
Performance Analysis Issues for Parallel Implementations
of Propagation Algorithm∗

Leonardo Brenner Luiz Gustavo Fernandes Paulo Fernandes Afonso Sales
Faculdade de Informática, PUCRS, Av. Ipiranga, 6681 - 90619-900, Porto Alegre, Brazil

{lbrenner, gustavo, paulof, asales}@inf.pucrs.br

Abstract

This paper presents a theoretical study to evaluate the
performance of a family of parallel implementations of the
propagation algorithm. The propagation algorithm is used
to an image interpolation application. The theoretical per-
formance analysis is based on the construction of generic
models using Stochastic Automata Networks (SAN) formal-
ism to describe each implementation scheme. The predic-
tion results can be compared to the achieved performance
in some real test cases to verify the accuracy of our mod-
eling technique. The main contribution of this paper is to
point out the advantages and problems of our approach to
the development of generic models of parallel implementa-
tions.

1. Introduction

The need of performance prediction of parallel imple-
mentations is uncontested. Many authors have presented
generic studies offering options to the performance pre-
diction of parallel implementations [9, 10]. To do so, the
research community classifies the different approaches in
three quite distinct groups:

• The monitoring approaches, which are mostly based
on time costs comparisons of implementations exe-
cution; Those implementations can be as superficial
as synthetic programs [9], or quite generic as well-
known benchmarks, e.g., whetstones, dhrystones, and
LINPACK;

• The simulation approaches, which are based on the
use of a computational tool to describe and simulate
the behaviour of a given implementation; The simula-
tion tools are commonly based on random generations

∗ Authors are partially supported by HP Brasil-PUCRS agreement CAP
(T.A. 22) and CASCO (T.A. 24) projects.

of program choices, but also more sophisticated tech-
niques as perfect simulation [11] can be used;

• The analytical modeling approaches, which are more
rarely employed in the parallel programs prediction
due to a frequently misconception; The most known
formalisms to analytical modeling, e.g., Markov chains
[18] and queueing networks [7], are not very suitable
to represent parallelism and synchronization.

Our work is located in the effort to popularize the use
of analytical modeling to performance prediction of paral-
lel implementations. In this paper we use the Stochastic Au-
tomata Networks formalism (SAN), a formalism with par-
allel and synchronizing primitives, to model a parallel im-
plementation. The application chosen is the parallel imple-
mentation of the propagation algorithm [12], a bag of tasks
parallelization proposed in [4].

The objective of this paper is to verify the difficulties to
model a parallel implementation using an analytical mod-
eling formalism. Similar previous works are rather generic
[10], or too specific [19]. We try to contribute with a more
systematic approach, based on describing the communica-
tion and processing tasks of each part of the algorithm. It is
not the objective of this paper to perform a fine-tunning per-
formance prediction of the specific implementation of the
propagation algorithm, but to draw the main needs and ad-
vantages of the analytical modeling for this class of prob-
lem. In fact, the proposed model can be easily generalized
to describe any bag of tasks problem.

The next section presents the propagation algorithm.
Section 3 presents the parallel implementation defined in
[4]. Section 4 presents the SAN formalism in order to
fully understand the proposed model in Section 5. Section 6
presents the numerical definition of the model parameters
to be used in the performance prediction of a practical case.
Finally, the conclusion draws the next steps to continue this
work and summarizes the lessons learned so far.

Proceedings of the 15th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’03)

0-7695-2046-4/03 $17.00 © 2003 IEEE

2. Image Interpolation

Image-based interpolation is a method to create smooth
and realistic virtual views between two original view points.
The application studied in this paper [12] is based on a
three-phase method. It starts by constructing a dense match-
ing map using a growing/propagation scheme from a list of
seed pairs which may contain bad matches. The matching is
then corrected using local and global geometric constraints.
In the following phase, a joint view triangulation algorithm
is used to separate matched areas from unmatched ones and
handle the partially occluded areas. Finally all in-between
images are generated by interpolating the two original ones.

Flower House
Dimensions 368x384 pxs 768x512 pxs
Seed pairs 0.46s 2.24s
Propagation 5.11s 19.75s
Triangulation 1.64s 3.30s

Table 1. Images size and execution time for
each phase of the algorithm.

Table 1 shows the execution times for each one of the
three main phases of the application for two different image
pairs (small size Flower and medium size House). The exe-
cutions have been carried out on a Pentium III 733 MHz.
These two examples indicate that the propagation is the
largest time consuming phase of the algorithm.

2.1. Seed Pairs

In order to allow a better understanding of the propaga-
tion algorithm, the initial matching (seed selection) is pre-
sented here.

