
Computers & Industrial Engineering 88 (2015) 191–205
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
A job profile oriented scheduling architecture for improving
the throughput of industrial printing environments
http://dx.doi.org/10.1016/j.cie.2015.07.001
0360-8352/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +55 5133203611; fax: +55 5133203621.
E-mail addresses: andriele.carmo@acad.pucrs.br (A.B. do Carmo), mateus.

raeder@acad.pucrs.br (M. Raeder), thiago.nunes@acad.pucrs.br (T. Nunes), mariana.
kolberg@inf.ufrgs.br (M. Kolberg), luiz.fernandes@pucrs.br (L.G. Fernandes).
Andriele Busatto do Carmo a,⇑, Mateus Raeder a, Thiago Nunes a, Mariana Kolberg b,
Luiz Gustavo Fernandes a

a GMAP-PPGCC-PUCRS, Av. Ipiranga, 6681 – Prédio 32, 90619-900, Porto Alegre, RS, Brazil
b INF-PPGC-UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale – Bloco IV, 91501-970, Porto Alegre, RS, Brazil
a r t i c l e i n f o

Article history:
Received 23 December 2012
Received in revised form 20 February 2015
Accepted 1 July 2015
Available online 8 July 2015

Keywords:
Scheduling
High performance printing
Documents ripping
Load balancing
Documents profiling
Parallel and distributed computing
a b s t r a c t

The Digital Printing industry has become extremely specialized in the past few years. The use of
personalized documents has emerged as a consolidated trend in this field. In order to meet this demand,
languages to describe templates for personalized documents were proposed along with procedures which
allow the correct printing of such documents. One of these procedures, which demands a high
computational effort, is the ripping phase performed over a queue of documents in order to convert them
into a printable format. An alternative to decrease the ripping phase computational time is to use high
performance computing techniques to allow parallel ripping of different documents. However, such
strategies present several unsolved issues. One of the most severe issues is the impossibility to assure
a fair load balancing for any job queue. In this scenario, this work proposes a job profile oriented
scheduling architecture for improving the throughput of industrial printing environments through a
more efficient use of the available resources. Our results show a performance gain of up to 10% in average
over the previous existing strategies applied on different job queue scenarios.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The recent evolution of digital printers has opened new
research opportunities in the Document Engineering field. With
this new technology, printing high quality documents is no longer
a daunting task for users. It now can be performed efficiently. In
this scenario, we could observe the consolidation of an emerging
trend: personalized documents. Before, a single instance of a
document was produced for a large number of recipients, meaning
that the same content was sent to them all. Nowadays, it is
possible to customize documents based on the idea of adapting
the document content in such a way that messages are sent to
specific recipients.

In order to meet this demand, automated procedures for creat-
ing and processing documents must be developed. A new disci-
pline called Variable Data Printing (VDP) (Purvis, Harrington,
O’Sullivan, & Freuder, 2003) was introduced providing a variety
of techniques, technologies, concepts and standards to enable the
creation of documents with dynamic content. Several tools were
developed to assist designers to create a template, which will be
used to generate different document instances. Thus, the same lay-
out is applied to various information generating a job composed of
a set of personalized documents (i.e., with variable content). In this
context, new languages with the necessary degree of flexibility
have been developed allowing the definition of static and dynamic
regions in documents.

Currently, most printers cannot interpret those languages, so a
preprocessing phase is necessary to enable the correct printing of
documents. Two of these phases are known as rendering and
ripping, which aim at providing the final means of printing the
document in a format that the printer will be able to process.
With the introduction of the VDP, companies specialized in digital
publishing (Print Service Providers – PSPs) have to perform these
procedures on each page of personalized documents. This
preprocessing phase impacts on the computational cost of the
entire printing workflow.
1.1. Motivation and objectives

In general, a PSP manages a queue of n initial jobs to be pro-
cessed and new jobs can be inserted in the queue at any time.
The main goal is to achieve the best possible performance

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2015.07.001&domain=pdf
http://dx.doi.org/10.1016/j.cie.2015.07.001
mailto:andriele.carmo@acad.pucrs.br
mailto:mateus.raeder@acad.pucrs.br
mailto:mateus.raeder@acad.pucrs.br
mailto:thiago.nunes@acad.pucrs.br
mailto:mariana.kolberg@inf.ufrgs.br
mailto:mariana.kolberg@inf.ufrgs.br
mailto:luiz.fernandes@pucrs.br
http://dx.doi.org/10.1016/j.cie.2015.07.001
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

192 A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205
considering the whole queue, and not just a single job. For this pur-
pose, PSPs use printers with a high processing capacity, which
might be able to print up to 1 page per second. In this scenario,
all activities related to the preprocessing phase should be finalized
in a limited time window, in such a way that the printer does not
have to wait for jobs. Moreover, PSPs commonly use printers in
parallel to increase the consumption of relevant documents to a
given job. Thus, the performance of preprocessing phase should
increase proportionally to keep the printers working continuously.

Aiming at increasing the performance of preprocessing phase,
modifications on existing document description languages or even
new formats must be proposed. For this purpose, reusability fea-
tures were added to languages such as Portable Document
Format (PDF) (Adobe Systems, 2003) to improve the throughput
of document preprocessing phase. New formats ad hoc were also
introduced, and the most widespread is PPML (Personalized Print
Markup Language) (Davis & deBronkart, 2000).

The idea behind PPML is to reduce the amount of document
content to be ripped since Raster Image Processing (RIP) engines
are capable of capturing reusable objects in such way they need
to be processed just once and the result can be used any time this
object is found in the document. Similarly, the idea of optimizing
the ripping process considering document characteristics seems
to be an appropriate choice, specially due to the high variability
of personalized documents. In this scenario, the improvement of
rendering and ripping procedures is a challenging task that could
also increase the PSP market competitiveness.

In several works (Nunes et al., 2006; Nunes et al., 2007; Nunes,
Raeder et al., 2009), high performance computing strategies were
used to improve the rendering phase throughput. In those works,
the main idea was to explore the use of rendering engines in parallel.

In the context of ripping phase, there are some existing strate-
gies to increase the performance through the use of parallel and
distributed systems. These strategies do not use any previous
information about the jobs in the queue and their load balancing
is quite simple. Existing ripping strategies apply a simple algorithm
for task scheduling among the available RIPs so that the first task in
the queue will be assigned to the first RIP that finishes its compu-
tation. This simple distribution does not guarantee an equal load
balance and may cause overload of some RIPs and underload of
others (Fernandes et al., 2012). Therefore, the overall ripping time
becomes unsatisfactory and may present unpredictable behavior.

The main goal of this work is to define a scheduling architecture
that ensures a balanced load distribution based on the task compu-
tational cost obtained through the document characteristics.
Works developed by Nunes, Giannetti et al. (2009) and Fernandes
et al. (2012) employ documents content-based metrics to allow
the estimation of computational cost to rip PDF documents
(or jobs) in a process called job profiling. The PDF Profiler tool
(Nunes, Giannetti et al., 2009), was developed to gather the
necessary information to estimate this job cost using predefined
metrics. The estimated cost can be used during the scheduling to
organize the processing queue and thus improve the overall load
balance (Fernandes et al., 2012). Thus, the aim of this research is
to optimize the ripping performance for an entire job queue
providing a fair and clever use of the available resources.

Current analysis is focused on PDF format, since it is a wide-
spread format in the description of personalized documents. In this
sense, scheduling strategies can be applied on a set of jobs fully
described in PDF format or other high level abstraction formats
used to describe the content of their documents.

The main contributions of this paper can be summarized as
follows:

� we define a scheduling architecture in the context of PSPs,
improving the overall ripping process;
� we use the created architecture to distribute the load among the
available RIP engines in a more clever way, using the document
computational ripping cost provided by PDF Profiler;
� we provide an adaptive environment, which allows the use of

different existing scheduling algorithms and enables the
experimentation of new ones.

1.2. Document structure

This paper is structured as follows: Section 2 describes the sce-
nario overview, explaining the PSP printing environment, some
general scheduling aspects on distributed environments, as well
as the traditional ripping process and some scheduling strategies.
The proposed approach is introduced in Section 3. Section 4 shows
several kinds of input documents, in addition to three different job
queue configurations we used for our tests. Section 5 presents the
proposed architecture evaluation using the previously presented
job queues with detailed performance analysis. Finally, Section 6
concludes the work with final remarks and considerations about
future researches.
2. Scenario overview

This section introduces the PSP printing scenario which
employs the VDP technique. Section 2.1 presents a brief overview
of the overall printing process, describing some important aspects
about the printing workflow and introducing the context of the
Ripping phase. Section 2.2 introduces some general aspects of
scheduling on distributed environments. Section 2.3 presents the
traditional ripping process and the scheduling problem that arises.
The traditional scheduling strategies used in this process, which do
not consider any information about the jobs, are also presented.

