in the presence of text on a page of the PDF
document. In order to find out the approximated value of £xt
for the different groups, experiments using a fixed number
of text objects and a variable number of pages (from 1 to 5)
were generated. These results are shown in Fig. 10.

To evaluate the text influence on PDF ripping process, the
page cost was discarded. Analyzing the remaining cost, it is
clear that it increases as more pages with texts are ripped.
Dividing this partial cost by the number of pages, the 86%
group presented a per page cost of 0.042, the 9% and 5%
groups indicate a higher cost per page of 0.061 and 0.088
respectively.

Using these results, it is possible to obtain a single
cost for the presence of text using a weighted average:
cTxt = 0.012. Furthermore, the total cost of text (denoted as
cTxtTot) for np pages can be calculated using (7) as follows:

np
cTxtTot = Z 1xt.

i=1

(N

The next step was to evaluate the impact of transparency
over text objects. Different opacity values were tested using
a fixed number of objects (80 objects). The obtained results
are presented in Fig. 11. This graphic indicates no relation
between the weighted cost and the applied opacity value,
presenting a similar behavior to the image objects. On the
other hand, transparent text does increase the weighted cost.
In order to evaluate which is the impact of transparency over
text objects, tests were carried out varying the number of

@ Springer

158

L.G. Fernandes et al.

Fig. 10 Texts and pages

0.75 T T T T T
Arial —@— : : :
0.7 Comic Sans Bold —ill— 7
Courier New ltalic —>¢—
0.65 |- Georgia Bold Italic —#—]
Hira Min Pro W3 —&—
0.6 | Koz Go Pro Bold —&— R
Tahoma —H—
0.55 | Times New Roman ltalic 4
Trebuchet Bold
05 F Verdana Bold Italic —&— i
€ o045f .
©
(TR
® 04 -
o
j
g o035} -
Qo
[0]
4 03 - _
0.25 - _
0.2 | -
0.15 - —
0.1 —
0.05 - : : : e ; -
i i i i i
1 2 3 4 5
Number of Objects
Fig. 11 Text transparency 007 — : : ' : : : :
Arial —@— : : :
Comic Sans Bold —ill—
0.065 - Courier New ltalic —>¢— i
’ Georgia Bold Italic ——&—
Hira Min Pro W3 —&—
Koz Go Pro Bold —&—
0.06 - Tahoma —H— .
’ Times New Roman ltalic ; ; i
Trebuchet Bold : : :
Verdana Bold Italic —&— : : :
- ‘ A é é)R 4— o 5
8 ¢ + ¢ e e 7 : b M
© : : : : : :
el
2 0.05 - i
£ : : : :
2 : : : :
2 o—= © o—o ® o © o
0.045 | ‘ ‘ i
0.035 - .
003 I 1 1 1 1 1 1 1 1

20 30 40 50 60 70
Opacity Percentage

80 90

pages with transparent text. These results are illustrated in
Fig. 12.

For the three established font groups, the following per
page costs were obtained: the 86% group transparency cost
was 0.092 while the 9% and 5% groups indicate a higher
cost of 0.127 and 0.154 respectively. Comparing these re-
sults to the one without transparency, it can be evinced that

@ Springer

the use of transparency doubles (incTxt = 2) the weighted
cost. Thus, the texts cost with and without transparency can
be computed as follows:

np
cTxtTot = Z txt + (tri * (incTxt — 1) * txt).
i=1

®

Job profiling and queue management in high performance printing

159

Fig. 12 Page and text

1 T

0.75 || Times New Roman ltalic S DUt S B

Arial —@— | . A
Courier New ltalic =€ |- b
Hira Min Pro W3]

transparency
0.95 1 Comic Sans Bold —il—
0.9 H
Georgia Bold Italic —#&—
0.85 |-
08 L Koz Go Pro Bold —&—
: Tahoma —H—
Trebuchet Bold —&A—
0.7 H Verdana Bold Italic —&— :
B 085 [
[$]
©
[T
[0}
Q
C
©
>
K : : :
B 045 [o
. Semm—
0.35 [t b
0.3 b o
0.25 [t
0.2 [
015 fm
0.1 i

The variable tr; indicates the existence or not of text
transparency in page i. The value O is assumed in the case
that there is no text transparency in page i, otherwise the
value 1 assumed.