Points of interest [8, 17] are naturally good seed point
candidates because they represent the points of the image
which have the highest textureness. These points are de-
tected in each separated image. Next, they are matched us-
ing the ZNCC (zero-mean normalized cross correlation)
measure. At the end of this phase, a set of seed pairs is
ready to be used to bootstrap a region growing type algo-
rithm, which propagates the matches in the neighborhood
of seed points from the most textured pixels to the less tex-
tured ones.

2.2. Propagation Algorithm

The propagation algorithm is based on a classic region
growing method for image segmentation [15] which uses
pixel homogeneity. But, instead of using pixel homogeneity

property, a similar measure based on the matches correla-
tion score is adopted [13]. This propagation strategy could
also be justified because the seed pairs are composed by
points of interest, which are the local maxima of the tex-
tureness. Thus, these matches neighbors are also strongly
textured, what allows good propagation even though they
are not local maxima.

The neighborhood N5(a,A) of pixels a and A is defined
as being all pixels within the 5x5 window centered at these
two points (one window per image). For each neighboring
pixel in the first image, a list of match candidates is con-
structed. This list consists of all pixels of a 3x3 window in
the corresponding neighborhood in the second image. The
complete definition of the neighborhood N (a, A) of pixel
match (a, A) is given by:

N(a,A) = {(b,B), b ∈ N5(a),B ∈ N5(A),
(B − A) − (b − a) ∈ {−1, 0, 1}2}.

The input of the algorithm is the set Seed which contains
the current seed pairs. This set is implemented by a heap
data structure for a faster selection of the best pair. The out-
put is an injective displacement mapping Map which con-
tains all the good matches found by the propagation algo-
rithm. Let s(x) be an estimation of the luminance roughness
for the pixel x, which is used to stop propagation into in-
sufficiently textured areas. And let t be a constant value that
represents the lower luminance threshold accepted on a tex-
tured area.

Algorithm 1 Propagation Algorithm

1: while Seed �= ∅ do
2: pull the best match (a, A) from Seed
3: Local ← ∅
4: {store in Local new candidate matches}
5: for all (x, y) ∈ N (a, A) do
6: if ((x, ∗), (∗, y) /∈ Map) and (s(x) > t, s(y) > t)

and (ZNCC(c, d) > 0.5) then
7: Local ← (x, y)
8: end if
9: end for

10: {store in Seed and Map good candidate matches}
11: while Local �= ∅ do
12: pull the best match (x, y) from Local
13: if (x, ∗), (∗, y) /∈ Map then
14: Map ← (x, y), Seed ← (x, y)
15: end if
16: end while
17: end while

Briefly, all initial seed pairs are starting points of concur-
rent propagations. At each step, a match (a, A) with the best
ZNCC score is removed from the current set of seed pairs.

Proceedings of the 15th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’03)

0-7695-2046-4/03 $17.00 © 2003 IEEE

Then, the algorithm looks for new matches in its match
neighborhood and, when it finds one, it is added to the cur-
rent seed pairs set and also to the set of accepted matches
which is under construction.

An example of the sequential propagation program exe-
cution can be observed on Figure 1. The squared regions in
both images show the extension of the matched regions ob-
tained from the seed matches.

Figure 1. Propagation example using the
Flower pair

3. Parallel Propagation Implementation

The parallel implementation for the propagation algo-
rithm discussed on this section was developed in order to
allow the use of this new algorithm on real situations. Thus,
it was necessary to achieve better performances without us-
ing parallel programming models oriented to very expen-
sive (but not frequently used) machines. Useful parallel ver-
sions for this algorithm should run distributed over several
processors connected by a fast network. Therefore, the nat-
ural choice was a cluster with a message passing program-
ming model.

As seen before, the propagation algorithm advances by
comparing neighbors pixels through out the source images
surface. From some seed pairs, it can form large match-
ing regions on both images surface. In fact, a single seed
pair can start a propagation that grows through a large re-
gion over the images surface. This freedom of evolution
guarantees the algorithm to achieve good results in terms
of matched surfaces. Another characteristic is that the algo-
rithm is based on global best-first strategy to choose the next
seed pair that will start a new propagation, which also have
a direct effect on the final match quality. These two char-
acteristics are hard to deal with if one wants to propose a

parallel distributed version of the algorithm without loos-
ing quality at the final match. The best-first strategy imple-
mentation is based on a global knowledge of the seed pairs
set, which is not appropriated to a non-shared memory con-
text. In addition, the freedom of evolution through out the
images surface assumes that the algorithm knows the en-
tire surface of the images, and this can create a situation
where several processors are propagating over the same re-
gions at the same time creating a redundancy of computa-
tion (Figure 2).

