
Parallel PEPS Tool Performance Analysis Using
Stochastic Automata Networks?

Lucas Baldo1, Luiz Gustavo Fernandes1, Paulo Roisenberg2,
Pedro Velho1 and Thais Webber1

1 Faculdade de Inforḿatica, PUCRS
Avenida Ipiranga, 6681 Prédio 16 - Porto Alegre, Brazil

{lucas baldo, gustavo, pedro, twebber }@inf.pucrs.br
2 HP Brazil

Avenida Ipiranga, 6681 Prédio 91A - TecnoPuc - Porto Alegre, Brazil
paulo.roisenberg@hp.com

Abstract. This paper presents a theoretical performance analysis of a parallel
implementation of a tool called Performance Evaluation for Parallel Systems
(PEPS). This software tool is used to analyze Stochastic Automata Networks
(SAN) models. In its sequential version, the execution time becomes imprac-
ticable when analyzing large SAN models. A parallel version of PEPS using
distributed memory is proposed and modelled with SAN formalism. After, the
sequential PEPS itself is applied to predict the performance of this model.

1 Introduction

In recent years, the effort of many authors has confirmed the importance of perfor-
mance prediction of parallel implementations. Some authors have presented generic
studies offering options to the performance prediction of parallel implementations [1,
2]. The research community classifies the different approaches in three quite distinct
groups: monitoring, simulation and analytical modelling. This last approach (analytical
modelling), compared to the two first ones, is more rarely employed to achieve parallel
programs performance prediction. This happens due to a frequent misconception: the
most known formalisms to analytical modelling,e.g., Markov chains [3] and queueing
networks [4], are not very suitable to represent parallelism and synchronization. In this
paper, we adopted the analytical modelling approach using a formalism called Stochas-
tic Automata Networks (SAN). The reader interested in a formal description of the
formalism can consult previous publications [5]. The SAN formalism describes a com-
plete system as a collection of subsystems that interact with each other. Each subsystem
is described as a stochastic automaton,i.e., an automaton in which the transitions are
labelled with probabilistic and timing information. The analysis of the theoretical SAN
models is performed by a software package called Performance Evaluation for Parallel
Systems (PEPS) [6]. Although PEPS has proven its usability during the past years, it
presents an important drawback: the execution time to analyze SAN models with too
many states is very often impracticable. Thus, the main contribution of this paper is to

? This work was developed in collaboration with HP Brazil R&D.

verify the feasibility of a parallel implementation of the PEPS tool using a SAN model,
identifying the requirements and advantages of such approach.

2 PEPS Implementation Analysis

The input of PEPS is a SAN model described in a predefined grammar. The current ap-
plication loads this grammar and builds an equation system using the events rates. The
SAN models allow a better management of the needs for space memory than Markov
Chains, because they are described in a more compact and efficient way. This optimiza-
tion can be carried out due to the use of tensorial algebra [5]. Thus, a model is no more
described by a unique matrix, but instead, by a new structure called Markovian Descrip-
tor. This structure is the kernel of the PEPS tool and it has a significant impact over its
execution time. Considering a network withN automata andE synchronizing events,
the Markovian Descriptor is given by:

Q =
N⊕

i=1

Q
(i)
l +

E∑
e=1

(
N⊗

i=1

Q
(i)
e+ +

N⊗

i=1

Q
(i)
e−

)
(1)

In this equation, there areN matricesQ(i)
l representing the local events and2E

matricesQ(i)
ek representing the synchronizing events, which result in a total ofN +

2E stored matrices. The basic operation to solve a SAN model in numeric iterative
methods (like the Power Method, GMRES, etc.) is to multiply a probability vectorπ
by aQ matrix stored in the Markovian Descriptor form. This probability vector assigns
a probabilityπi (i ∈ {1, 2, ..., n}) to each one of then states of the Markov Chain
equivalent to the SAN model. Each element ofQ may represent a local event or a
synchronizing event. The local events are given by a sum of normal factors. On the
other hand, synchronizing events are given by a product of normal factors [5]. Hence,
the most important point in this descriptor-vector multiplication is to know how one
can multiply normal factors. In spite of the Markovian Descriptor optimization, the
PEPS application still suffers from a performance decline at the same time that the
complexity3 of the model grows (more details can be found in [6]).

