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Abstract

This paper presents a new parallel implementation for
solving dense interval linear systems with verified comput-
ing. The use of intervals appears as one possible way to
handle the uncertainty of input data in real problems. A ver-
ified method using midpoint-radius arithmetic and directed
roundings was combined with optimized libraries such as
SCALAPACK and PBLAS to provide a free, fast, reliable
and accurate solver. Accuracy and performance results for
executing this implementation in a cluster are shown. It
is the authors opinion that the combination of verified and
parallel computing is a powerful tool that could be used for
several other mathematical problems.

1 Introduction

Many real problems are simulated and modeled using
dense linear systems of equations. In many problems the
input data is obtained from measurement that are usually
done using tools that are not always precise. This fact,
among others reason that generate uncertainties (see Sec-
tion 2), can cause errors in the evaluation of the system, and
this can be specially bad for problems that need an accurate
result. One possible way to handle the uncertainty of input
data is using intervals.

To solve an interval linear systems means that an infi-
nite number of matrices contained in the interval should be
solved. The exact solution set of an interval linear system
has a complicated non-convex shape which is difficult to
compute [20]. The only possible way to find a solution is to
compute a narrow interval that contains this set.

Each of these matrices has a different condition number,
and the larger the dimension of the matrix and the radius
of the matrix are, the larger is the probability that it will

contain an ill-conditioned or a singular matrix.
Many different numerical algorithms contain this kind

of task as a sub-problem [2, 25, 24]. A large number of
these problems can be solved through a dense interval linear
system of equations like

[A]x = [b] (1)

with a n × n interval matrix [A] ∈ IR
n×n and a right hand

side interval vector [b] ∈ IR
n.

When such a system is solved using computers, several
rounding errors can occur during its computation. Even
well conditioned systems can lead to completely wrong re-
sults and this effect can be worse for ill-conditioned ma-
trices. The classical solutions for linear systems of equa-
tions using floating-point arithmetic can only deliver an ap-
proximation. Since the correct result is unknown, it is not
clear how good these approximations are, or if there exists
a unique solution at all.

One possible way to obtain reliable results is using veri-
fied computing [9]. Verified computing provides an interval
result that surely contains the correct result [16, 12]. In this
case, it will either deliver the enclosure of the correct solu-
tion or do not deliver any result at all.

The verified method for solving linear systems of equa-
tion is composed by the computation of the approximate so-
lution and an interval Newton-like iteration. This increases
the computational cost to solve such a system, specially
when dealing with large matrices. The research already
developed shows that the execution times of verified algo-
rithms using e.g. C-XSC (C for eXtended Scientific Com-
puting) [12] are much larger than the execution times of
algorithms that do not use this concept even for parallel im-
plementations [10, 11, 13, 15]. Additionally, if the input
data are an interval matrix and an interval vector, this cost
is two times larger since every interval is defined with two
numbers: the midpoint and the radius of the interval (see
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section 3).
There are some advantages of using midpoint-radius rep-

resentation instead of the traditional infimum-supremum
representation. The main advantage is that no case distinc-
tions or switching of rounding mode in inner loops of vector
and matrix multiplication are needed. In this case, the mul-
tiplication of a vector or matrix could be implemented using
pure floating point operations and highly optimizes libraries
like BLAS (Basic Linear Algebra Subprograms) [4] could
be used to implement it in a much faster way. However,
when using infimum-supremum arithmetic, this is not pos-
sible. In this case, each interval multiplication has to be ex-
ecuted differently depending if the interval is positive, neg-
ative or if it contains zero. Therefore, optimized libraries
cannot be used. Even with this advantage, midpoint-radius
arithmetic combined with these libraries still represents a
considerable computational cost when dealing with large
dense interval systems.

In this context, the use of high performance computation
techniques appears as a useful tool to drop down the time
needed to solve interval systems using verified computing.
With the advent of large clusters composed by hundreds or
thousands of nodes connected through a gigabit network,
huge linear systems can be computed in parallel [8]. The
well-known libraries such as PBLAS (Parallel Basic Linear
Algebra Subprograms) and SCALAPACK (SCAlable Lin-
ear Algebra PACKage) [3] alone are not suited for interval
systems based on verified methods once these methods in-
troduce several steps to deliver a guaranteed result. The
present work proposes a new cluster solution for solving
interval linear systems using high performance computing
with MPI [23] and combining the previous mentioned li-
braries with verified computing techniques in order to treat
uncertain data represented by intervals.