Seed Points Matched SurfacesRedundancy

Image Surface

Figure 2. Redundancy problem.

Besides, it is not possible to know in advance how many
new matches a seed pair will generate. Thus, from a par-
allel point of view, the propagation algorithm is an irregu-
lar and dynamic problem which exhibits unpredictable load
fluctuations. Therefore, it requires the use of some load bal-
ancing scheme in order to achieve a more efficient parallel
solution.

The solution proposed in [4] is based on a master-slave
scheme. One processor will be responsible for distributing
the work and centralizing the final results. The others will
be running the propagation algorithm each one using a sub-
set of the seed pairs and knowing a pair of corresponding
slices over the images surface (coordinates of target slice).
The master distributes the seed pairs over the nodes consid-
ering their location over the slices (see Figure 3). This pro-
cedure replaces the global best-first strategy by several lo-
cal best-first ones. Each local seed pairs sub-set is still im-
plemented as a heap which is ordered by the pair ZNCC
score. This strategy minimizes the problem of loosing qual-
ity at the final match.

Once the problem with the global best-first strategy is
solved, it still remains the problem with the algorithm limi-
tation of evolution over the images surface. As said before,

Proceedings of the 15th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’03)

0-7695-2046-4/03 $17.00 © 2003 IEEE

Slices Selection

1

2

3

5

4

Slice 1

Slice 3

Slice 2

Global Seed Pairs Heap

Heap Slice 2

Heap Slice 3

Heap Slice 1

Figure 3. Seed pairs heap distribution over
the slices.

each node can propagate just over the surface of its asso-
ciated slice in order to avoid computation redundancy. But,
forbidding the evolution out of the associated slice gener-
ates two kinds of losses. First, some matches are not done
because they are just at the border of one slice and one of
its points is placed outside it. Second, some regions in one
slice may not be reached by any propagation started by a
seed pair located inside of its surface, but instead they could
be reached by a propagation started at a neighbor slice.

Such a limitation is partially solved by a technique called
flexible slices [4]. This technique allows the propagation al-
gorithm to expand through the surface of its neighbor slices
in a controlled way. As shown on Figure 4, each proces-
sor works over its own associated slice, but it also knows
its neighbor slices and it has the permission to propagate
over them. But still, it is not interesting to leave the prop-
agation algorithm free to compute its neighbors entire sur-
face. This may cause the computation of too many repeated
matches. To avoid that, each processor has the permission
to compute just over a percentage of its neighbors surface.
This percentage, called overlap, is related to the number of
slices. A large number of slices implies in thinner slices. In
this case, it is acceptable to allow a processor to advance
over a large percentage of its neighbors surfaces. On the
other hand, a small number of slices implies in larger slices.
Here, the algorithm must not propagate too much over the
neighbors surface.

The last problem to deal with in the parallelization of the
propagation algorithm is load balancing. If the source im-
ages are divided into more slices than the number of nodes
available, the load balancing strategy adopted is:

1. the master divides the set of seed pairs into sub-sets
based on their location over the slices;

2. each slave receives one slice with its associated sub-
set;

3. each slave computes its own sub-set of seed pairs;

Slice 3

Slice 4

Slice 2

Slice 6

}

}

Slice 1

Slice 5

Image Surface

Seed Points Matched Surfaces

50% extension

Figure 4. Flexible slices approach.

4. when there is no more seed pairs to compute, the slave
sends a signal to the master;

5. if there is some available slices remaining, the master
choose a new one and send it to the available slave;

In fact, the master has a queue of slices, organized by
their position over the images surface. To choose which
slice will be sent to an available slave, the master simply
gets the first slice of this queue. In fact, the master sends a
new seed pairs sub-set (coordinates of the slice) to the slave.

Finally, it is important to mention that the master must
receive all matches generated by the slaves and it must
filter the unavoidable duplicated ones. To send these fi-
nal matches to the master, each slave has a communication
buffer which is filled progressively as the propagation algo-
rithm advances. When the buffer is full, it is sent to the mas-
ter. After that, the slave immediately returns to its execu-
tion. All slaves do the same procedure, in a way that forces
the master to have a receiving queue. This queue is dimen-
sioned to avoid buffer losses by the master. When a slave
reaches the end of its seed pairs sub-set, it sends an incom-
plete buffer to the master. When the master receives an in-
complete buffer, it knows that the sender has finished its
work and sends a new slice (seed pairs sub-set) back to it (if
there is still sub-sets available).