5.4 Total computational cost

The experiments presented until this point define the indi-
vidual costs for different objects and pages in a PDF docu-
ment. However, the goal is to estimate a computational cost
associated to the whole PDF document (or job), providing
an approximation of the total computational ripping effort.
Equation (9) combines the individual costs to obtain the final
cost of a PDF document, denoted as cDoc:

cDoc = cPagpaery + CIMuimtor
+ cImT ymTT0r + CRE1ReTOL

+ cReT geTror + cTxtTot.)

6 Metrics evaluation

The total cost introduced in (9) was validated using the same
customers jobs previously described in Sect. 3 (Table 1).
Aiming at a more accurate simulation, the hardware used
in these tests is very similar to the one usually used in real
PSPs: a cluster of blades composed by 5 nodes, in which,
each node contains a Intel Xeon 3.0 GHz processor (64-bit
quad-core), with 8 GB of RAM and 400 GB of disk. Each

2 3 4 5
Number of Pages

core was considered as an active processing unit, enabling
up to 20 processes simultaneously (four per blade). The
blades are connected through a Gigabit Ethernet. The oper-
ating system used is Windows Server 2003 R2 Standard x64
Edition, which is the one used in the printing environments
due to its compatibility with several industrial RIPs.

Despite Java is not usually employed in high performance
programming, in the last decade this language has already
been used by researchers in this field (such as [5]). Further-
more, Java offers some advantages like portability, extensi-
bility and high level of abstraction. Moreover, in this work
the native support for the PDFBox library was a consider-
able benefit. Therefore, the scheduling approaches described
in Sect. 2 are implemented in Java using the JDK (Java De-
velopment Toolkit)1.5_16 amd64 version and MPJE (MPJ
Express) [10], which is an implementation of the MPI (Mes-
sage Passing Interface) [8] standard for Java language and
presents a similar performance when compared to libraries
such as MPICH (MPI Chameleon) [9] and LAM (Local
Area Multicomputer)/MPI [7].

So far, several metrics for calculating a PDF job compu-
tational cost have been presented through experimental test
cases. Such metrics should now be validated over real cus-
tomer jobs. Thus, the selected jobs were executed (ripped)
sequentially, obtaining an execution time for each one of
them. With these results, it is possible to compare the real
computational cost to the estimated execution time, verify-
ing if the proposed metric is consistent with the real costs.
These results are shown in Table 3 where jobs are sorted by
the decreasing order of computational cost. It is worth men-

@ Springer

160

L.G. Fernandes et al.

Table 3 Ripping time and estimated cost

Job Ripping time (sec) Estimated computational cost
Brochure 2 1907.12 90.07
Newspaper 2 1830.28 89.73
Letter 2 1703.20 80.98
Newsletter 1 1614.08 71.97
Brochure 3 1399.97 51.34
Newspaper 1 1358.73 49.61
Postcard 1 959.20 40.02
Flyer 3 862.21 39.52
Poster 1 877.05 39.44
Letter 1 841.30 36.43
Card 1 830.23 36.36
Newsletter 2 879.18 35.21
Letter 3 874.15 35.00
Flyer 4 572.58 25.55
Flyer 2 276.67 17.09
Flyer 1 375.92 16.38
Poster 2 50.00 6.81
Brochure 1 41.84 6.76
Postcard 2 16.47 2.38
Card 2 13.40 2.15

tioning that each job was executed 20 times, and the com-
putational time shown in the table is actually the average of
these executions.

It is possible to observe that the proposed metric in gen-
eral provides a satisfactory estimation of the job cost. Based
on these results, it is possible to detect different levels of
estimated computational costs among the jobs which were
correctly described by the metric values. Thus, the use of
the proposed metric makes possible the distinction of high
cost jobs from those that have a small computational cost.