The authors have presented a parallel verified method for
solving linear systems of equations with point input data,
listing also additional references on previous work on the
subject [14]. The present research proposes a new paral-
lelization of the verified method for interval input data. The
idea is to use popular and highly optimized libraries to gain
performance and verified methods to have guaranteed re-
sults. In other words, the new implementations try to join
the best aspects of each library:

• SCALAPACK and PBLAS: performance.

• Verified method like the one used in C-XSC toolbox:
guaranteed results.

Moreover, the major goal of this research is to provide a
free, fast, reliable and accurate solver for dense interval lin-
ear systems.

This text is organized as follows. Section 2 presents
some aspects of uncertain data that can be handled using
interval mathematics, Section 3 describes the verification of

linear systems, Section 4 presents the implementation is-
sues, Section 5 shows some experimental results, and fi-
nally Section 6 concludes the work and present some future
works.

2 Uncertain Data

Engineering and scientific problems are frequently mod-
eled by a numerical simulation on a computer. Such simu-
lations have many advantages:

• usually, a computer simulation is much less expensive;
e.g. new vehicles are often designed and tested in a
“numerical wind tunnel” and in simulated crash tests
instead of building a prototype and performing real
tests (which may even lead to the destruction of the
prototype);

• this is also less time consuming and leads to a much
faster design process;

• a simulation does not have the risks which may be
caused by a true experiment, e.g. in nuclear energy
or aviation and space engineering;

• many experiments are difficult to perform or they even
cannot be performed at all; e.g. in astronomy, particle
physics, biology, geology.

However, the question arises, how reliable are the results
of such numerical simulations. A reliable solution of an en-
gineering or scientific problem should not only give an ap-
proximate numerical result but also rigorous error bounds
and a proof that the solution is correct within these bounds;
e.g. that a solution exists (and possibly is unique) in a math-
ematical sense.

There are many sources of uncertainty or error which
have to be taken care of in a numerical simulation. These
include

• measurement errors, unknown or imprecise data;

• errors introduced by the mathematical model of the
problem, frequently described by differential equa-
tions;

• mathematical errors introduced by the discretization /
linearization of the model, leading to linear systems;

• rounding errors in the floating-point evaluation of the
numerical approximation.

Interval arithmetic methods can handle most of these
sources of error:

• imprecise measured data can be represented by inter-
vals,
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• errors in the model or in the mathematical treatment of
the model can be represented by an additional interval
term,

• rounding errors may be controlled by interval arith-
metic operations.

Another important aspect is that intervals represent the
continuum of numbers: a floating-point interval [a, b] is the
set of all real numbers between a and b, not just the floating-
point numbers. Therefore, in contrast to floating-point com-
putations, interval methods can give rigorous mathematical
results; e.g. let F (X) be an interval extension of a math-
ematical function f(x), and let F ([a, b]) > F ([c, d]), then
there exists no global maximum of the function f(x) in the
interval [c, d], and no global minimum in [a, b], resp.

In the current paper, we concentrate on a special aspect
of this numerical simulation. We consider linear equations
with interval coefficients. These interval coefficients may
be the result of an imprecise model or of measurement er-
rors. We compute an interval enclosure of the result set.

3 Verification of a Linear System of Equa-
tions

Finding the solution of a linear system of equations is
one of the basic problems in numerical algebra [9]. A ver-
ified method for solving this problem for dense square sys-
tems is based on a Newton-like method for an equivalent
fixed-point problem. Subsection 3.1 will present the basic
concepts of verified computing and subsection 3.2 presents
how this concepts can be applied to solve a linear system of
equations.

3.1 Verification

Verified computing provides an interval result that surely
contains the correct result [16]. The algorithm will, in gen-
eral, succeed in finding an enclosure of the solution. If the
solution is not found, the algorithm will let the user know.
An enclosure can be defined as an interval that contains the
correct result. This makes a qualitative difference in sci-
entific computations, since the results are now intervals in
which the exact result must lie. Numerical applications pro-
viding automatic result verification may be useful in many
fields like Simulation and Modeling [6]. Specially, when
accuracy is mandatory.