3 PEPS Parallel Version

In order to improve the PEPS software tool performance, this paper proposes a paral-
lel version for this tool based on the features of a specific kind of high performance
architecture. To reinforce the usability of this new version, the hardware environment
should be based on an usual and not very expensive (compared to a supercomputer) one.
Following this scenario, the new version is designed to run over a cluster architecture
which has several processors connected by a dedicated fast network.

As seen in section 2, PEPS solves a SAN model using numeric iterative methods.
In order to represent a SAN model, many matrices are created, describing local and

3 Complexity here is related to synchronizing events and states amount.

synchronized events rates. Another feature of PEPS is that the number of iterations
necessary to make the model converge is different from one input model to another. Due
to this, it is not possible to deduce how many iterations are necessary to determinate
the convergence of a model. The solution proposed here is based on a synchronized
master-slave model. Considering that a SAN model is described as a set of tensorial
matrices (from the Markovian Descriptor, equation 1) and each iteration represents the
multiplication of a probability vector by these matrices, the main idea is to distribute
a set of matrices to each slave and execute the multiplications concurrently. In each
iteration, the master node sends, in broadcast, the vector from theith iteration to the
slaves. Each slave takes some time processing its own task, and returns to the master a
piece of the next iteration vector. For each iteration, the master must wait for the results
from all slaves (reduce operation) to combine them into the next iteration vector. Finally,
the master sends this new probability vector in broadcast to the slaves, starting a new
iteration. This procedure will continue until the convergence criteria of the numerical
method is matched.

4 SAN Model for parallel PEPS

Taking on a parallel point of view, the main relevant states to be modelled using SAN
are those who are focused on processes data exchange and computing time. That hap-
pens because the trade-off between these two features is the key to determine the suc-
cess of the parallel implementation. The SAN model which describes the PEPS parallel
implementation explained in section 3 is presented in Fig. 1. The model contains one
automatonMasterandP automataSlave(i) (i = 1..P).

 ITx

 Rx Cx

 Tx

 FCx

 ITx

 Cx Rx

 Tx

r1..P (1− π1)

Master

in

s

end

c(π2)

c(1− π2)

r1..P (π1)

Slavesi

ri

s

end
in

finishi

Event Rate
in α
end β
c γ

r1..P δ
finishi λ

Fig. 1. The PEPS SAN model.

The automatonMaster has five statesITx, Tx, Rx, Cx andFCx. It is responsible
over the distribution of iteration vectors to the slaves. The statesITx, Tx andRxmean,
respectively, the initial transmission of the matrices and the first vector to the slaves,
transmission of new iteration vectors to slaves, and the reception of the resulting vectors
evaluated by the slaves. The statesCxandFCx represent, respectively, the time spent to
sum all slaves evaluated vectors and write on file the asked results. The occurrence of
the synchronizing eventin broadcasts the matrices and the first vector to the slaves. On

the other hand, the occurrence of the eventendfinalizes the communication between
master and slaves. The synchronizing events broadcasts the vector of theith iteration
to slaves. The synchronizing eventri receives one resulting vector of the slavei. The
occurrence of eventsr1..P can change the state of master automaton or not, depending
on the probabilityπ1. The master will change toCx state when the last slave sends its
results and goes toRxstate,i.e., the master must wait until all slaves send their results
of the ith iteration. TheMaster automaton initializes new iterations or finalizes the
descriptor-vector multiplication by the occurrence of the local eventc. In 99% of the
times (represented by the probabilityπ2) the eventcwill initialize new iterations. On the
remaining time (1− π2), the eventc will finalize the descriptor-vector multiplications.