However, when costs are similar, it is possible to observe
some incorrect estimations. This situation can be observed
in the jobs Flyer 1, Newsletter 2 and Letter 3, which present
a high execution time but a low estimated cost. This may
be caused by the existence of PDF objects not considered
in the metrics formulation, for example, paths and shading
pattern objects. These objects may represent an additional
ripping computational time, which is not estimated in the
proposed metrics. However, even with this additional com-
putational cost in some jobs, the metric is able to give a valid
cost estimation for the jobs, and therefore can be applied for
predicting the ripping effort for each job.

7 Queue management

The computational costs estimated through the application
of the PDF Profiler tool are used in this section to illustrate

@ Springer

Queue Manager

jobs queue

Fig. 13 One RIP per job

how the (re-)organization of the printing jobs queue can re-
sult in a better utilization of the RIPs, consequently offer-
ing an increased ripping phase performance. New schedul-
ing and load balancing strategies are not in the scope of this
work. The experiments presented in this section are an ex-
ercise to evaluate the printing jobs queue management over
the existent parallel RIP strategies. Based on that analysis,
some directions will be proposed on how to use the com-
putational cost predicted by the metrics to allocate jobs in a
clever way.

First of all, this section introduces the current available
parallel RIP strategies. After that, the experiments environ-
ment scenario is described (printing jobs queue and con-
figuration of multiple RIPs). Following, the obtained re-
sults are presented for each individual existing ripping strat-
egy. Finally, a discussion about the obtained results points
out some interesting conclusions, identifies the benefits and
drawbacks of re-organizing the printing queue and points
out some directions about how to use this information to
guide the design of the Adaptative Job Router tool.

7.1 Current parallel ripping strategies

The current strategies based on parallel and distributed sys-
tems in traditional RIP environments are based on several
RIPs being applied together to rip a given queue of jobs in
parallel. Three strategies usually used in such environments
are introduced in this section.

7.1.1 Strategy 1—one RIP per job

The first strategy is illustrated in Fig. 13. Through the ap-
plication of this configuration, each RIP processes a whole
job. In this case, there are two situations that may happen:
the load distribution is unfair or several RIPs are left idle.
This type of setting works well only for a constant and large
queue of small jobs with large reusability;

7.1.2 Strategy 2—all RIPs allocated to one job

Strategy 2 is a “brute force” approach (Fig. 14), in which
each RIP asks for more work, whenever it becomes idle.

Job profiling and queue management in high performance printing

161

Queue Manager

jobs queue :

s
l RIP1| |RIP2

Fig. 14 AIll RIPs to one job

page(s) or
ragment(s)

: RIPl RIP RIP3: : ws : . | R RIP :
: : ‘n-2) Ln1 ’

RIP group 1! RIP group 2 ! ! RIP group m |

page(s) or
fragment(s)

Fig. 15 Fixed RIPs per job

This strategy works well with jobs that present low reusabil-
ity and demand high computational effort. On the other
hand, in a mixed job environment, where many of these jobs
may be quickly processed, it is really counterproductive.

7.1.3 Strategy 3—fixed RIPs per job

Strategy 3 configuration (Fig. 15) is based on the fact that an
“average” job requires a certain number of RIPs to be suc-
cessfully consumed at engine speed. As any static configura-
tion, it only works if the PSPs work with some specific types
of jobs. Furthermore, a set of RIPs will only be allocated for
a new job when all the RIPs of the group are idle, i.e., at the
moment that the current job is fully processed.

7.2 Experiments description

Clearly, there is a multitude of possible queues configura-
tion and RIP farms scenarios which could be tested. How-
ever, this work does not intend to perform exhaustive ex-
periments. The intention is to investigate whether or not the
metrics are useful to improve the ripping task through the
re-organization of the printing jobs queue.

Two queues configuration were chosen to be used in the
experiments. They have the same set of documents, but are
organized differently. The first queue is not organized by the
estimated costs obtained through the metrics. The position
of the jobs in the queue is the same as the one presented
in Table 2. From now on, this queue will be referred as the

random queue. The second queue (estimated cost queue) is
organized using the metrics as it can be seen in Table 3.

The RIP farm scenario used in the experiments is com-
posed by four independent RIPs. They all share the same
hard disc in which the document jobs are stored. On the
other hand, the results of each RIP unit are written on a lo-
cal disk (to avoid extra communication costs) and is directly
transmitted to its associated printer.