4. SAN - Stochastic Automata Networks

The Stochastic Automata Networks formalism (SAN)
was proposed by Plateau [16]. The reader interested in a for-
mal description of the formalism can consult previous pub-
lications [5, 1].

The basic idea of SAN is to represent a whole system
by a collection of subsystems with an independent behavior

Proceedings of the 15th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’03)

0-7695-2046-4/03 $17.00 © 2003 IEEE

(local transitions) and occasional interdependencies (func-
tional rates and synchronizing events).

The SAN formalism describes a complete system as a
collection of subsystems that interact with each other. Each
subsystem is described as a stochastic automaton, i.e., an
automaton in which the transitions are labeled with prob-
abilistic and timing information. Hence, one can build a
continuous-time stochastic process1 related to the SAN.
Global state is the state of a SAN model defined by the
combination of the local states of all automata. We adopt
the following notation to this paper:

Let

A(i) the i-th automaton of a SAN model, numbering the
first automaton as A(1);

j(i) the j-th state of the automaton A(i), numbering the
first state of the first automaton as 0(1);

ek an event identifier2;

τk a constant rate of a given event;

πk a constant probability of a given event;

fk a functional rate of a given event;

gk a functional probability of a given event.

There are two types of events that change the global state
of a SAN model: local events and synchronizing events.

Local events change the global state passing from a
global state to another that differs only by one local state.
On the other hand, synchronizing events can change simul-
taneously more than one local state, i.e., two or more au-
tomata can change their local states simultaneously. In other
words, the occurrence of a synchronizing event forces all
concerned automata to fire a transition corresponding to this
event. Thus, local events can be viewed as a particular case
of synchronizing events that concerns only one automaton.

Each event is represented by an identifier3 and a routing
probability (the absence of probability is tolerated if only
one transition can be fired by an event from a local state).

Figure 5 represents a SAN model with 2 automata, 1
synchronizing event, and 1 functional rate.

Table 2 describes the event firing rates used in the SAN
model of the Figure 5.

1 In the context of this paper only continuous-time SAN will be consid-
ered, although discrete-time SAN can also be employed without loss
of generality.

2 The index k has no particular semantic for the notations of this sec-
tion.

3 In this paper, we use an indexed roman letter e as identifier, but to all
purposes any identifier can be used.

0(1)

1(1)2(1) e4

e3

e5

0(2) 1(2)
e4(π1)e4(π2)

e2

A(1) A(2)

e1

Figure 5. Example of a SAN model.

Event Rate
e1 τ1

e2 τ2

e3 τ3

e4 τ4

e5 f1

Table 2. Event firing rates of the Figure 5

In the model of Figure 5, the rate of the event e5 is not a
constant rate, but a function rate called f1 defined as:

f1 =

λ1 if automaton A(1) is in the state 0(1)

0 if automaton A(1) is in the state 1(1)

λ2 if automaton A(1) is in the state 2(1)

The firing of the transition from state 0(2) to 1(2) occurs
with rate λ1 if automaton A(1) is in state 0(1), or λ2 if au-
tomaton A(1) is in state 2(1). If automaton A(1) is in state
1(1), the transition from state 0(2) to 1(2) does not occur
(rate equal to 0). Using the SAN notation employed by the
software tool PEPS2003 [3], the expression of this func-
tion is:

f1 =
[
λ1

(
st(A(1)) == 0(1)

)]
+

[
λ2

(
st(A(1)) == 2(1)

)]

The interpretation of a function can be viewed as the evalua-
tion of an expression of non-typed programming languages,
e.g., C language. Each comparison is evaluated to 1 for true
and to 0 for false.

Note that the use of functional rates is not limited to lo-
cal event rates. In fact, for synchronizing events not only the
event rate, but also the probability of occurrence can be ex-
pressed as a function. The use of functional transitions is a
powerful primitive of the SAN formalism, since it allows
to describe very complex behaviors in a very compact for-
mat. The computational costs to handle functional rates has
decreased significantly with the developments of numerical
solutions for SAN models, e.g., the algorithms for general-
ized tensor products [2, 5].

Proceedings of the 15th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’03)

0-7695-2046-4/03 $17.00 © 2003 IEEE

Figure 6 represents the equivalent Markov chain to Fig-
ure 5 according the event firing rates described in the Ta-
ble 2.

2(1)0(2) 2(1)1(2)

0(1)1(2)0(1)0(2)

1(1)0(2) 1(1)1(2)

λ1

λ2

τ1 τ1

τ4π1

τ3τ3 τ4π2

τ2 τ2

Figure 6. Equivalent Markov Chain to Fig-
ure 5.