2.1. General PSP printing workflow

A widely used technique in VDP scenario is VDT (Variable Data
Templates) (Giannetti, 2007). This technique proposes a workflow
intending to align the document creation and printing process. The
goal is to increase the whole process reliability, predictability and
throughput.

This workflow is composed of four main phases, as can be seen
in Fig. 1: project, rendering, ripping and printing. The project phase
is responsible for the creation of the document template, which
contains its layout and the definition of static and dynamic parts.
After that, the template is submitted to a rendering phase. At this
moment, different documents can be created using this template,
replacing dynamic portions by specific data of a database.
Rendering phase is generally performed in a centralized way, using
only a single computational resource. However, this step can be
done in parallel through some rendering strategies presented in
(Nunes et al., 2007; Nunes, Raeder et al., 2009). The result of this
phase will be the document content described through a high level
abstraction language. Each new document created in the rendering
phase (e.g., PDF documents) must be transformed into a printable
format in the ripping phase.

This paper focuses in the ripping phase of the printing work-
flow. This step is necessary due to the fact that most printers are
not able to interpret flexible languages. For that reason, they need
to be transformed in well-known formats such as bitmap, for
example. The output of ripping phase is a bitmap document ready
to be printed (printing phase).

Several advantages arise from the application of this segmented
workflow: (i) PSPs can deal with large amounts of data because of
the well-defined phases; (ii) design is separated from content; (iii)
layout can be created without previous data definition; (iv) it is

Fig. 1. Printing workflow.

A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205 193
possible to employ the technology that better fits the necessity of
each company, and finally, (v) this workflow is easily extendable.

2.2. Scheduling on distributed environments

Meanwhile, during the development of a parallel or distributed
version of a program, several characteristics must be taken into
consideration to maximize the performance that is expected to
be achieved. An important decision relates to the task size (grain)
to be transmitted and/or processed by each processing unit.
Another primary concerns is to choose a suitable scheduling
algorithm (Kruatrachue & Lewis, 1988).

When dealing with distributed memory, the grain definition is
critical for the proper functioning of the application. If a bad grain
is set, the overhead for communication might be higher than the
performance gain expected through the job division. Thus, the
grain size should be defined based on specific characteristics of
the application and architecture, trying to compromise cost of
splitting jobs into tasks, ideal size of the tasks, communication cost
and processing gain obtained by the parallelization.

Once the grain is defined, it is necessary to establish the best
way to distribute available tasks among processing unities, so that
none of them get overloaded or underloaded. If the adopted strat-
egy is not a good choice, the parallelization efficiency can be
directly affected.

It is not difficult to find a situation were tasks distribution has
an important impact on the performance. Fig. 2 shows an example
of this situation, in which using a sequential distribution (Fig. 2(a))
may lead to an unfair scheduling. In this case, tasks are assigned to
machines one by one circularly (first task to machine 1, second to
machine 2, third to machine 3 and so on). Such an approach will
lead to an unbalanced distribution where machine 3 presents a
total workload of 35 while machine 1 has a workload of just 8.
Considering that, the processing of the entire task queue only ends
when all machines finish their tasks, in such a way that the time to
process the largest workload will define the total time spent to
compute all jobs. On the other hand, when seeking a fair distribu-
tion (Fig. 2(b)), the largest workload to a single machine is 23.
Thus, the total time for computing all tasks is reduced.

Based on that, the scheduling problem is characterized by
searching for the optimal division of tasks. Thereby, the ultimate
goal is to find a scheduling automated strategy that uses the
resources in the most efficient way (in our context, the available
RIP engines).

2.3. Traditional ripping process and scheduling strategies

Ripping is the process of transforming a document described by
vector graphics to a bitmap format (i.e., a document composed of a
dot matrix data structure representing a generally rectangular grid
of pixels or points of color) that allows the printing device to inter-
pret correctly the document content. This transformation is
page-based, meaning that an image is created for each page of
the input document. In this context, RIP engines (or only RIPs)
are the computational elements responsible for ripping PDF
documents.

Traditional RIP environments are based on parallel and dis-
tributed systems to increase its throughput and performance.
Thus, several RIPs are used to rip a given queue of jobs in parallel.
Two main approaches are applied to rip jobs from the input queue:
splitting a single job into pieces, that will be processed in parallel,
or distributing each entire job to different RIPs.

Since there is no information available about the jobs process-
ing time, it is not possible to use elaborate scheduling algorithms.
Based on that, there are three distinct scheduling strategies that
are commonly applied to speed-up ripping process:

1. Strategy 1: one RIP per job;
2. Strategy 2: all RIPs per job;
3. Strategy 3: a fixed number of RIPs per job.

It is important to mention that in these scenarios, all jobs are
stored in a file server shared by all RIPs which will read the neces-
sary amount of information for the ripping process. On the other
hand, the result produced by each RIP will be written on the local
disk and directly transmitted to its correspondent printer to avoid
extra communication cost.

By employing the first strategy, each existing RIP processes an
entire job (Fig. 3). In this context, a job is assigned for each free
RIP and as each RIP finishes it, it orders more tasks. This strategy
is interesting in a scenario composed of small jobs which have a
high level of reusable resources. However, for larger jobs which
usually have different computational times, RIP engines will be
underloaded and overloaded affecting the system load balance
and consequently its performance. Furthermore, another drawback
in this particular strategy is the fact that several RIPs will not be
used if the number of jobs in the queue is less than the number
of available RIPs.

Second strategy implements the idea of using all available RIPs
for a single job (Fig. 4). This is the ‘‘brute force’’ strategy, where
each RIP processes a portion of a given job. Since it is not desirable
to process a fraction of a page, the atomic unit of each portion is a
page. Thus, each job in the queue is always split into t tasks, where
t corresponds to n (number of available RIPs) or, if the number of
pages in the given job is smaller than the number of RIPs, t corre-
sponds to pg (number of pages of the document). In this strategy,
each available RIP is notified about the page interval it should pro-
cess. RIPs then split the jobs generating their portions and process
them. It is important to highlight that the split process is done by
each RIP. An important drawback of this strategy is the possibility
of splitting reusable parts of the document among different RIPs,
not allowing the RIPs to take advantage of the document reusabil-
ity characteristic. In addition, it is not possible to guarantee that
the effort spent to rip different pages of a given document is the
same. Therefore, even distributing pages equally to each RIP, the
processing units may present an unbalanced load.

Fig. 2. Distribution example: all tasks over three processing units.

Fig. 3. Allocation of one RIP per job.

Fig. 4. Allocation of all RIPs to each job.

194 A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205
Finally, the third strategy suggests the use of a group of RIPs for
each job in the queue. Fig. 5 illustrates this strategy considering the
situation where each group includes a fixed number of three RIPs
(r ¼ 3). This strategy is based on the fact that ‘‘standard’’ PSP jobs
require a specific number of resources to keep the printers working
continuously. Thus, several groups of r RIPs are available to process
the jobs and each job will be directed to a distinct group.

In this configuration, each job is split into r tasks by each RIP.
Like any static configuration, this will only work as expected if
the PSPs print jobs fit a specific profile. Otherwise, the number of
allocated RIPs to a job may not be enough to keep the printers
continuously fed. In addition, a major drawback in this strategy
is the fact that each RIP of a group is only allocated for a new job
when all RIPs in the group are free, i.e., at the time the current
job is completely processed by the group. Therefore, many RIPs
of a given group may be free while others of the same group did
not finish computing its task underusing the available resources.

As can be observed, these three scheduling algorithms are
very trivial and do not consider the computational cost to rip
documents with characteristics that may be different. Next section
presents a new scheduling architecture which deals with this
particularity, aiming at improving the overall ripping workflow.

3. Proposed scheduling architecture

In traditional ripping, PDF documents were placed in the job
queue and simply distributed among the available RIPs, with no
concern about the document characteristics.

The proposed scheduling architecture is based on a module
called Scheduler which was inserted between the job queue and
the RIP engines. This module is responsible for distributing jobs
to RIPs in a more intelligent way, in order to increase the perfor-
mance and efficiency of the ripping phase.

The Scheduler is divided into three modules: PDF Splitter, PDF
Profiler and Queue Manager as can be seen in Fig. 6. Section 3.1
describes these modules and their responsibilities, while
Section 3.2 shows how these modules cooperate. Finally,
Section 3.3 presents some scheduling algorithms we used to
evaluate our architecture.