The adopted methodology for the experiments is to apply
the three current parallel ripping strategies for both queue
configurations over the RIP farm scenario described above.
For each strategy, a comparison between the ripping times
for both queues (with and without the use of the metrics to
organize them) is presented.

7.3 Results

In this section, the results obtained through the use of the
three strategies for the parallel ripping over both printing
job queues (random and organized by the estimated compu-
tational cost) will be presented.

7.3.1 Strategy 1

In Strategy 1, each existing RIP will process an entire job
(Fig. 13). In this context, a scheduling implementation will
pass a job for each free RIP and as each RIP finishes its
work, it will order more tasks to the scheduler. This scenario
works well for small jobs, with high reusability, thus allow-
ing each RIP to take advantage of reusability and to finalize
the computation of their job in time to continually feed print-
ers. However, if the jobs size vary from job to job (which is
a common situation), the RIP units will be sub/over loaded,
what will also affect the performance. Table 4 shows how
the jobs would be distributed among the RIPs using the ran-
dom queue.

It is possible to observe that this load distribution is not
balanced, specially when comparing RIP 1 and RIP 4. The
total time RIP 1 is being used is 3852.93 s against 4936.29 s
of RIP 4. Actually, RIP 4 will still be ripping for 1083.36
seconds (approximately 18 minutes) longer than RIP 1. This
time difference drops considerable when the queue is or-
dered by the jobs estimated computational cost obtained
through the metrics (Table 5). The total time RIP 1 is be-
ing used is 4232.20 s against 4504.93 s of RIP 2. In this
case, RIP 1 will still be ripping for 275.66 s (approximately
4.5 minutes) longer than RIP 2. In this example, the use of
a simple scheduling strategy considering the estimated com-
putational cost of a job can reduce the idle time of the fastest
RIP in about 4 times. The adopted strategy forces the com-
putation of larger jobs first, eliminating the possibility of as-
signing a large job to a RIP and small jobs to the others when
the queue is almost empty.

@ Springer

162

L.G. Fernandes et al.

Table 4 Strategy 1—random order (times in seconds)

Table 5 Strategy 1—estimated cost order (times in seconds)

Job Ripping Ripl Rip2 Rip3 Rip4 Job Ripping Ripl Rip2 Rip3 Rip4
time time

Brochure 1 41.84 41.84 Brochure 2 1907.12 1907.12

Brochure 2 1907.12 1907.12 Newspaper 2 1830.28 1830.28

Brochure 3 1399.97 1399.97 Letter 2 1703.20 1703.20

Card 1 830.23 830.23 Newsletter 1~ 1614.08 1614.08

Card 2 13.40 55.25 Brochure 3 1399.97 3014.05

Flyer 1 375.92 431.17 Newspaper 1 1358.73 3061.93

Flyer 2 276.67 707.84 Postcard 1 959.20 2789.48

Flyer 3 862.21 1570.05 Flyer 3 862.21 2769.33

Flyer 4 572.58 1402.81 Poster 1 877.05 3646.38

Letter 1 841.30 2241.27 Letter 1 841.30 3630.78

Letter 2 1703.20 3106.01 Card 1 830.23 3844.28

Letter 3 874.15 2444.20 Newsletter 2 879.18 3941.11

Newsletter 1~ 1614.08 3521.20 Letter 3 874.15 4504.93

Newsletter 2 879.18 3120.45 Flyer 4 572.58 4218.96

Newspaper 1~ 1358.73 3802.93 Flyer 2 276.67 4120.95

Newspaper 2 1830.28 4936.29 Flyer 1 375.92 4317.03

Postcard 1 959.20 4079.65 Poster 2 50.00 4170.95

Postcard 2 16.47 3537.67 Brochure 1 41.84 4212.80

Poster 1 877.05 4414.72 Postcard 2 16.47 4229.27

Poster 2 50.00 3852.93 Card 2 13.40 4232.36

The experiments over Strategy 1 showed that the use
of an estimated computational cost to order the queue can
improve the overall ripping performance. However, if very
large jobs are present in the queue together with a high num-
ber of small jobs, it is hard to achieve good performances
since the larger job will set the final ripping time. Moreover,
another drawback in this particular strategy is the fact that
several RIPs will not be used if the number of jobs in the
queue is smaller than the number of available RIPs.

