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Abstract. Solvers for linear equation systems are commonly used in many dif-
ferent kinds of real applications which deal with large matrices. Nevertheless, two
key problems appear to limit the use of linear system solvers to a more extensive
range of real applications: computing power and solution correctness. In a pre-
vious work, we proposed a method which employs high performance computing
techniques together with verified computing techniques in order to eliminate the
problems mentioned above. This paper presents an optimization of a previously
proposed parallel self-verified method for solving dense linear systems of equa-
tions. Basically, improvements are related to the way communication primitives
were employed and to the identification of the points in the solver algorithm in
which mathematical accuracy is needed to achieve reliable results.

1 Introduction

Self-verified methods compute for the given problem a highly accurate inclusion of
the solution and automatically prove the existence and uniqueness of a true result within
the given enclosure interval [4]. Many real problems need numerical methods for their
simulation and modeling. The use of self-verified methods can increase the quality of
the result, but also the execution time [5]. It is known that interval arithmetic is more
time consuming then real arithmetic, since the computation must be performed on two
bounding values in each step. Finding the verified result often increases dramatically
the execution times [5]. The use of parallel computing is a typical approach to improve
the computational power and thus to solve large problems in reasonable time.

However, in some numerical problems, accuracy is essential. For instance, even in
a simple linear system like presented in [2], the solution achieved with IEEE double
precision arithmetic is completely wrong indicating the need for the use of verified
computation. One solution for this problem can be found in [3], where the verified
method for solving linear system using the C-XSC library is based on the enclosure
theory described in [6]. Enclosure methods characteristics can be observed through the
analysis if the Newton-like iteration (Equation 1):

Xk+1 = Rb + (I −RA)xk, k = 0, 1, ... (1)



This equation is used to find a zero off(x) = Ax − b with an arbitrary starting
valuex0 and an approximate inverseR ≈ A−1 of A, that if there is an indexk with
[x](k+1) ⊂ [x]k ([x]k+1 included in the interior of[x]k), then the matricesR andA are
regular, and there is a unique solutionx of the systemAx = b with x ∈ [x]k+1. We
assume that the linear systemAx = b must be dense, square and we do not consider
any special structure of the elements ofA.

A parallel self-verified linear equation solver proposed in [1] uses as base the algo-
rithm 1. This algorithm describes the implementation of the enclosure methods theory
explained before.

Algorithm 1 Compute an enclosure for the solution of the square linear systemAx = b.

1: R ≈ (mid[A])−1 {Compute an approximate inverse using LU-Decomposition algorithm}
2: x̃ ≈ R ·mid[b] {compute the approximation of the solution}
3: [z] ⊇ R([b]− [A]x̃) {compute enclosure for the residuum (without rounding error)}
4: [C] ⊇ (I −RA) {compute enclosure for the iteration matrix (without rounding error)}
5: [w] := [z], k := 0 {initialize machine interval vector}
6: while [w] ⊆ int[y] or k > 10 do
7: [y] := [w]
8: [w] := [z] + [C][y]
9: k + +

10: end while
11: if [w] ⊆ int[y] then
12: Σ([A], [b]) ⊆ x̃ + [w]
13: else
14: ”no verification”
15: end if

This paper presents an optimization of the parallel version of this algorithm pre-
sented in [1]. Two points of optimization were focused: the parts in which mathematical
accuracy is relevant and the communication cost. Our main contribution is to point out
the advantages and drawbacks of the self-verified computation usage, speeding-up the
performance of the previous parallel self-verified linear solver.

This paper is organized as follows: next section briefly describes the optimization
strategies for the parallel self-verified method. The analysis of the results obtained
through those optimizations is presented in section 3. Finally, the conclusion and some
future works are highlighted in the last section.

2 Optimization strategies

After the analysis of the original work, two possible optimization points were de-
tected: the use of the mathematical accuracy primitives and the use of the communi-
cation primitives. It is important to mention that the implementation description of the
parallel self-verified method will not be discussed here. Readers interested in a more
detailed explanation of the parallel version of the algorithm should read [1].



The first optimization was related to the use of high accuracy on the R computa-
tion (see algorithm 1 line1). Since R is an approximation of the matrix A inversion,
which does not need exactly results, it can be computed without high accuracy. The
elimination of the use of high accuracy on the R computation does not compromise the
results obtained and decreases the overall executing time (detailed results are presented
in section 3).

On the other hand, the data types of the C-XSC library, which allows the self-
verification and was used on the parallel approach, does not fit with the MPI library
data types. In order to solve this problem, the parallel previous version used a simple,
yet time consuming, solution. It is based on a pack and unpack step before sending
and receiving data. In the current work, we replace the MPI library for one that al-
ready implements the pack and unpack procedures in a low level [3]. This improvement
makes the data exchange among process faster, decreasing the communication cost of
the parallel solution.

3 Results

The results presented in this section were obtained over the parallel environment
ALiCEnext (Advanced Linux Cluster Engine, next generation) installed at the Uni-
versity of Wuppertal (Germany). This cluster is composed of 1024 1.8 GHz AMD
Opteron processors (64 bit architecture) on 512 nodes connected by Gigabit Ethernet.
ALiCEnext processors employ Linux as operating system and MPI as communication
interface for parallel communication.

Performance analysis of the optimized parallel solver were carried out varying the
order of input matrix A in three different grains:500×500, 1, 000×1, 000 and2, 500×
2, 500. Figure 1(a) shows the comparison between the old parallel version (without R
optimization) and the new parallel implementation (with R optimization) both using
matrix A as1, 000× 1, 000.
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Fig. 1. Experimental Results

In figure 1(a), it can be seen that the parallel version with optimization reached
lower execution times than the parallel version without optimization. In Figure 1(b),



experiments are presented varying the equation systems size. Using the matrices orders
described above, it is possible to remark that the optimized solution presents good scal-
ability. It is also important to highlight that for the largest input matrix, the speed-up
achieved was around 21 for 28 processors which is a representative result for cluster
platforms.

Finally, we only could carry out experiments up to 28 processors due to cluster
nodes availability for our experiments. For all experiments, this number of processors
was not enough to achieve the inflexion point in the speed-up curves of all three ex-
periments, indicating that more processors could be used to improve even more the
speed-ups.

4 Conclusion

This paper presented the optimization of a parallel self-verified method for solving
linear systems. Two optimizations were carried out: the use of the mathematical accu-
racy primitives and the use of the communication primitives. The results presented a
significant performance gain, for all experiments, when comparing to the old parallel
implementation.

However, it is important to mention that more experiments must be carried out to
verify and validate our parallel verified algorithm to a larger range of input matrices.
Also, other possible optimizations in the use of verified operations must be mathemati-
cally investigated in order to guarantee that no unnecessary time consuming operations
are being executed.
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