3.1. Modules

The Scheduler modules are described in this section. Sections
3.1.1–3.1.3 briefly present PDF Profiler, PDF Splitter and Queue

Fig. 5. Allocation of a fixed number of RIPs to each job.

Fig. 6. Proposed architecture.

A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205 195
Manager, giving details about their functions in our proposed
architecture.
3.1.1. PDF Profiler
PDF Profiler tool was developed in order to parse a PDF docu-

ment, providing detailed information about it. This tool was imple-
mented using the Java library PDFBox (PDFBox, 2015), which
provides methods to navigate and find the necessary elements
inside a PDF document. To execute the PDF Profiler, two input files
are necessary: a PDF, that will be analyzed, and an XML (eXtensible
Markup Language), which contains the description of the PDF file.
This tool executes three main steps: (i) interpretation of the incom-
ing XML file, identifying the data to be analyzed; (ii) search for the
requested information in the PDF file, interpreting the required
objects, and (iii) generation of an XML output file containing the
obtained results.

Among all possible information that may be provided by PDF
Profiler, some can be used to define scheduling strategies that
may have an important impact on the ripping performance
(Nunes, Giannetti et al., 2009). It is important to highlight that
PDF Profiler tool supports the profile analysis of an entire docu-
ment or several fragments (tasks) of this document separately. In
the last case, despite the entire document is received as input, each
fragment of this document will be parsed separately (Nunes,
Giannetti et al., 2009).

Based on the XML file generated by PDF Profiler, some metrics
are applied and an estimated ripping computational cost is
assigned to each task. These metrics were proposed and validated
in Nunes, Giannetti et al. (2009).
3.1.2. PDF Splitter
PDF Splitter tool was developed in order to split a PDF docu-

ment into different fragments. In the traditional ripping process,
the split was executed by the RIP engines. In the proposed schedul-
ing architecture, a new module was developed to split documents
in a clever way. Traditionally, documents were split in contiguous
intervals. The PDF Splitter presents two main approaches in the
splitting process: split by intervals and split by specific pages. By
using the first mode, it is possible to obtain fragments that repre-
sent a division of the original document in every p pages, where p
represents the desired range. The second one is a more flexible
breaking mode in which it is possible to specify exactly the desired
pages of the original document. Moreover, through the splitting
approaches, it is possible to ignore certain pages of the PDF
document and there is no need to split the entire document. This
feature optimizes the performance of the splitting process, because
it will not be necessary to analyze all pages of the original docu-
ment to obtain the desired fragments.

Basically, PDF Splitter creates a new PDF document for
each specified fragment, containing their corresponding pages.
However, to finalize the new file generation, a copy of the selected
pages objects must be made. PDF format is based on references,
meaning that, in a given document, any object used on a page
(not only graphical objects) can be used in the context of any other
pages. Thus, when splitting a document into fragments, some
objects need to be redefined for each new document. Fig. 7
exemplifies one situation where the Input Document has 3 pages
(Page 1, Page 2 and Page 3). Page 1 defines and uses 6 objects
(obj 10, obj 21, obj 29, obj 6, obj 25 and obj 32). Page 2 uses 3
objects (obj 10, obj 32 and obj 25), which do not need to be rede-
fined, once they were already defined in Page 1 and will be reused.
The same situation can be seen in Page 3, where objects will also be
reused. In this example, this document will be split into 3 new ones
(Doc 1, Doc 2 and Doc 3), each document with one page. Each
output document must have the definition of all objects it uses,
since a document cannot reuse object definitions from others.

3.1.3. Queue Manager
This section presents the Queue Manager module, that is

responsible for sorting the task queue in a clever way aiming at
improving the throughput of printed jobs. Each task (fragment of
a document) in the queue have an associated cost, provided by
PDF Profiler during the document analysis. This estimated
computational cost is obtained according to a range of document
information, as mentioned in Section 3.1.1.

The queue is dynamically sorted by the Queue Manager, mean-
ing that whenever a task arrives, it is placed on the right position
rather than the end of the queue. This positioning respects the
scheduling policies, which varies depending on the used algorithm
(scheduling algorithms used on this work are presented in
Section 3.3). Whenever tasks are on their places in the queue, they

Fig. 7. Splitting example of a document with reusable objects.

196 A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205
are sent to the first available RIP, that is responsible for performing
the ripping process before the document printing.

3.2. Scheduler

The Scheduler is the main part of the proposed workflow, con-
trolling from the documents arrival at the job queue until the task
is sent to the RIPs. Besides that, it is composed by three modules
(PDF Profiler, PDF Splitter and Queue Manager, as described in
Sections 3.1.1, 3.1.2, 3.1.3, respectively) that cooperate to improve
the ripping phase performance. The Scheduler modularity feature
allows to distribute tasks among RIPs in a smarter way. This is
possible because PDF Profiler is capable of analyzing the character-
istics of each document fragment, estimating the computational
cost of ripping. Furthermore, in order to improve the ripping
performance, the split process occurs inside the Scheduler
(PDF Splitter) instead of RIP engines, unlike previous scheduling
strategies described in Section 2.3.

When new PDF documents (jobs) are ready to be ripped, they
are enqueued in the job queue. While there are jobs in the job
queue, PDF Splitter dequeues a job and divides it in smaller parts
(tasks) according to the scheduling algorithm, creating a task
queue. At this moment, PDF Profiler is responsible for extracting
some key information of each enqueued task aiming at calculating
specific metrics, closely related to the task computational cost.
After that, Queue Manager sorts the tasks in the queue by their
computational costs. Thus, the Scheduler sends the tasks to the
RIPs following the polices of a given scheduling algorithm.

Considering the existence of m available processing units, the
scheduling algorithm A and the job queue w, containing n initial
jobs, such that w ¼ fjob1; job2; . . . ; jobng, the steps executed by the
Scheduler are illustrated in Fig. 8 and described as follows:

1. For each jobi of queue w, where 1 6 i 6 n, Step 2 is executed.
2. Considering that jobj has a total number of pages tpj, if tpj is

larger than m, so m fragments (or tasks) are established. In this
situation, each one will contain tpj=m pages. If the tpj=m result
is not an integer, the last fragment will receive the integer part
of tpj=m plus the remainder (e.g., if tpj ¼ 10 and m = 3, the first
two fragments will contain 3 pages and the last one will contain
4 pages). On the other hand, if tpj is smaller than m, only tpj

fragments are generated, each one with just one page. These
fragments are created by the PDF Splitter tool.

3. Fragments are inserted into the task queue d ¼ fT1; T2; . . . ; Tkg,
in which each task Tl corresponds to a generated fragment
(with 1 6 l 6 k).
4. Using the PDF Profiler tool, information about each Tl in d is
extracted. The metrics defined by Nunes, Raeder et al. (2009)
are applied to the obtained information in order to estimate
the cost associated to each analyzed task Tl.

5. Queue Manager applies scheduling directives defined in A to
organize the tasks in d.

6. Tasks are transmitted to each idle machine by the Scheduler
according to algorithm A. Every time a machine is idle, the next
task in the queue is transmitted for its execution.

It is important to point out that the job queue in the presented
architecture is dynamic, since new input PDFs documents (jobs)
may be included at any time (Step 1). Naturally, the task queue
organization is also dynamic (Step 5), i.e., each time a new task
is enqueued in the task queue (Step 3) the Queue Manager is
responsible for dynamically organizing it. Another important
remark is that in our architecture the Scheduler is responsible for
splitting the jobs, unlike the previously mentioned scheduling
strategies (Section 2.3), in which the split were performed by the
RIPs.

Considering the generic description presented above, each
scheduling algorithm A will execute different actions according
to their own behavior. Section 3.3 describes the algorithms we
use in Step 5.
3.3. Algorithms

The scheduling problem which arises from the Ripping phase
deals with n jobs that should be scheduled to m equal machines
(RIPs). With our new architecture, it is possible to evaluate the
computational cost of each job. Therefore, the main goal of the
scheduling problem using the new architecture is to reduce
the time to complete the last task. This is a well-known problem
called PmjjCmax (Leung, 2004). This problem deals with n tasks
d ¼ T1; T2; . . . ; Tn that should be scheduled to m equal machines,
aiming at reducing the makespan (i.e., the time to complete the last
task – Cmax).