7.3.2 Strategy 2

Strategy 2 implements the idea of using all RIPs available
for a single job (Fig. 14) and each RIP will process a portion
of a given job. The scheduler will be responsible for defining
these portions, and inform each available RIP about the page
interval it should process.

Each RIP will then split the job and generate its portion
to be processed. Therefore, the split process itself is done by
each RIP, and not by the scheduler, which only define which
pages each fragment must contain. For the following exper-
iments, it is assumed that the jobs could be split in exactly n
portions, where n corresponds to the number of RIPs. This
would be the ideal situation and, considering the test case
above, the total ripping time for all jobs (17283.59 s) would
be divided by 4 (the number of RIPs available in this test)

@ Springer

resulting in 4320.09 s for each RIP. This perfect load bal-
ance is barely possible to achieve in reality for the following
reasons:

— Each portion would probably consist of a fractionary
number of pages of the job, what is not possible since
the atomic unit of a job is one page.

— If the number of pages in a given job is smaller than the
amount of RIPs, some RIPs will be idle.

— There is always the possibility to have a different number
of pages in each portion resulting in different computa-
tional costs and consequently a bad load balance.

7.3.3 Strategy 3

Finally, the third strategy requires the use of a fixed number
of RIPs () for each job. Figure 15 exemplifies this strategy
considering the situation in which each group is composed
by three RIPs. This configuration is based on the fact that the
“standard” PSPs jobs require a specific number of resources
to maintain the printers working continuously. Thus, several
groups of RIPs are available to process the jobs and each job
will be assigned to a distinct group of RIPs.

In this configuration, each job is split into r fragments
and, as in Strategy 2, the split process itself is done by each
RIP and not by the scheduler, which only defines which
pages each fragment must contain. Differently from Strat-
egy 2, jobs now have to be split among a fewer number of

Job profiling and queue management in high performance printing

163

Table 6 Strategy 3—random order (times in seconds)

Table 7 Strategy 3—estimated cost order (times in seconds)

Job Ripping time Ripl and Rip2 Rip3 and Rip4 Job Ripping time Ripl and Rip2 Rip3 and Rip4

Brochure 1 20.92 20.92 Brochure 2 953.56 953.56

Brochure 2 953.56 953.56 Newspaper 2 915.14 915.14

Brochure 3 699.99 720.91 Letter 2 851.60 1766.74

Card 1 415.12 1136.02 Newsletter 1 807.04 1760.60

Card 2 6.70 960.26 Brochure 3 699.99 2460.59

Flyer 1 187.96 1148.22 Newspaper 1 679.37 2446.11

Flyer 2 138.34 1274.36 Postcard 1 479.60 2925.71

Flyer 3 431.11 1579.33 Flyer 3 431.11 2891.69

Flyer 4 286.29 1560.65 Poster 1 438.53 3330.22

Letter 1 420.58 1981.30 Letter 1 420.65 3346.36

Letter 2 815.6 2430.93 Card 1 415.12 3745.33

Letter 3 437.08 2418.37 Newsletter 2 439.59 3785.95

Newsletter 1 807.04 3225.41 Letter 3 437.08 4182.41

Newsletter 2 439.59 2870.52 Flyer 4 286.29 4072.24

Newspaper 1 679.37 3549.88 Flyer 2 138.34 4210.57

Newspaper 2 915.14 4140.55 Flyer 1 187.96 4370.37

Postcard 1 479.60 4029.48 Poster 2 25.00 4235.57

Postcard 2 8.235 4037.72 Brochure 1 20.92 4256.49

Poster 1 438.53 4476.24 Postcard 2 8.24 4264.73

Poster 2 25.00 4165.55 Card 2 6.70 4271.43

RIPs (typically 2 or 3 RIPs per group) resulting in larger =~ Table 8 Strategies comparison (times in seconds)

jobs. In this case, larger jobs are easier to manipulate since i - -)
Job Ripl Rip2 Rip3 Rip4

they probably would be composed by several pages what
makes it easier to split them in a more balanced way.