The use of verified computing guarantees the mathemat-
ical rigor of the result. This is the most important advantage
of such algorithms compared with ordinary methods.

One possibility to implement these ideas is using interval
arithmetic and directed rounding combined with suitable al-
gorithms. Interval arithmetic defines the operations for in-
terval numbers, such that the result is a new interval that

contains the set of all possible solutions. This ensures that
the result is an enclosure, verifying the result.

The most frequently used representation for intervals
over the set of real numbers (R), is the infimum-supremum
representation [1, 18]

[a1, a2] := {x ∈ R : a1 ≤ x ≤ a2} (2)

for some a1, a2 ∈ R, a1 ≤ a2, where ≤ is the partial order-
ing x ≤ y. Another possible representation is the midpoint-
radius representation defined as

〈a, α〉 := {x ∈ R : |x − a| ≤ α} (3)

for some a ∈ R, 0 ≤ α ∈ R.
Both arithmetics are equivalent for the theoretical oper-

ations in R where no final rounding of the results is nec-
essary. However, it changes when looking at operations in
floating-point arithmetic [22].

The midpoint-radius arithmetic is defined for floating
point operations in [22]. Considering a set F ⊆ R of real
floating point numbers, it is possible to define I

+
F as fol-

lows:

I
+

F := {〈ã, α̃〉 : ã, α̃ ∈ F, α̃ ≥ 0}
where

〈ã, α̃〉 := {x ∈ R : ã − α̃ ≤ x ≤ ã + α̃}
Then, I

+
F ⊆ IR. Note that the pair of floating point num-

bers ã, α̃ describes an infinite set of real numbers for α̃ �= 0.
When implementing this arithmetic on computers, spe-

cial care has to be taken for the rounding. A rounding er-
ror will be generated in the midpoint evaluation. This error
should be compensated using the relative error unit. Rump
denotes the relative rounding error unit by ε, sets ε′ = 1

2ε,
and denotes the smallest representable (unnormalized) pos-
itive floating point number by η. In IEEE 754 double preci-
sion, ε = 2−52 and η = 2−1074.

Each of these representations has advantages and dis-
advantages. It is known that the standard definition of
midpoint-radius arithmetic causes overestimation for mul-
tiplication and division. Another possible cause of over-
estimation is that sometimes the computed midpoint is not
exactly representable in floating point. However, in [22],
Rump shows that the overestimation of operations using
midpoint-radius representation compared to the result of the
corresponding power set operation is limited by at most a
factor 1.5 in radius. There are many examples of intervals
that can be better represented in one arithmetic and have an
overestimation in the other.

Besides the overestimation, another important point is
how the basic operations (+,−, ·,÷) must be implemented
in a computer. The operations for infimum-supremum, spe-
cially the multiplication, must be carefully implemented,
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since depending on the sign of the number, a different case
will be used to compute the operation. For midpoint-radius
operations, it does not happen. All operations are directly
defined and no case distinction is needed.

The main point in using midpoint-radius arithmetic is
that no case distinctions, switching of rounding mode in in-
ner loops, etc. are necessary, only pure floating point op-
erations. This is specially good for matrix multiplication
where the fastest algorithms available may be used, for ex-
ample the BLAS routines. This gives an advantage in com-
putational speed which is difficult to achieve by other im-
plementations.

3.2 Linear Systems

A suitable algorithm to solve a dense square linear sys-
tem of equations ensuring a verified result is presented in
Algorithm 1. This algorithm is based on the verified method
that is fully described in [9, 21]. This algorithm gives an en-
closure solution for the problem. The user can be sure that
the exact result is contained in this interval. If the algorithm
fails in finding an enclosure, it means that the problem is
very ill-conditioned or that the matrix A is singular.