There are different algorithms to solve PmjjCmax problem
(Albers, 2013; Coffman, Garey, & Johnson, 1978; Dell’Amico &
Martello, 1995; Friesen, 1984; Graham, 1966, 1969; Hochbaum &
Shmoys, 1987). Among these, it is possible to find Multifit
(Coffman et al., 1978) and Largest Processing Time first (LPT)
(Graham, 1969), which were used to test the Scheduler. These
algorithms were chosen because they are suitable to deal with this
problem and they are also well-known in the literature.

Fig. 8. Scheduler steps, considering an environment where m ¼ 5.

A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205 197
It is important to notice that the strategies traditionally used in
the ripping process do not consider the computational cost of
tasks. In our context, the PDF Profiler module associates a ripping
cost to all tasks, allowing the Queue Manager module to organize
them according to the polices of a specific scheduling algorithm.
Thus, due to our architecture it is possible to use any scheduling
algorithm that needs computational cost information.

Among many possible algorithms, three algorithms were
chosen to evaluate our architecture. Sections 3.3.1 and 3.3.2 pre-
sent the algorithms aforementioned, discussing their advantages
and drawbacks. Section 3.3.3 introduces an adaption of the LPT
scheduling algorithm to better suit our context.
3.3.1. Multifit
Multifit algorithm was proposed by Johnson and is based on

bin-packing techniques (Johnson, Demers, Ullman, Garey, &
Graham, 1974). The algorithm proposes to pack any n tasks, with
any load, in a finite number of bins (packages) in such a way that
the number of used bins is as small as possible. The bin-packing
problem is NP-complete (Book, 1975) and therefore several heuris-
tics were used to try to solve this problem. In this context, Multifit
algorithm uses the First-Fit Decreasing (FFD) heuristic to group the
tasks up to m bins, considering that the load of a bin is the time to
process all tasks inside it. The FFD strategy works as follows:

1. tasks are organized according to their processing time in a
descending sequence;

2. each task is added in a given bin with the smaller load among
the bins, in a way that the bin capacity does not exceed a pre-
defined value for C;

3. Steps 1 and 2 are repeated until all tasks are in a bin.

In this scenario, aiming at finding the optimal bin-packing, C
would be the optimal makespan (Coffman et al., 1978). To find a
good (suboptimal) value for C in a polynomial time, iterative search
methods are applied choosing an initial value for C and refining
this value during the computation. Thus, for each iteration, FFD
technique will be executed considering the current C. The search
will end when k iterations were executed. Multifit algorithm uses
the binary search method.

A value for C is obtained through the average of a lower limit
(Clow) and an upper limit (Cup). These limits correspond to the best
and the worst possible cases to the task packing and are defined as
follows (Coffman et al., 1978):

Clow ¼ max
L
m
; LT

� �
; ð1Þ

Cup ¼max
2 � L

m
; LT

� �
; ð2Þ

where L is the sum of all task loads in the queue, LT is the load of the
largest task, and m is the amount of bins in which tasks were
grouped into.

Fig. 9 shows an application of the Multifit algorithm. Once the
initial value C is defined, the binary search for the smallest C value
proceeds until k iterations are reached. In this sense, an iteration
corresponds to an execution of the FFD algorithm considering the
current C value. When executing each iteration, if the result of
FFD algorithm is more than m bins, Clow will receive the current C
and Cup will be maintained. If FFD result is up to m bins, the upper
limit is refined: Cup will receive the current C, and the lower limit is
maintained. The next iteration will proceed calculating the average
between Clow and Cup. When k iterations are reached, Cup will
contain the smaller value to C found in this binary search. If the
binary search does not find any C, such that the corresponding
FFD generates up to m bins, C will be the initial upper limit. In both
cases through FFD application and the predetermined C, it is
possible to generate up to m bins. As a final result, Multifit
algorithm will present m bins with similar workloads, which could
be scheduled to m machines.

In our approach, when Multifit algorithm is used in Step 5, tasks
of d are packaged in bins, through the use of FFD algorithm result-
ing in the creation of b bins (being 1 6 b 6 m). Therewith, these b

Fig. 9. Multifit algorithm.

198 A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205
bins are transmitted to b machines (Step 6), each machine
receiving one bin.
3.3.2. Largest processing time first
Graham in the 60s (Graham, 1966) introduced an algorithm

called List Scheduling (LS). This algorithm specifies that consider-
ing a queue of tasks arranged in any order, when a machine is idle,
the task in the first position of the queue should be assigned to
this machine. It became the basis for the development of other
scheduling algorithms. Aiming at improving the competitive ratio
of LS algorithm, Graham has proposed the construction of a new
algorithm known as Largest Processing Time First (LPT). Graham
focused on trying to avoid the LS algorithm worst case to happen,
which occurs when the last task in the queue is the one with the
largest processing time.

Based on that, LPT algorithm introduces the idea of sorting the
tasks in descending order, making those with larger processing
time to be among the first positions. After that, LS algorithm is
applied with no other changes. Thus, the processing of large jobs
at the end of the scheduling is avoided, obtaining a fair load distri-
bution among the machines and reducing the performance loss
(Fig. 10).

LPT algorithm is based on the idea of executing the largest tasks
first. Thus, in our approach the task queue (d) is organized in
descending order (Step 5), according to the cost of each task (Tl)
of the queue. So, tasks that have a larger computational cost,
according to the estimated metrics, will be in the first positions
of the queue. After that, in Step 6, tasks at the beginning of the
queue will be transmitted to each available machine in such a
way that all RIPs receive at least one task. As a machine becomes
idle, the first task of the queue will be assigned to it. Meanwhile,
new jobs are continuously inserted in the job queue (w) and, for
each new job, Steps 2–4 will be performed. It means that this
new job will be broken in tasks and each one will be inserted in
d. However, this insertion will be carried out in a way that keeps
the queue in descending order of workload, according to the cost
of each task. Thus, it will be avoided the necessity of reorganize
the queue each time new tasks have to be inserted in d.
3.3.3. Optimized LPT
The biggest disadvantage of the LPT algorithm is the need for

evaluating the computational task cost to insert them in the queue
and make them available to the RIPs. This evaluation is performed
by the PDF Profiler. Despite the fact that it does not necessarily rep-
resent a large computational cost, it may not allow the immediate
transfer of tasks to idle RIPs. The Scheduler may be busy with the
profiling of tasks at the time that there are free RIPs waiting to
receive more tasks. Such situation will compromise the perfor-
mance gain obtained by the use of LPT. Thus, we proposed a slight
modification on LPT in order to reduce this overhead, creating a
new algorithm: the Optimized LPT.

The main goal of Optimized LPT is to reduce the Scheduler
response time. Thus, it was established that the Scheduler should
apply the metrics on the tasks concurrently with the scheduling
of tasks to free RIPs. To accomplish that, as soon as the Scheduler
needs to apply the metric on a particular task, a new thread
responsible for that function is created. Another important modifi-
cation is that before the creation of this thread, the tasks are
inserted at the end of the task queue. As the threads finish their
executions, the computational cost of the corresponding tasks will

Fig. 10. LPT algorithm.

A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205 199
be updated by removing them from the queue and inserting them
back in the correct position according to its cost. Through this
strategy, if a RIP is free and there are no more tasks in the queue
except those for which the computational cost has not been com-
puted, one of these tasks will be sent to the machine anyway and
the machine will not be idle.

4. Scenario configuration

This section presents two main aspects of the scenario configu-
ration used to test our new architecture: input documents and job
queue configurations. Section 4.1 illustrates some input documents
that are handled in PSPs environments. These documents were
used to populate the queues in our test cases. Section 4.2 describes
three configurations for the job queue, helping us evaluating the
proposed scheduling algorithms.

4.1. Input documents

The jobs used in our experiments are composed of 8 different
input document types, as presented by Fernandes et al. (2012).
These documents are strongly based on real cases and commonly
used within PSPs. An example of each document is shown in
Fig. 11 and a brief description of their characteristics is presented
as follows:

1. Letter: contains one or more pages with a large amount of texts
and fewer pictures.

2. Newsletter: unlike Letter, a newsletter contains several images,
which are used for advertisements and news on products and
services.

3. Cards: it contains background images and little text.
4. Postcard: it is used for the exhibition of a place, product or ser-

vice. Thus, texts and images are used to compose each page.
5. Flyer: used to present and advertise products, ideas, events,

among others. In this case, images and texts are used.
6. Brochure: usually consists of a large number of pages with

large amount of images and text.
7. Newspaper: contains information and news headlines. This
document presents both texts and images.

8. Poster: typically, it consists of a large size page. A poster can
contain only images, only texts or both images and text.