In the following experiment, for the sake of simplicity, it
is supposed that it is possible to split the jobs equally among
2 groups composed by a pair of RIPS. Considering the queue
ordered in a random way as presented in strategy one, Ta-
ble 6 presents the sequence that the jobs would be assigned
to the RIPs. When comparing the total ripping time needed
for each group of RIPSs, a difference of 310.76 s (approx-
imately 5 minutes) is found. This time can be reduced by
reorganizing the queue by the jobs estimated cost.

According to Table 7, when using the estimated costs, the
difference between RIPs groups drop down. The total time
for the group formed by RIPs 1 and 2 is 4370.37 s against
4271.45 for the group with RIPs 3 and 4. This means the
RIPs 1 and 2 will be still ripping for only 98.92 seconds
(approximately 1.5 minutes) longer than RIPs 3 and 4. That
can be explained by the fact that a reduction of the size of
the job leads to a better load balance among the RIPs. At
this point, it is important to remember that this experiment
supposes the jobs are always divided in two equal portions,
what is barely possible in reality. However, as stated before,
a well balanced division of the workload can be obtained
with larger jobs over a few number of RIPs in a group. In
fact, this is essential, since this strategy will only work as
expected if the jobs have a similar computational cost.

3852.93 441472 4079.65 4936.29
423236 4504.93 4317.03 4229.27
4165.55 4476.24
4370.37 4271.43

Strategy 1—Random
Strategy 1—Estimated cost
Strategy 3—Random
Strategy 3—Estimated cost

The major drawback of Strategy 3 is the fact that the RIPs
will only be allocated for a new job when all RIPs in a group
are free (i.e., at the time the current job is completely pro-
cessed by the group). Therefore, some RIPs of a group can
be idle, while others of the same group did not finish com-
puting their portions, under-using the resources available.

7.4 Discussion

Table 8 introduces a comparison between the total ripping
time of Strategies 1 and 3 computing both queues (Strategy 2
is not considered since it is only possible with a fine control
of the jobs split procedure).

The smallest difference between the fastest and the slow-
est ripping units is achieved using Strategy 3 over the or-
dered queue by estimated cost. It is again Strategy 3 that
presents the fastest overall ripping time among all configu-
rations (4370.37 s).

@ Springer

164

L.G. Fernandes et al.

Fig. 16 Adaptive Job Router

Profiler i

. 1qb queue

»

A 4

Adaptive

XML file

(Profiler output)

Job Router

page(s) or
fragment(s)

bitmaps

Another interesting observation is that Strategy 3 applied
to the random queue is faster than Strategy 1 over the or-
dered queue. This indicates that not only the queue manage-
ment is important to improve the throughput, but also the
chosen parallel ripping strategy clearly affects the ripping
performance. Finally, in between Strategies, it can be no-
ticed that the ordered queue always outperforms the random
queue in terms of a better utilization of the resources.

The previous experiments suggest some elements that
should be considered in a future dynamic scheduling ap-
proach:

— the idea of splitting a job in smaller portions leads to a
better load balance among the RIPs;

— on the other hand, too small jobs lead to too small portions
which can harm the performance since it is harder to split
the jobs in a balanced ways;

— the estimated computational cost of a job can be used to
organize a queue to achieve better load balance.

8 Conclusion and future works

Characteristics and objects of PDF jobs were analyzed to
define metrics to allow the estimation of the computational
cost to rip PDF documents (or jobs). The results obtained so
far indicate that the proposed metrics are a reliable way to
weight the ripping cost.

Using the PDF Profiler tool, it is possible to gather the
necessary information to find the complexity of a job when

@ Springer

the metrics are applied. The estimated cost could be used by
the Adaptive Job Router (as illustrated in Fig. 16) to orga-
nize the processing queue and thus improve the overall load
balance.