Algorithm 1 Enclosure of a square interval linear system

1: R ≈ mid([A])−1{Compute an approximate inverse us-
ing LU-Decomposition algorithm}

2: x̃ ≈ R · mid([b]) {compute the approximation of the
solution}

3: [z] ⊇ R([b] − [A]x̃) {compute enclosure for the
residuum}

4: [C] ⊇ (I − R[A]) {compute enclosure for the iteration
matrix}

5: [w] := [z], k := 0 {initialize machine interval vector}
6: while not ([w] ⊆ int[y] or k > 10) do
7: [y] := [w]
8: [w] := [z] + [C][y]
9: k + +

10: end while
11: if [w] ⊆ int[y] then
12: Σ([A], [b]) ⊆ x̃ + [w]{The solution set (Σ) is con-

tained in the solution found by the method}
13: else
14: no verification
15: end if

This enclosure method for finding the result of a system
like [A]x = [b] with an n × n interval matrix [A] ∈ IR

n×n

and a right hand side interval vector [b] ∈ IR
n is based on

the Newton-like iteration

xk+1 = R[b] + (I − R[A])xk, k = 0, 1, ... (4)

An approximate solution x̃ of [A]x = [b] may be improved
if we try to enclose the error of the approximate solution.

If R is a sufficiently good approximation of (mid[A])−1,
then an iteration can be expected to converge since (I −
R[A]) will have a small spectral radius. These results re-
main valid if we replace the exact expression by interval
extensions.

To compute our approximate solution x̃ and the approxi-
mate inverse R, we used the LU- decomposition. In princi-
ple, there are no special requirements about these quantities,
we could even just guess them. However, the results of the
enclosure algorithm will of course depend on the quality of
the approximations. The procedure fails if the computation
of an approximate inverse R fails or if the inclusion in the
interior cannot be established.

4 Parallel Implementation

The idea of this implementation is to increase the per-
formance of a solver for dense linear systems using a ver-
ified method (but no special library for verification, since
those libraries can increase the computational time signifi-
cantly [13]), interval arithmetic, directed roundings and op-
timized numerical libraries like PBLAS and SCALAPACK
aiming to provide both self-verification and speed-up at the
same time.

To implement the parallel version of Algorithm 1, we
used an approach for cluster architectures with message
passing programming model (MPI) and wherever possible
the highly optimized libraries PBLAS and SCALAPACK.
Matrices are stored in the distributed memory according to
the two-dimensional block cyclic distribution [7] used by
SCALAPACK.

The self-verified method presented above is divided in
several steps. By tests [15], the computation of R (the
approximate inverse of matrix mid([A])) takes more than
50% of the total processing time. Similarly, the compu-
tation of the interval matrix [C], which contains the exact
value of (I − R[A]) (iterative refinement) takes more than
40% of the total time, since matrix multiplication requires
O(n3) execution time. Those are the two most computa-
tional intensive operations in the method compared to the
other operations that are mostly vector or matrix-vector op-
erations which require at most O(n2). Therefore, these two
steps must be carefully parallelized, aiming at a better per-
formance.

4.1 Approximate Solution

The first two steps of the algorithm compute R, the ap-
proximate inverse matrix of mid([A]), and x, the approxi-
mate solution of the linear system.
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Since the input matrix is an interval matrix, a decision
should be made about how the steps 1 and 2 of the Algo-
rithm 1 will be implemented. In both, the mathematical and
performance point of views, the approximate inverse matrix
R should be computed using just the midpoint matrix, i.e. a
point matrix. In this case, the result will be much more ac-
curate than using the interval input data, because the inter-
val inverse matrix [A]−1 would contain huge intervals with
almost no information.

Aiming at a good performance, the idea is to find the ap-
proximate inverse R and the approximate solution x using
just the midpoint matrix and floating point operations. Later
on, the computation of the residuum will use interval arith-
metic and the original interval matrix [A] and the interval
vector [b] to guarantee that we will find the most accurate
result possible.

For the computation of the approximation R in step 1 the
following SCALAPACK routines are used:

• pdgetrf - computes in parallel a LU factorization of a
general matrix using partial pivoting with row inter-
changes) using double precision;

• pdgetri - computes in parallel the inverse of a matrix
using the LU factorization computed by pdgetrf using
double precision.

For the computation of the approximative solution x in step
2 the following PBLAS routine is used:

• pdgemv - performs the matrix-vector operation in par-
allel using double precision.

4.2 Enclosures for the Verification Itera-
tion

Steps 3 and 4 from algorithm 1 compute the enclosure
needed to start the verification iteration. Step 3 computes
the enclosure for the residuum and step 4 the enclosure for
the iteration matrix.