For our experiments, 20 customer jobs used in PSPs were
created through a combination of these 8 types of input docu-
ments. These jobs contain text, images and other PDF graphical
objects. The full list of jobs is presented in Table 1 along with the
documents most significant characteristics (like number of pages,
number of images and computational cost, for example).

As it can be observed, the chosen documents have a large vari-
ability in number of pages, text and images. The goal is to make
experiments with documents within a wide range of ripping costs.
This high variability reflects the reality of most small to mid sized
PSPs in which jobs come from various customers.
4.2. Job queue

The jobs order in the queue may have an important impact on
performance. Thus, it is interesting to perform executions of
different strategies on different queue configurations. Using this
approach, it will be possible to evaluate how the scheduling
algorithm will impact on the architecture general performance.

In a real PSP scenario, jobs may be available at different
moments. Aiming at reproducing this scenario, it was established
that some jobs are initially available in the queue (called initial
jobs) and others will be included after x seconds (late jobs), where
10 6 x 6 60. Using this small range, new tasks will be available
after few seconds, making it possible to simulate how each strategy
addresses the profile analysis, organization and distribution of jobs
concurrently. Thus, three different queue configuration were
defined as follows:

1. Queue 1: job queue randomly organized. In this case, jobs
computational cost may vary from the first to the last job of
the queue (Table 2(a)).

Fig. 11. Examples of input documents.

Table 1
Job composition.

Job Documents Pages Images Pages with
text

Computational
cost

Letter 1 130 390 130 390 9.4743
Letter 2 400 800 800 800 21.055
Letter 3 90 450 0 450 9.1054
Card 1 400 200 800 200 9.4547
Card 2 40 40 40 40 0.5681
Newsletter 1 220 440 3740 440 18.7140
Newsletter 2 170 340 680 340 9.1560
Postcard 1 500 250 4000 250 10.405
Postcard 2 20 40 120 40 0.6183
Flyer 1 80 160 320 160 4.2587
Flyer 2 100 200 400 200 4.4444
Flyer 3 250 500 750 500 10.2770
Flyer 4 75 150 150 150 6.6435
Brochure 1 9 108 162 108 1.7586
Brochure 2 200 1000 1800 1000 23.4190
Brochure 3 300 600 2700 600 13.3400
Newspaper 1 400 400 2000 400 12.8990
Newspaper 2 150 900 2700 900 23.3320
Poster 1 500 500 2000 500 10.2560
Poster 2 70 70 140 70 1.7707

200 A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205
2. Queue 2: job queue sorted in descending order, from the largest
to the smallest computational cost (Table 2(b)).

3. Queue 3: job queue sorted in ascending order, from the smallest
to the largest computational cost (Table 2(c)).

These configurations were defined in order to evaluate our
Scheduler regarding the jobs loads variations. Moreover, the
queues aim at verifying whether the proposed architecture is able
to handle this type of irregularity on load balance among the
available RIPs. Furthermore, it became possible to estimate the
impact of these variations in the scheduling strategies that already
exist. It is important to highlight that queues 2 and 3 are extreme
situations which will not be common in the context of PSPs.
5. Experimental results

This section presents experimental results obtained through
the use of our proposed architecture. Section 5.1 specifies the
environment used for performing the tests. A detailed performance
analysis will be presented in Section 5.2.
5.1. Test environment

The environment is composed of a cluster of blades, which is a
multicomputer architecture classified as a COW (Cluster Of
Workstations). The used cluster contains 5 blades and each one
has an Intel Xeon 3.0 GHz (64 bits) quad-core processor, with
8 GB of RAM memory and 400 GB of disk. Each core is considered
as an active processing unit of the architecture, thus the architec-
ture supports up to 20 processes simultaneously (four by blade).
Moreover, these blades are connected via a high speed Gigabit
Ethernet network. The operating system used on the machines is
Windows Server 2003 R2 Standard x64 Edition, with Service Pack
2, a system commonly used in printing environments due to its
compatibility with various versions of industrial RIPs.

Java language was chosen to implement the previously
described scheduling strategies. Despite the fact that the use of
Java is not usual in high performance area, such language has been
adopted by some researchers for their implementations (Getov,
Hummel, & Mintchev, 1998, for instance). Furthermore, this lan-
guage offers advantages in portability, extensibility and high
abstraction level. In special, it offers compatibility with the
PDFBox Java library, used in the PDF Profiler. For the implementa-
tion, Java JDK 1.6 was used. Thus, due to the multicomputer archi-
tecture previously mentioned, communication among processes
needs to be carried out through the message passing paradigm.

Table 2
Job queue configurations.

Position Job Type Delay (s)

(a) Queue 1
1 Brochure 1 Initial –
2 Brochure 2 Initial –
3 Brochure 3 Initial –
4 Card 1 Initial –
5 Card 2 Late 60
6 Flyer 1 Late 50
7 Flyer 2 Late 40
8 Flyer 3 Late 30
9 Flyer 4 Late 20

10 Letter 1 Late 10
11 Letter 2 Late 20
12 Letter 3 Late 30
13 Newsletter 1 Late 40
14 Newsletter 2 Late 50
15 Newspaper 1 Late 60
16 Newspaper 2 Late 30
17 Postcard 1 Late 40
18 Postcard 2 Late 20
19 Poster 1 Late 50
20 Poster 2 Late 60

(b) Queue 2
1 Brochure 2 Initial –
2 Newspaper 2 Initial –
3 Letter 2 Initial –
4 Newsletter 1 Late 40
5 Brochure 3 Late 10
6 Newspaper 1 Late 60
7 Postcard 1 Late 40
8 Flyer 3 Late 30
9 Poster 1 Late 60

10 Letter 1 Late 10
11 Card 1 Late 30
12 Newsletter 2 Late 50
13 Letter 3 Late 30
14 Flyer 4 Late 20
15 Flyer 2 Late 40
16 Flyer 1 Late 50
17 Poster 2 Late 50
18 Brochure 1 Late 10
19 Postcard 2 Late 20
20 Card 2 Late 60

(c) Queue 3
1 Card 2 Initial –
2 Postcard 2 Initial –
3 Brochure 1 Initial –
4 Poster 2 Initial –
5 Flyer 1 Initial –
6 Flyer 2 Initial –
7 Flyer 4 Initial –
8 Letter 3 Late 30
9 Newsletter 2 Late 50

10 Card 1 Late 30
11 Letter 1 Late 10
12 Poster 1 Late 60
13 Flyer 3 Late 30
14 Postcard 1 Late 40
15 Newspaper 1 Late 60
16 Brochure 3 Late 10
17 Newsletter 1 Late 40
18 Letter 2 Late 20
19 Newspaper 2 Late 50
20 Brochure 2 Late 10

Table 3
Queue 1 speed-ups: N RIPs per job.

RIPs per job Number of processes

3 4 5 6 7 9

2 1.42 – 2.32 – 2.57 2.77
3 – 2.66 – – 4.72 –
4 – – 3.74 – – 4.15
5 – – – 4.26 – –

10 11 13 15 16 17 19

2 – 3.17 2.84 2.97 – 2.77 2.98
3 4.96 – 4.99 – 5.20 – 4.99
4 – – 3.91 – – 3.47 –
5 – 3.72 – – 3.54 – –

A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205 201
In order to implement communication, the MPJ-Express
(MPJ-Express, 2015) library was used. This library is an implemen-
tation of the MPI (Message Passing Interface) standard (Snir, Otto,
Huss-Lederman, Walker, & Dongarra, 1996) using Java language.
Due to the use of Java, this library provides high-level concepts
of abstraction and portability, which are very important character-
istic for PSPs. In terms of performance, MPJ-Express can obtain
similar results when compared to the libraries like MPICH (MPI
Chameleon) (MPICH, 2015) and LAM/MPI (Local Area
Multicomputer/MPI) (LAM/MPI, 2015).
5.2. Scheduler architecture performance analysis

This section discusses performance measurements for our
architecture using the three algorithms previously described
(Section 3.3), comparing them to the three traditional scheduling
strategies for ripping (Section 2.3), resulting in six test cases. For
each test case 10 executions were performed over 3 different
queue settings. In this context, an execution means to rip all jobs
(documents) in a specific queue according to a strategy. From these
results, the larger and the smaller execution time for each test bat-
tery were excluded and an average of the other 8 remaining values
was computed.