A further research topic would be to optimize the Adap-
tive Job Router in such a way it could schedule the docu-
ments and re-order the queue when appropriate in order to
improve the overall throughput. The system also could work
based on the concept of preemptive queues. The Adaptive
Job Router would decide the best order for the queue while
performing the profiling for each job. For this approach to
be successful, it is crucial to assign a priority for each job
based on its processing weight. Also, this application would
be able to decide how many processing resources are nec-
essary to rip a single job at engine speed. Thus, we believe
the metrics defined in this work are suitable to address the
queue management needs.

Finally, the advantages introduced with the new page al-
location strategy would need to be weighted against the pro-
filing overhead. Also it is important to identify where the job
can be profiled with the least impact in the workflow.

References

1. Adobe Systems (2003) PDF Reference, 4th edn. Adobe Systems
Incorporated, San Jose

2. Davis P, deBronkart D (2000) PPML (Personalized Print Markup
Language): a new XML-based industry standard print language.

Job profiling and queue management in high performance printing

165

12.

13.

14.

15.

16.

17.

In: XML Europe 2000, pp 1-14, Paris, France. International Dig-
ital Enterprise Alliance

Déjean H, Meunier J-L (2006) A system for converting PDF doc-
uments into structured XML format. In: DAS’06: Proceedings of
the 7th International Workshop on Document Analysis Systems,
Nelson, New Zealand. LNCS, vol 3872. Springer, Berlin, pp 129-
140

Extensible Markup Language (XML Home Page) (2009) Ex-
tracted from http://www.w3.org/XML, 30th November, 2009
Getov V, Hummel SF, Mintchev S (1998) High performance paral-
lel programming in Java: exploiting native libraries. Concurr Pract
Exp 10(11):863-872

ImageMagick Home Page (2009) Extracted from http://www.
imagemagick.org, 30th November 2009

LAM/MPI Home Page (2009) Extracted from http://www.lam-
mpi.org/, 30th November 2009

MPI Home Page (2009) Extracted from http://www.mpi-forum.
org/, 30th November 2009

MPICH Home Page (2009) Extracted from http://www-unix.mcs.
anl.gov/mpi/mpich/, 30th November 2009

MPJ Express Home Page (2009) Extracted from http://mpj-
express.org/, 30th November 2009

. Nunes T, Giannetti F, Kolberg M, Nemetz R, Cabeda A, Fernandes

LG (2009) Job profiling in high performance printing. In: ACM
DocEng’09: Proceedings of the 9th ACM Symposium on Docu-
ment Engineering, Munich, Germany. ACM, New York, pp 109-
118

Nunes T, Raeder M, Kolberg M, Fernandes LG, Cabeda A, Gian-
netti F (2009) High performance printing: increasing personalized
documents rendering through PPML jobs profiling and schedul-
ing. In: IEEE CSE’09: Proceedings of the 12th IEEE International
Conference on Computational Science and Engineering, Vancou-
ver, Canada. IEEE Comput Soc, Los Alamitos, pp 285-291
Nunes T, Fernandes LG, Giannetti F, Cabeda A, Raeder M, Be-
din G (2007) An improved parallel XSL-FO rendering for per-
sonalized documents. In: Euro PVM/MPI’07: Proceedings of the
14th European PVM/MPI Users Group Meeting. Recent advances
in parallel virtual machine and message passing interface, Paris,
France. LNCS, vol 4757. Springer, Berlin, pp 56-63

Nunes T, Giannetti F, Fernandes LG, Timmers R, Raeder M, Cas-
tro M (2006) High performance XSL-FO rendering for variable
data printing. In: ACM SAC’06: Proceedings of the 21st ACM
Symposium on Applied Computing, Dijon, France. ACM, New
York, pp 811-817

PDFBox Home Page (2009) Extracted from http://www.pdfbox.
org, 20th March 2009

Purvis L, Harrington S, O’ Sullivan B, Freuder EC (2003) Creating
personalized documents: an optimization approach. In: ACM Doc-
Eng’03: Proceedings of the 2003 ACM Symposium on Document
Engineering, Grenoble, France. ACM, New York, pp 68-77

Yuan F, Liu B, Yu G (2005) A study on information extraction
from PDF files. In: ICMLC’05: Proceedings of the 4th Interna-
tional Conference Advances in Machine Learning and Cybernet-
ics. LNCS, vol 3930. Springer, Berlin, pp 258-267