AutomatonSlave(i) represents the slave of indexi, wherei = 1..P . It has four
states:I (Idle), Cx (Computing),Tx (Transmitting) andRx (Receiving). All slaves start
their tasks when synchronizing eventin occurs. Slavei stops processing a task by the
occurrence of the local eventfinishi. The same slave sends its resulting vector to the
master with the synchronizing eventri. When the events occurs, all slaves start to
compute a new step. The occurrence of the eventend finalizes the execution of the
slaves processes.

In order to complete the model representation it is necessary to assign occurrence
rates to its events. The rate of one event is the inverse of the time spent in its associated
state. The occurrence rate of the eventend is extremely high because the time spent to
finish a model is insignificant. The occurrence rates of eventss, in andc are inversely
dependent by the probability vector size and also by the number of slaves nodes. On the
other hand the rate of the eventsr1..p are only inversely dependent by the probability
vector size. The rate of the eventsfinish1..p are inversely dependent by the number
of multiplications each slave will perform. This number of multiplications is directly
dependent by the probability vector size and inversely dependent by the number of
slaves nodes. All these rates were obtained through sample programs performed over
the target architecture4, e.g., the time spent by one slave to compute a probability vector
was obtained through a program that simulates the number of multiplications performed
by one slave).

5 Results

The results given by PEPS are steady state probabilities. For instance, the time that
the system stays in stateTx of the automatonMaster is equal to the probability of the
system to be in this state. These probabilities are important information to indicate the
amount of time the system will stay in a given state. For a parallel implementation this
information will help to verify if the proposed parallel solution has bottlenecks which
compromise its performance.

Three case studies will be presented next. Each one uses an hypothetical different
input SAN model which differs in the number of states (directly related to the size of
the probability vector). The behavior of the PEPS parallel version will be analyzed for
each input model. Readers must pay attention that the sequential version of PEPS is

4 The target architecture is a COW (Cluster of Workstations)

Table 3.Results for the case study 16,384.Table 4.Results for the case study 65,536.
slavesTxMaster RxMaster CxMaster CxSlave

2 0.3690 0.1834 0.0025 0.0585
3 0.3790 0.1887 0.0011 0.0369
4 0.3810 0.1910 0.0005 0.0251
5 0.3811 0.1939 0.0003 0.0177
6 0.3808 0.1961 0.0002 0.0128
7 0.3805 0.1975 0.0001 0.0092

slavesTxMaster RxMaster CxMaster CxSlave

2 0.3687 0.2258 0.0007 0.0797
3 0.3788 0.2034 0.0002 0.0449
4 0.3808 0.1987 0.0001 0.0289
5 0.3809 0.1984 0.0001 0.0197
6 0.3806 0.1988 3.79e-5 0.0139
7 0.3804 0.1992 2.31e-5 0.0099

Table 5.Results for the case study 327,680.Table 6.Heterogeneous results - 16,384.
slavesTxMaster RxMaster CxMaster CxSlave

2 0.3628 0.2422 6.95e-5 0.0926
3 0.3764 0.2098 2.45e-5 0.0490
4 0.3796 0.2018 1.14e-5 0.0306
5 0.3802 0.2000 6.18e-6 0.0206
6 0.3802 0.1999 3.58e-6 0.0144
7 0.3802 0.1999 2.18e-6 0.0102

degree CxS1 CxS2 CxS3 CxS4 CxS5 CxS6

none 0.01280.01280.01280.01280.01280.0128
low 0.01200.01440.01200.01440.01200.0114

medium0.01610.01610.00510.01610.01610.0016
high 0.02180.01900.00870.00870.00440.0044

used to analyze the SAN model that represents the proposed parallel version of PEPS,
which needs some input SAN models to solve. Another important remark is that for
each new slave added, the SAN model of the PEPS parallel version changes because a
new automaton Slave must be added to the model. Thus, the sequential PEPS execution
time to solve the parallel PEPS model strongly increases and that is the reason why we
have carried out experiments with only until seven slaves nodes for each case study.