It is important to emphasize that for all strategies, a processor
should be reserved to run the Scheduler. This processor will be
responsible for dealing with the whole scheduling procedure.
Thus, the existence of parallel RIPs depends on a minimum number
of 3 processes (2 RIPs and one Scheduler). Hence, the amount of
processes in the tests executions ranged from 3 to 20, except for
N RIPs per job existing strategy. In this case, four distinct values
were assigned to N: 2, 3, 4 and 5 RIPs per job. In this sense, the
number of processes used to test the N RIPs per job strategy was
stipulated to avoid idle processes. For example, using 2 RIPs per
job over 3 processes, one process is the Scheduler and the other
are a group of 2 RIP engines. However, if 2 RIPs per job strategy
were performed over 4 processes, one process would be the
Scheduler, two processes would be a group of 2 RIP engines and
the third one would be idle. Therefore, the N RIPs per job strategy
was only tested for certain number of processes.

Initially, speed-up values for the six test cases were obtained
using Queue 1. In this scenario, the queue is randomly organized,
meaning that jobs with different loads are mixed. Table 3 describes
acceleration factors obtained specifically for N RIPs per job strategy
varying the number of processes. Fig. 12 presents the other strate-
gies speed-ups in a comparative graph also varying the number of
processes (from 3 to 20).

As can be seen in Fig. 12, the 1 RIP per job strategy speed-ups
does not scale well. In fact, the speed-up remains around a factor
3 for different number of processes. This behavior can be explained
since we use more ripping processing units, each RIP receives few
jobs to compute (at least one). In this scenario, one of the jobs
assigned to a single RIP will be the last one to finish processing,
while several RIPs are idle. Thus, the addition of more processes
will not represent an effective gain in this strategy, since several
processing units will remain idle waiting for more non-existent
jobs to come.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
pe

ed
-u

p

Number of processes

Ideal
LPT

Optimized LPT
Multifit

All RIPs per Job
1 RIP por Job

Fig. 12. Speed-ups for Queue 1.

Table 5
Queue 2 speed-ups: N RIPs per job.

RIPs per job Number of processes

3 4 5 6 7 9

2 1.38 – 2.66 – 3.07 3.05
3 – 2.64 – – 4.50 –
4 – – 3.54 – – 3.66
5 – – – 4.38 – –

10 11 13 15 16 17 19

2 – 2.98 3.40 3.13 – 3.04 3.04
3 5.12 – 5.01 – 3.82 – 4.29
4 – – 3.59 – – 3.63 –
5 – 3.98 – – 3.73 – –

202 A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205
The obtained speed-ups for N RIPs per job strategy are also not
satisfactory. In Table 3 it can be seen that there is a speed-up fluc-
tuation in the measurements. It is possible to notice that the best
speed-up is 5.2 over 16 processes (corresponding to 3 RIPs per
job). These situation can be explained by the fact that this strategy
leads to an under use of RIPs and an unfair load balance, because
RIPs of the same group may receive tasks with very different sizes,
so that those who did not finish their process will prevent others to
receive new tasks. Thus, the execution time is slowed down since
some jobs remain waiting in the queue even when some ripping
units are idle.

Among the traditionally used ripping strategies, the all RIPs per
job strategy presented the best results. Using this approach, a
speed-up of 17.51 was obtained using 20 processes. However, in
its performance curve, fluctuations generating unpredictable situ-
ations and unsatisfactory acceleration factors for certain numbers
of processes can be seen. This strategy breaks the jobs into frag-
ments (tasks), reducing the size of the grain to be computed for
each RIP. Each task is then transmitted to idle RIPs as they become
available. However, no consideration about the computation cost
of the task that is being transmitted is taken. Thus, this distribution
becomes susceptible to overload and underload of the RIPs, gener-
ating the presented behavior.

Analyzing the results for our proposed architecture, we can
notice that the large fluctuations in the results were eliminated.
Our Scheduler considers the tasks load before distribute them in
order to balance the computational effort to be spent by each avail-
able processing units. The speed-ups obtained by LPT and Multifit
algorithms although constant, are in many cases lower than the
one obtained by all RIPs per job strategy. Possibly this situation
occurs since these scheduling algorithms need to perform a profile
Table 4
Efficiency for Queue 1.

Strategy Number of processes

3 4 5 6 7 8 9 10

1 RIP per job 0.81 0.67 0.61 0.48 0.47 0.40 0.36 0.33
2 RIPs per job 0.71 – 0.58 – 0.42 – 0.34 –
3 RIPs per job – 0.88 – – 0.78 – – 0.55
4 RIPs per job – – 0.93 – – – 0.51 –
5 RIPs per job – – – 0.85 – – – –
All RIPs per job 0.84 0.84 0.87 0.81 0.92 0.90 0.70 0.91
LPT 0.85 0.92 0.88 0.89 0.89 0.92 0.88 0.87
Multifit 0.86 0.83 0.78 0.75 0.85 0.86 0.84 0.85
Optimized LPT 0.91 0.91 0.91 0.88 0.97 0.93 0.92 0.93
analysis before including the jobs in the queue. Thus, if there are
idle RIPs during the analysis of one or more jobs, they should wait
until the profile analysis is completed to receive a new task. The
overhead generated by this situation affects the speed-up curve.
Moreover, in most cases Multifit speed-up is below the LPT
speed-up. This may occur because the Multifit algorithm adds even
more overhead when packaging tasks in bins.

Finally, the best results were obtained by the Optimized LPT
algorithm. It presents less fluctuations and reaches speed-ups that
overcome all test cases. The main advantage offered by the use of
this algorithm in our architecture is to allow the Scheduler to
transmit immediately tasks to idle RIPs concurrently to the analy-
sis of the jobs profile. It reduces the LPT inherent overhead, because
it always analyzes tasks before the Scheduler sending them to be
ripped.

The use of different approaches affects not only the speed-up,
but also the percentage of utilization of each processing unit. To
analyze this measurement, the efficiency obtained for each test
case is shown in Table 4. Observing these results, it is possible to
notice that the efficiency is also affected by the number of pro-
cesses. The 1 RIP per job strategy clearly presents a loss in effi-
ciency as more processes are used since some RIPs are idle
during the execution. The same behavior can be noticed for the N
RIPs per job strategy, where the addition of more processes does
not represent an effective performance gain consequently reducing
the efficiency. Efficiency for all RIPs per job strategy presents a
non-uniform behavior. Sometimes reaching a very high efficiency
(around 90%) and sometimes presenting a regular efficiency (70–
85%). Our architecture, on the other hand, presents uniform high
efficiencies, even with a larger number of processes. The algo-
rithms used with our scheduling architecture presented an average
efficiency of 84% using Multifit, 88% using LPT and 92% using
Optimized LPT.

Table 5 and Fig. 13 present speed-up results for Queue 2, in
which job loads are sorted from the largest to the smallest. The N
RIPs per job strategy does not present any significant changes in
11 12 13 14 15 16 17 18 19 20

0.24 0.22 0.18 0.21 0.18 0.17 0.14 0.15 0.14 0.12
0.31 – 0.23 – 0.21 – 0.17 – 0.16 –
– – 0.41 – – 0.34 – – 0.26 –
– – 0.32 – – – 0.21 – – –
0.37 – – – – 0.23 – – – –
0.76 0.90 0.90 0.94 0.92 0.81 0.89 0.81 0.80 0.92
0.88 0.87 0.90 0.89 0.88 0.86 0.90 0.90 0.89 0.90
0.84 0.83 0.89 0.87 0.85 0.86 0.88 0.89 0.88 0.88
0.91 0.94 0.94 0.95 0.92 0.92 0.94 0.94 0.94 0.95

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
pe

ed
-u

p

Number of processes

Ideal
LPT

Optimized LPT
Multifit

All RIPs per Job
1 RIP per Job

Fig. 13. Speed-ups for Queue 2.

Table 6
Efficiency for Queue 2.

Strategy Number of processes

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 RIP per job 0.85 0.81 0.75 0.64 0.49 0.52 0.40 0.40 0.27 0.27 0.22 0.16 0.16 0.15 0.16 0.14 0.16 0.13
2 RIPs per job 0.69 – 0.66 – 0.51 – 0.38 – 0.29 – 0.28 – 0.22 – 0.19 – 0.16 –
3 RIPs per job – 0.88 – – 0.75 – – 0.56 – – 0.41 – – 0.25 – – 0.23 –
4 RIPs per job – – 0.88 – – – 0.45 – – – 0.29 – – – 0.22 – – –
5 RIPs per job – – – 0.87 – – – – 0.39 – – – – 0.24 – – – –
All RIPs per job 0.91 0.90 0.88 0.85 0.89 0.87 0.91 0.90 0.90 0.90 0.91 0.92 0.94 0.91 0.91 0.93 0.94 0.94
LPT 0.83 0.90 0.84 0.86 0.86 0.85 0.84 0.83 0.84 0.83 0.86 0.89 0.88 0.87 0.86 0.86 0.87 0.91
Multifit 0.80 0.83 0.78 0.75 0.78 0.81 0.78 0.80 0.81 0.84 0.83 0.87 0.86 0.86 0.86 0.86 0.88 0.89
Optimized LPT 0.88 0.90 0.89 0.91 0.90 0.87 0.88 0.88 0.87 0.90 0.90 0.93 0.93 0.93 0.91 0.91 0.91 0.93

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
pe

ed
-u

p

Number of processes

Ideal
LPT

Optimized LPT
Multifit

All RIPs per Job
1 RIP per Job

Fig. 14. Speed-ups for Queue 3.