Luiz Gustavo Fernandes is an
Associate Professor of the Post-
graduate Computer Science Pro-
gram (PPGCC) at the Pontifical
Catholic University of Rio Grande
do Sul (PUCRS), Porto Alegre,
Brazil. His primary research in-
terests are Parallel and Distributed
Computing, High Performance Ap-
plications Modeling, Document En-
gineering and Performance Evalu-
ation. Dr. Fernandes received his
Ph.D. in Computer Science from the
Institut National Polytechnique de
Grenoble, France, in 2002. He cur-

rently leads the Parallel Applications Research Group (GMAP) at PU-

Thiago Nunes joined Thought-
Works in 2009 (Porto Alegre, Brazil
office). His primary research in-
terests are Parallel and Distributed
Computing, Performance Evalua-
tion and Software Engineering. Thi-
ago received a Master Degree in
Computer Science from the Pon-
tifical Catholic University of Rio
Grande do Sul (PUCRS), Brazil, in
2009, whilst he was a member of
the Parallel Applications Research
Group. Currently, he is working
with agile methodologies and dis-
tributed enterprise applications.

Mariana Kolberg is an Associate
Professor at the Universidade Luter-
ana do Brasil (ULBRA), Canoas,
Brazil. In 2009, she was a research
assistent financied by HP at the Pon-
tifical Catholic University of Rio
Grande do Sul (PUCRS). Dr. Kol-
berg received a Ph.D. in Computer
Science from Pontifical Catholic
University of Rio Grande do Sul
(PUCRS), Porto Alegre, Brazil in
2009. During her PhD, she spent

b’ two years at Karlsruhe University,

Germany. Her primary research in-
terests are Verified Computing, In-

terval Arithmetic, Parallel Computing, Parallel Applications Modeling
and Performance Evaluation.

@ Springer

http://www.w3.org/XML
http://www.imagemagick.org
http://www.imagemagick.org
http://www.lam-mpi.org/
http://www.lam-mpi.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://mpj-express.org/
http://mpj-express.org/
http://www.pdfbox.org
http://www.pdfbox.org

166

L.G. Fernandes et al.

@ Springer

Fabio Giannetti is a Senior Re-
searcher at HP Labs. Since he joined
HP in 2000, his focus has been on
Digital Publishing, Variable Data
Print and Printing Workflow Tech-
nologies. He has been actively in-
volved in the research community
releasing open-source tools as well
as advancing the state of the art
in numerous HP products. Fabio
holds an Ms.Eng. (Hons) Computer
Science from University of Genoa
(Italy). Fabio represents HP at the
W3C XSL Working Group.

Rafael Nemetz is Computer En-
gineer by Pontifical Catholic Uni-
versity of Rio Grande do Sul (PU-
CRS), Porto Alegre, Brazil. Nowa-
days, he is Master degree student of
the Postgraduate Computer Science
Program (PPGCC) at PUCRS. He is
also member of the Parallel Appli-
cations Research Group (GMAP),
where his researches cover Dis-
tributed Computing, Parallel Ap-
plications, Performance Evaluation
and Document Engineering. Rafael
also has experience in Embedded
Systems.

Alexis Cabeda is a member of HP
Brazil research team and his pri-
mary research interests include Dig-
ital Publishing and Variable Data
Print. Alexis received a Master De-
gree in Computer Science from
the Pontifical Catholic University
of Rio Grande do Sul (PUCRS),
Brazil, in 2006.

	Job profiling and queue management in high performance printing
	Abstract
	Introduction
	Motivations and objectives
	PSP scenario-input documents
	PDF profiler
	PDF format objects
	Profiler architecture
	Profiling cost

	Metrics
	Pages
	Images
	Non reusable images
	Reusable images

	Texts
	Total computational cost

	Metrics evaluation
	Queue management
	Current parallel ripping strategies
	Strategy 1-one RIP per job
	Strategy 2-all RIPs allocated to one job
	Strategy 3-fixed RIPs per job

	Experiments description
	Results
	Strategy 1
	Strategy 2
	Strategy 3

	Discussion

	Conclusion and future works
	References