Since [A] and [b] are respectively an interval matrix and
vector for the evaluation of [C] and [z], it is essential to use
the midpoint-radius interval arithmetic.

Like presented in [22], the algorithms 2 and 3 describe
the operations using midpoint-radius arithmetic and IEEE
754 arithmetic standard. Let

A = 〈ã, α̃〉 ∈ I
+

F and B = 〈b̃, β̃〉 ∈ I
+

F

be given. Then, interval addition and subtraction C :=
A ◦ B ∈ I

+
F, ◦ ∈ {+,−}, with C = 〈c̃, γ̃〉 are defined

by the algorithm 2 and the multiplication is presented in
algorithm 3. The symbols �, � and  mean that the op-
eration will be done respectively with rounding to nearest,
rounding up and rounding down.

Algorithm 2 Midpoint-radius addition and subtraction in F

1: c̃ = �(ã ◦ b̃)
2: γ̃ = �(ε′|c̃| + α̃ + β̃)

Algorithm 3 Midpoint-radius multiplication in F

1: c̃ = �(ã · b̃)
2: γ̃ = �(η + ε′|c̃| + (|ã| + α̃)β̃ + α̃β̃)

As discussed in Subsection 3.1, the major advantage of
midpoint-radius arithmetic is that the matrix operations use
exclusively pure floating point matrix operations and there
is no need for case distinctions. Therefore, Step 4 (the cal-
culation of Z = R(b − A · x)) is implemented using the
PBLAS routine pdgemv and directed roundings.

The calculation of C = (I−R·[A]) uses the PBLAS rou-
tine pdgemm (for double precision matrix multiplication)
twice: once rounded up and once rounded down to find
lower and upper bounds of the interval matrix [C]. Then,
floating point operations are performed with rounding up
for the evaluation of midpoint of C (c̃) and radius of C (γ̃)
as presented in algorithm 4.

Algorithm 4 Midpoint-radius matrix multiplication in F
n

1: c̃1 = (R · mid(A))
2: c̃2 = �(R · mid(A))
3: c̃ = �(c̃1 + 0.5(c̃2 − c̃1))
4: γ̃ = �(c̃ − c̃1) + |R| · rad(A)

4.3 Verification Iteration

The verification iteration, is composed by steps 5 to 15.
It implements a Newton-like iteration to find the enclosure
of the correct solution.

These steps use the midpoint-radius arithmetic with di-
rect roundings. In order to implement it, the PBLAS rou-
tine pdgemv was used in step 8 to compute the interval vec-
tor/matrix multiplication. This iteration does not represent a
large amount of computation time, since its operation are of
complexity O(n2). Even so, the parallelization introduced
by the PBLAS routine helps to improve the overall perfor-
mance.

The while statement in step 6 checks if the new result is
contained in the interior of the previous result. If it is pos-
itive, the while loop is over, and the enclosure was found.
If not, it tries for 10 iterations to find the enclosure. It is an
empirical fact that the inner inclusion is satisfied nearly af-
ter a few steps or never [9]. In this part of the algorithm, the
processors have to communicate to check if the enclosure
was found (since the result vectors containing the midpoint
and the radius are split among the processors).
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5 Experimental Results

The experiments performed to test the methods proposed
in this paper have been carried out in the same environment
using the same input data accordingly to the following de-
scriptions. After that, analysis about the performance and
accuracy of the obtained results are presented at the end of
this section.

5.1 Platform

The software platform adopted to implement the pro-
posed solution is composed of optimized versions of li-
braries SCALAPACK and PBLAS (MKL 10.0.011) plus
the standard Message Passing Interface (MPI), more specif-
ically the mpich implementation (version 1.2). The basic
operating system on each node is HP XC Linux for High
Performance Computing (HPC) and the compiler used was
the gcc version 3.4.6.

The hardware platform is the HP XC6000 cluster located
at the Computing Center of the University of Karlsruhe.
The HP XC6000 is a distributed memory parallel computer
with three different sets of nodes all in all. In this work, all
experiments were carried out over the set composed by 108
2-way HP Integrity rx2620 nodes with 12 Gb memory, each
one containing 2 Intel Itanium2 processors (1.5 GHz) with
a 6Mb of level 3 cache. The theoretical peak performance
of the system is 1.9 TFLOPS. All nodes are connected to
the Quadrics QsNet II interconnection which shows a band-
width over 800 MB/s and a low latency.