Table 7
Queue 3 speed-ups: N RIPs per job.

RIPs per job Number of processes

3 4 5 6 7 9

2 1.61 – 2.54 – 3.09 3.36
3 – 2.57 – – 4.43 –
4 – – 3.47 – – 3.82
5 – – – 4.21 – –

10 11 13 15 16 17 19

2 – 3.04 2.96 3.04 – 2.78 2.99
3 4.51 – 5.04 – 4.60 – 4.56
4 – – 3.44 – – 4.25 –
5 – 3.95 – – 3.50 – –

A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205 203
its performance. The existence of idle RIPs remains a problem
slowing down the performance, resulting in low acceleration fac-
tors. This behavior can be observed for all analyzed group sizes.
For the 1 RIP per job strategy, results presented a slight increase
in the acceleration factor compared to the results obtained for
Queue 1. However, the speed-up remains very low for a larger
number of processes. This might happen because some RIPs are
idle during the ripping process. Another important aspect is that
the results present a fluctuation, probably due to a large grain size
that can generate overload and underload of the RIPs.
Observing all RIPs per job strategy speed-up, no significant vari-
ations can be seen. Using Queue 2, it was possible to distribute first
the heavier tasks, reducing the RIPs overload factor at the end of
the processing. As the queue in this case is already sorted, LPT algo-
rithm would be supposed to produce the best results among all
others. However, the acceleration factors for LPT and Multifit algo-
rithms are smaller than the one achieved when using all RIPs per
job strategy. The possible explanation for that is the need to ana-
lyze each task even when the task queue is organized in descend-
ing order of ripping cost, condition that generates overhead.
Furthermore, analyzing the Optimized LPT algorithm, obtained
results do not deviate much from those obtained by all RIPs per
job strategy, due to its ability of immediately transmitting tasks
to idle RIPs. Anyway, a small overhead is observed possibly by
the thread that analyzes the job profile.

In the context of Queue 2, efficiency values are presented in
Table 6. As expected, the efficiency of 1 RIP per job and N RIPs
per job strategies did not increase as more processing units were
added, due to the low scalability of the application. On the other
hand, the efficiency of all RIPs per job strategy was high, with an
average of 92%. Considering the algorithms we used in our archi-
tecture, average efficiency was 82%, 86% and 90% to LPT, Multifit
and Optimized LPT respectively. It is possible to notice that LPT
and Multifit efficiency are not as good as the one obtained by all
RIPs per job strategy. However, the efficiency obtained using the
Optimized LPT algorithm is very similar to that obtained by all
RIPs per job strategy, since this approach does not suffer too much
with the impact of unnecessary job analysis overload.

Fig. 14 and Table 7 present the results for Queue 3. In this
queue, jobs are sorted in ascending order of workload. As can be
noticed, the speed-ups obtained using our architecture keep close
to the ideal regardless the algorithm used. In this context,
Optimized LPT presents the best speed-up among all test cases.
LPT and Multifit results were mainly affected by the job profiling

Table 8
Efficiency for Queue 3.

Strategy Number of processes

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 RIP per job 0.76 0.63 0.59 0.54 0.47 0.36 0.37 0.29 0.27 0.26 0.20 0.20 0.19 0.17 0.17 0.16 0.16 0.13
2 RIPs per job 0.80 – 0.63 – 0.51 – 0.42 – 0.30 – 0.24 – 0.21 – 0.17 – 0.16 –
3 RIPs per job – 0.85 – – 0.73 – – 0.50 – – 0.42 – – 0.30 – – 0.25 –
4 RIPs per job – – 0.86 – – – 0.47 – – – 0.28 – – – 0.26 – – –
5 RIPs per job – – – 0.84 – – – – 0.39 – – – – 0.23 – – – –
All RIPs per job 0.92 0.89 0.69 0.89 0.87 0.80 0.73 0.85 0.70 0.86 0.84 0.90 0.90 0.82 0.91 0.77 0.67 0.78
LPT 0.86 0.89 0.86 0.87 0.87 0.84 0.88 0.85 0.89 0.88 0.88 0.88 0.86 0.85 0.88 0.88 0.88 0.90
Multifit 0.85 0.84 0.88 0.82 0.87 0.89 0.91 0.89 0.87 0.87 0.89 0.89 0.88 0.87 0.86 0.86 0.87 0.91
Optimized LPT 0.89 0.92 0.92 0.91 0.90 0.93 0.93 0.93 0.96 0.92 0.92 0.94 0.91 0.90 0.94 0.91 0.94 0.95

204 A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205
overhead, that retards the task distribution. Nevertheless, in most
cases, these two algorithms match or surpass the traditional strate-
gies speed-ups.

Considering 1 RIP per job and N RIPs per job strategies, no
changes in previous behavior can be observed. These strategies
present a low scalability, with no significant gain as more pro-
cesses are added. Moreover, the all RIPs per job strategy presented
a peculiar behavior with non-uniform performance. This may be
explained by the order that the jobs appear at the queue. Large jobs
will be inserted in the end, increasing the overload and underload
among RIPs. This effect can be seen when dealing with a queue that
has some small jobs and a special large job (that will be the last one
to be ripped). In this case, an important loss in performance will
occur since many RIPs will be idle waiting for one RIP to finish
the last task. On the other hand, when dealing with jobs containing
similar sizes, a performance loss will not occur since the load will
be balanced among RIPs.

Finally, Table 8 shows efficiency values for the third queue con-
figuration. As expected, 1 RIP per job and N RIPs per job strategies
present lower efficiencies when more processes are included. All
RIPs per job strategy presents a wide variation in the achieved effi-
ciencies, starting from 66% (19 processes) up to 92% (3 processes).
Due to this situation, the average efficiency of this strategy was
around 82%. For the algorithms used in our architecture, high aver-
age efficiencies can be observed, such as 87% for LPT and Multifit,
and 92% for Optimized LPT, which outperforms all other strategies.
6. Conclusion and future work

This paper presented a job profile oriented scheduling architec-
ture for improving the throughput of the ripping process on indus-
trial printing environments. Through the use of specific metrics
that consider each specific job characteristics, we estimate the
computational cost of the ripping process using the PDF Profiler
tool. Since we are able to use the information about the computa-
tional cost in the scheduling process, any makespan scheduling
algorithm can be used along with our architecture. Therefore we
tested different scheduling algorithms, including those that con-
sider the computational time. In this context, the LPT algorithm
was adapted to obtain better results based on the particularities
of the ripping process. Our architecture was then used to distribute
the load among the available RIP engines in a clever way aiming at
an optimized utilization of the available resources.

The results obtained using our proposed architecture presented
better load balancing, with a better performance than the ones
provided by traditional algorithms. Among traditional algorithms,
that do not consider the computational time, the all rips per job
strategy presented the best results, though depending on the
queue configuration. Three algorithms (Multifit, LPT and
Optimized LPT) which use computational cost information were
used to test our architecture and presented satisfactory results
regardless the input queue configuration. Optimized LPT presented
the best performance, with an average efficiency of 91.3% and
speed-ups around 18 when using 20 processors. In some cases it
is possible to notice a similar behavior between the all RIPs per
job strategy and Optimized LPT. However, while Optimized LPT
keeps the efficiency and speed-up for the 3 tested queues, the all
rips per job strategy presented a poor performance when the
queue is sorted in ascending order.

Despite the performance gain obtained by the job profile ori-
ented scheduling architecture using the tested algorithms, it is also
important to highlight that this is an adaptive environment, which
allows the use of any scheduling algorithm and enables the cre-
ation of new ones. As future work, the study of other scheduling
strategies appears as an interesting path to follow, allowing the
optimization of the ripping process in different ways whenever
jobs details are previously known. For example, a RIP engine can
be configured to deal with specific characteristics (e.g., reusability)
that are presented in a given job. Based on that, RIP engines could
be configured to deal with jobs that present those specific charac-
teristics. This specialization may improve the performance and
throughput of ripped jobs.