Table 3, Tab. 4 and Tab. 5 show the state stay probabilities for each case study. The
first important remark is that the probabilities of slave nodes be computing (Cxslave)
decline as the number of slaves grows, indicating that more work is done in parallel.
Another interesting result can be observed in the probability of master to be receiving
data from slaves(Rxmaster): each case study presents a different behavior. In the 16,384
states case study, this probability increases as the number of slaves grows. That happens
because slaves have progressively less work to compute, thus increasing the frequency
they send their results to the master. Therefore, for this size of input model, more than
two slaves seems to compromise the master efficiency. Looking at the same probability
for the others input models (65,536 and 327,680 states) and applying the same analysis,
it is possible to identify the best number of slaves (i.e., the point the master becomes
the bottleneck of the system) at five for the second case study and probably seven for
the third case study. Finally, looking comparatively at the probability of slaves to be
computing (Cxslave) in all three case studies, one can see that, as the number of states
of the input model grows, the time each slave spends computing gets higher. This is
a coherent result, because if the system has a higher workload, it is expected that the
nodes spend more time computing.

Until this point, all results presented were based on an homogeneous environment,
i.e.all slaves have exactly the same computational power and workload (represented by
the matrices computational cost). In order to verify the importance of the workload bal-
ance for the parallel PEPS implementation, heterogeneity in the slaves behavior was
introduced in the SAN model for the parallel version of PEPS. That was done by using
different computing rates for each slave. Table 6 presents the results of this experiment,

where using the input model with 16,384 states and fixing the number of slaves on 6,
four different configurations were analyzed: none, low, medium or high heterogene-
ity. The results show that as heterogeneity grows, the degree of discrepancy among the
slaves to be in stateCx increases. Through this analysis, the model seems to be capa-
ble of identify the impact heterogeneity in the slaves behavior could represent over a
parallel implementation.

6 Conclusion

The main contribution of this paper is to point out the advantages and problems of the
analytical modelling approach applied to predict the performance of a parallel imple-
mentation. According to authors best knowledge, some others efforts to predict perfor-
mance of parallel systems were not so formal. The recent work of Gemund [7] exploits
a formal definition used for simulations to automatically generate a formal description
of a parallel implementation. Gelenbe et al. [4] employs a more conservative formalism
(queueing networks) in which the synchronization processes are not easy to describe.
The SAN formalism, instead, was quite adequate to describe the behavior of a master-
slave implementation. The definition of the events was very intuitive; their rates and
probabilities were a little bit more hard to obtain but still intuitive. The stationary so-
lution of the model provided enough prediction information about the behavior of the
parallel version of the PEPS tool. The master and slaves nodes behaviors were clearly
understood, and an analysis about the workload balance was also possible. The natural
future work for this paper is to verify the accuracy of the proposed model by compar-
ison with the real parallel implementation, in order to validate the correctness of the
modelling choices made.

References

1. Hu, L., Gorton, I.: Performance Evaluation for Parallel Systems: A Survey. Technical Report
9707, University of NSW, Sydney, Australia (1997)

2. Nicol, D.: Utility Analisys of Parallel Simulation. In: Proceedings of the17th Workshop
on Parallel and Distributed Simulation (PADS’03), San Diego, California, USA, ACM (2003)
123–132

3. Stewart, W.J.: Introduction to the numerical solution of Markov chains. Princeton University
Press (1994)

4. Gelenbe, E., Lent, R., Montuoria, A., Xu, Z.: Cognitive Packet Network: QoS and Perfor-
mance. In: 10th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems (MASCOTS’02), Fort Worth, Texas, USA
(2002)

5. Fernandes, P., Plateau, B., Stewart, W.J.: Efficient descriptor - Vector multiplication in
Stochastic Automata Networks. Journal of the ACM45 (1998) 381–414

6. Benoit, A., Brenner, L., Fernandes, P., Plateau, B., Stewart, W.J.: The PEPS Software Tool.
In: Proceedings of the13th International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, Urbana and Monticello, Illinois, USA (2003)

7. van Gemund, A.J.C.: Symbolic Performance Modeling of Parallel Systems. IEEE Transac-
tions on Parallel and Distributed Systems14 (2003) 154–165