5.2 Input Data

The input interval matrix [A] and vector [b] were gener-
ated as follows:

• The midpoint matrix mid([A]) and midpoint vector
mid([b]) were generated with random numbers.

• The radius matrix rad([A]) and the radius vector
rad([b]) were filled with the value 0.1 · 10−10.

The tests were performed using different matrix dimen-
sions from 1, 000 to 9, 000. Larger dimensions were not
tested due to the limit of memory. This algorithm generates
the matrices and vectors in one processor and distribute it
among the others. Therefore no larger matrices could be
generated. As a future work, the authors intend to gener-
ate the blocks of the matrices and vectors in each processor,
making possible to solve even larger linear systems.

5.3 Performance Results

The results presented in this section were obtained
through a mean of 10 executions discarding the lowest and

the highest times. This procedure is required in order to
minimize the influence of environment fluctuations in the
final results.
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Figure 1. Speed-up

Figure 1 shows the speed-up curves for matrix dimen-
sions varying from dimension 1, 000 to dimension 9, 000.
As expected, the speed-up of matrix dimension 1, 000 drops
down very quickly after the execution over few processors
(8 in this case, since from 8 processors the amount of com-
putation is not so large compared with the cost of commu-
nication among the processors). After that dimension, the
speed-ups follow the growth of the amount of data to be
computed. For matrix dimension 9, 000, the speed-up fac-
tor is around 58.3 for 64 processors, indicating that the pro-
posed solution scales well. Experiments with matrices with
dimension larger than 9, 000 presented irregular behaviors,
certainly due to memory allocation problems since the ma-
trices are not allocated in each node, but generated in one
node and then distributed.

Table 1. Summary of the test cases: exe-
cution times (T) in seconds and efficiency
(En = Spn/n, where Spn = t1/tn).

number of processors
dimension 1 2 4 8 16 32 64

1,000
T 2.74 1.34 0.74 0.55 0.44 0.50 0.58
E 1.00 1.01 0.91 0.62 0.38 0.17 0.07

3,000
T 62.46 31.61 16.35 8.31 4.42 2.70 2.08
E 1.00 0.98 0,95 0.93 0.88 0.72 0.46

5,000
T 265.72 144.94 71.43 34.46 17.28 9.63 5.76
E 1.00 0.91 0.93 0.96 0.96 0.86 0.72

7,000
T 700.79 381.85 187.91 88.80 43.44 23.56 13.00
E 1.00 0.91 0.93 0.98 1.00 0.92 0.84

9,000
T 1467.71 803.37 375.27 182.34 88.92 46.95 25.15
E 1.00 0.91 0.97 1.00 1.03 0.97 0.91

Looking closer to the results (see Table 1), it is possible
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to identify four points where superlinear speed-ups appear:
i) matrix dimension 1,000 over 2 processors; ii) matrix di-
mension 7,000 over 16 processors; iii) matrix dimension
9, 000 over 8 processors and iv) matrix dimension 9, 000
over 16 processors.

The first case can be easily explained by the fact that
the matrix is too small and both MPI processes were allo-
cated to processors sharing the same node and cache mem-
ory causing a cache effect. The communication time needed
to exchange data between the MPI processes decreases dra-
matically when compared with the situation in which the
processors are in different nodes.

For the remaining cases, the superlinear speed-ups can
be explained by the memory needed to run the sequential
program. The amount of memory in that case is more than
ten times larger than the memory needed to run experiments
over 8 or 16 processors. For instance, it is necessary to use
approximately 5.18 Gb1 of one processor’s memory to run
the sequential program against 324 Mb per processor when
executing over 16 processors 2. This situation leads to a
much smaller number of page faults for the executions with
8 or 16 processors. In the case of a larger number of pro-
cessors (e.g., 32 or 64), this effect fades down because the
communication cost becomes comparatively more signifi-
cant when the amount of data to be processed decreases.

5.4 Accuracy Results

The accuracy depends on the condition number of all
possible matrices in [A]. For well conditioned problems,
the new algorithm may deliver a very accurate result with
up to 16 correct digits.