A job characteristic that might have an important influence on
the computational cost is the amount of reusable objects. If it is
known that a job presents many reusable objects, we may config-
ure the RIP engine to prioritize the storage of the rasterized version
of these objects in their cache and in some auxiliary storage (such
as a disk or larger memory) in such a way that they can be used
later. However, if RIPs are configured to process jobs with high
reusability and the job objects are used only once, store operations
become expensive and may compromise the performance of the
ripping process in general.

Since jobs usually present a mixed of reusable and non-reusable
objects, it is hard to establish when this option should be activated.
Due to this situation, it would be interesting to split jobs in an
intelligent way, so that pages containing the same reusable objects
can be assigned to the same RIP, which will be configured to deal
with high reusability. In this case, pages that do not have reusable
objects in common with other pages can be assigned to RIPs that
do not use reusability optimization.

Another possible optimization in the scheduling algorithm is
related to job transparency. As well as reusable objects, RIPs can
identify if a PDF document contains several transparent objects
applying then a specific process for ripping those objects.
However, if this optimization is used and the PDF document has
too many opaque objects, the performance of the ripping process
is compromised. Therefore, if this optimization is activated, pro-
cessing opaque objects as transparent objects will result in an
additional processing cost. In this sense, pages with transparent
objects should be sent to RIPs that have the transparency optimiza-
tion activated.

Based on the promising performance obtained with our job pro-
file oriented scheduling architecture and the idea to optimize the

A.B. do Carmo et al. / Computers & Industrial Engineering 88 (2015) 191–205 205
ripping process depending on specific document characteristics
(such as reusability and transparency), we believe that the next
step of our research is to incorporate those characteristics in our
scheduling architecture. For that, we should (i) modify the PDF
Profiler to identify transparent and reusable objects in documents,
(ii) adapt the PDF Splitter to perform a more clever separation of
the jobs pages considering the new information and (iii) create
new scheduling algorithms that would benefit from this informa-
tion as it becomes available.

References

Adobe Systems (2003). PDF reference (4th ed.). San Jose: Adobe Systems
Incorporated.

Albers, S. (2013). Recent advances for a classical scheduling problem. ICALP’13:
Proceedings of the 40th international conference on automata, languages, and
programming (Vol. 2, pp. 4–14). Riga, Latvia: Springer.

Book, R. V. (1975). Reducibility among combinatorial problems. The Journal of
Symbolic Logic, 40(4), 618–619.

Coffman, E. G., Garey, M. R., & Johnson, D. S. (1978). An application of bin-packing to
multiprocessor scheduling. SIAM Journal of Computing, 7(7), 1–17.

Davis, P., & deBronkart, D. (2000). PPML (Personalized Print Markup Language): A
new XML-based industry standard print language. In XML Europe 2000
(pp. 1–14). Paris, France: International Digital Enterprise Alliance.

Dell’Amico, M., & Martello, S. (1995). Optimal scheduling of tasks on identical
parallel processors. ORSA Journal on Computing, 7(2), 191–200.

Fernandes, L. G., Nunes, T., Kolberg, M., Giannetti, F., Nemetz, R., & Cabeda, A. (2012).
Job profiling and queue management in high performance printing. Computer
Science – Research and Development, 27(2), 147–166.

Friesen, D. K. (1984). Tighter bounds for the multifit processor scheduling
algorithm. SIAM Journal of Computing, 13(1), 170–181.

Getov, V., Hummel, S. F., & Mintchev, S. (1998). High-performance parallel
programming in Java: Exploiting native libraries. Concurrency: Practice and
Experience, 10(11), 863–872.

Giannetti, F. (2007). A multi-format variable data template wrapper extending
Podis PPML-T standard. In DocEng’07: Proceedings of the 7th ACM symposium on
document engineering (pp. 37–43). Winnipeg, Canada: ACM.

Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell System
Technical Journal, 45(9), 1563–1581.
Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17(2), 416–429.

Hochbaum, D. S., & Shmoys, D. B. (1987). Using dual approximation algorithms for
scheduling problems theoretical and practical results. Journal of ACM, 34(1),
144–162.

Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., & Graham, R. L. (1974). Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM
Journal on Computing, 3(4), 299–325.

Kruatrachue, B., & Lewis, T. (1988). Grain size determination for parallel processing.
IEEE Software, 5(1), 23–32.

LAM/MPI (2015). Lam/mpi home page <http://www.dcs.ed.ac.uk/home/trollius/
www.osc.edu/lam.html> Last access 16.07.2015.

Leung, J. (Ed.). (2004). Handbook of scheduling: Algorithms, models, and performance
analysis. Boca Raton, USA: CRC Press, Inc..

MPICH (2015). Mpich home page <https://www.mpich.org/> Last access
16.07.2015.

MPJ-Express (2015). Mpj-express home page <http://sourceforge.net/projects/
mpjexpress/files/>. Last access 16.07.2015.

Nunes, T., Fernandes, L. G., Giannetti, F., Cabeda, A., Raeder, M., & Bedin, G. (2007).
An improved parallel XSL-FO rendering for personalized documents. In 14th
Euro PVM/MPI – European PVM/MPI users group meeting (pp. 56–63). Berlin/
Heidelberg, Paris, France: Springer.

Nunes, T., Giannetti, F., Fernandes, L. G., Timmers, R., Raeder, M., & Castro, M. (2006).
High performance XSL-FO rendering for variable data printing. In SAC ’06:
Proceedings of the 2006 ACM symposium on applied computing (pp. 811–817).
Dijon, France: ACM.

Nunes, T., Giannetti, F., Kolberg, M., Nemetz, R., Cabeda, A., & Fernandes, L. G. (2009).
Job profiling in high performance printing. In DocEng’09: Proceedings of the 9th
ACM symposium on document engineering (pp. 109–118). New York, NY, USA:
ACM.

Nunes, T., Raeder, M., Kolberg, M. L., Fernandes, L. G., Cabeda, A., & Giannetti, F.
(2009). High performance printing: Increasing personalized documents
rendering through PPML jobs profiling and scheduling. In CSE’09: Proceedings
of the 12th IEEE international conference on computational science and engineering
(pp. 285–291). IEEE Computer Society.

PDFBox (2015). PDFBox home page <http://pdfbox.apache.org> Last access
16.07.2015.

Purvis, L., Harrington, S., O’Sullivan, B., & Freuder, E. C. (2003). Creating personalized
documents: an optimization approach. In Doc- Eng ’03: Proceedings of the 2003
ACM symposium on document engineering (pp. 68–77). Grenoble, France: ACM.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., & Dongarra, J. (1996). MPI: The
complete reference. Cambridge, USA: MIT Press.

http://refhub.elsevier.com/S0360-8352(15)00285-5/h0005
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0005
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0010
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0010
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0010
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0015
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0015
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0020
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0020
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0025
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0025
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0025
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0030
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0030
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0035
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0035
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0035
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0040
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0040
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0045
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0045
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0045
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0050
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0050
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0050
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0055
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0055
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0060
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0060
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0065
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0065
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0065
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0070
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0070
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0070
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0075
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0075
http://www.dcs.ed.ac.uk/home/trollius/www.osc.edu/lam.html
http://www.dcs.ed.ac.uk/home/trollius/www.osc.edu/lam.html
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0085
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0085
https://www.mpich.org/
http://sourceforge.net/projects/mpjexpress/files/
http://sourceforge.net/projects/mpjexpress/files/
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0100
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0100
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0100
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0100
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0105
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0105
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0105
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0105
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0110
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0110
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0110
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0110
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0115
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0115
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0115
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0115
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0115
http://pdfbox.apache.org
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0125
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0125
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0125
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0130
http://refhub.elsevier.com/S0360-8352(15)00285-5/h0130

	A job profile oriented scheduling architecture for improving the throughput of industrial printing environments
	1 Introduction
	1.1 Motivation and objectives
	1.2 Document structure

	2 Scenario overview
	2.1 General PSP printing workflow
	2.2 Scheduling on distributed environments
	2.3 Traditional ripping process and scheduling strategies

	3 Proposed scheduling architecture
	3.1 Modules
	3.1.1 PDF Profiler
	3.1.2 PDF Splitter
	3.1.3 Queue Manager

	3.2 Scheduler
	3.3 Algorithms
	3.3.1 Multifit
	3.3.2 Largest processing time first
	3.3.3 Optimized LPT

	4 Scenario configuration
	4.1 Input documents
	4.2 Job queue

	5 Experimental results
	5.1 Test environment
	5.2 Scheduler architecture performance analysis

	6 Conclusion and future work
	References