For example, let [A] be an 1, 000 x 1, 000 interval matrix
and [b] an 1, 000 interval vector, both generated as described
in subsection 5.2. The generated midpoint matrix mid([A])
has a condition number 5.77·10+04. The developed parallel
algorithm with 4 processors will deliver the solution for the
first 10 positions of vector [x] presented in table 2.

These parallel result are in fact more accurate than the
sequential result presented in table 3 in almost all cases.

As can be seen in tables 2 and 3, the radius of the parallel
solution is smaller than the sequential version (possibly by
changes in the sequence of operations). Since we divided
the problem in smaller parts, it is possible that the condi-
tion of the scalar product of smaller parts is better than the
condition of the complete scalar product. This effect was
already studied in [5, 17]. In this paper, it was shown that
if the summation is done in pairs, the final result is more
accurate than doing the whole summation at once. This ef-
fect can be a reason why we found a more accurate result

18 bytes (double) * 9,000 (rows) * 9,000 (columns) * 8 (number of
matrices needed to solve the problem)

25.18 Gb divided by 16

Table 2. Parallel Midpoint-radius Result

res Midpoint Radius

x[0] = −1.3287445 · 10+00 6.63489228 · 10−07

x[1] = 1.48876460 · 10+00 9.50282020 · 10−07

x[2] = −1.4043083 · 10+00 5.29588854 · 10−07

x[3] = 3.77801931 · 10+00 1.19457841 · 10−06

x[4] = 1.51834157 · 10+00 7.76385827 · 10−07

x[5] = −1.0618383 · 10+00 5.61832108 · 10−07

x[6] = 4.75233990 · 10−01 5.98872205 · 10−07

x[7] = −2.0933523 · 10+00 7.28515143 · 10−07

x[8] = 1.08921106 · 10−01 4.62543062 · 10−07

x[9] = −9.1790106 · 10−02 4.58689372 · 10−07

Table 3. Sequential Midpoint-radius Result

x[0] = −1.3287445 · 10+00 1.34971880 · 10−06

x[1] = 1.48876460 · 10+00 1.93288065 · 10−06

x[2] = −1.4043083 · 10+00 1.07750578 · 10−06

x[3] = 3.77801931 · 10+00 2.42986973 · 10−06

x[4] = 1.51834157 · 10+00 1.57890684 · 10−06

x[5] = −1.0618383 · 10+00 1.14296727 · 10−06

x[6] = 4.75233990 · 10−01 1.21834560 · 10−06

x[7] = −2.0933523 · 10+00 1.48170529 · 10−06

x[8] = 1.08921106 · 10−01 9.41392800 · 10−07

x[9] = −9.1790106 · 10−02 9.33610885 · 10−07

using the parallel algorithm. Theoretically, it would also be
possible to have a worse conditioned scalar product when
dividing it into parts. In our test, we did not find any case
where the parallel solution was less accurate than the se-
quential. Despite of this small difference, there was no loss
of accuracy in the results. It is important to mention that
as required by the algorithm, both results contain the exact
result.

6 Conclusions

This work presents a parallel implementation of a veri-
fied method for solving linear systems of equations for un-
certain data. The implementation was able to deliver an en-
closure of the correct solution for interval input data with
considerable accuracy.

The performance tests show that the algorithm scales
well specially for larger interval input matrices. The speed-
up found for dimension 9,000 using 64 processors was
around 58, which is close to linear speed-up.
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The following points are considered for future work:

• Matrices and vectors are presently generated by one
processor, and after that, distributed among the other
processors. This can be a problem since the memory
of the processor that contains all the matrix [A] is not
enough to store large matrices (larger than dimension
10,000 on the available cluster). A natural future work
is to generate the blocks of data in each processor, so
that larger matrices could be solved.

• Another future work is to use special routines to
improve the accuracy in particularly ill-conditioned
cases. This could be done using, for example, the dotk
routines presented in [19].

• There are also plans to implement a parallel verified
method for solving sparse interval linear systems. The
most important cases of sparse matrices are band-
shaped and general sparse matrices.

The authors believe that combining verified and parallel
computing is a powerful tool for having fast, reliable and
accurate solvers for several important mathematical prob-
lems.
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