5. Proposed Model

Figure 7 represents the SAN model which describes the
parallel implementation for the propagation algorithm pre-
sented in the section 3. The SAN model contains three au-
tomata Master, Buffer and Slices, and P automata Slave(i)

(i = 1..P).

... ...
...

...

...
...

...
...

...

Tx

Rx

ITx

Master

down

sP

c(g1)

c(g2)
s1

up

Buffer

1

0

r1

rP

r1

rP

r1

rP

c

c

c

W -P

Slices

s1

sP

s1

sP

s1

sP

Slave(i)

I

li

si

up

ri(π1)

ri(π2)

1

0K

up

Tx

Pr

Figure 7. SAN Model for the Propagation Al-
gorithm.

The automaton Master has three states ITx, Tx and Rx.
It is responsible over the distribution of slices containing
seed pairs to the slaves. The states ITx, Tx and Rx means,
respectively, the initial transmission of all seed pairs to the
slaves, the transmission of new slices to slaves, and the re-
ception of final matches evaluated by the slaves. The occur-
rence of the synchronizing event up send the initial slices
to all slaves. On the other hand, the occurrence of the event
down ends one execution of application. The event down
has a functional rate τdown, such as:

τdown = (st Buffer == 0) &&
(st Slices == 0) &&
(nb I[Slave] == N).

The synchronizing event si represents the sending of a
new slice to slave i. Master consumes final matches from
the Buffer through the occurrence of the synchronizing
event c. The event c has two functional probabilities g1 and
g2, such as:

g1 = (st Slices == 0) || (nb I[Slave] == 0)
g2 = (st Slices != 0) && (nb I[Slave] != 0)

The automaton Buffer represents the final matches eval-
uated by the slaves. It has room enough to store all final
matches received from the slaves.

The automaton Slices symbolizes the number of slices
which will be sent to the slaves. There are W −P slices re-
mained, where W is the total number of slices and P is the
total number of slaves. It is important to notice that the tran-
sition from state 0 to state W − P represents the restart of
new execution. Such transition is vital to a SAN descrip-
tion, since all SAN models must represent a problem that
can be solved by a stationary solution, i.e., they must be
cyclic and have a steady-state.

Finally, the automaton Slave(i) represents the slave of
index i, where i = 1..P . It has three states I (idle), Pr
(processing) and Tx (transmission). Slave i finishes a fi-
nal match through the occurrence of local event li. The syn-
chronizing event ri represents the reception of final matches
from the slave i to Buffer. Slaves transmit a pack (final
matches) to Buffer every time that it is full. The slave trans-
mits a pack and returns to state Pr with a probability π1

when there is more points to be evaluated. On the other
hand, when there is no more points, the slave transmits a
pack with probability π2 and returns to state I .

6. Assigning Parameters

This section shows how to assign numeric values to the
event rates and probabilities. Some parameters are given by
the developer (input values of the model), whereas other
are evaluated from those input values. We define BL as the
buffer length, PS as percentage of slice extension over its
neighbors (redundancy), NS as the number of slices, and

Proceedings of the 15th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’03)

0-7695-2046-4/03 $17.00 © 2003 IEEE

FI as the number of final matches expected in the whole
image. Some information is easily known before algorithm
implementation, e.g., NS, and transmission rates. Other in-
formation can only be estimated, e.g., FI . Obviously, the
quality of the prediction is quite dependant of the accuracy
of such input parameters.

From those input values, we are able to evaluate FR (to-
tal number of final matches including redundancy due to
slice extension) computing the expected average number of
final matches in each slices (FI

NS) considering one overlap
to the two edge slices (2(1 + PS)), and two overlap to the
inner slices ((NS − 2)(1 + 2PS)):

FR = [2(1 + PS) + (NS − 2)(1 + 2PS)]
FI

NS
(1)

Hence, it is easy to evaluate AF (average final matches
for slices):

AF =
FR

NS
(2)

The probabilities π1 and π2 of the event ri (automaton
Slave(i)) is given by:

π1 = 1−π2 and π2 = min(
1

AF
BL

, 1) = min(
BL

AF
, 1) (3)

However the event rate ri is directly dependent by the
transmission speed and inversely dependent by the buffer
length. So the event rate ri is given by:

∀iri =
Tx Speed

BL
(4)

The event rate li is directly dependent by the buffer
length and the node speed, and inversely dependent by the
number of final matches unknown (non-matches). There-
fore the event rate li is evaluated by:

∀ili =
BL × Node Speed

Non-matches
(5)

The event rates si, down and up are insignificant time,
therefore, they are very high rates.

Finally, the event rate c is directly dependent by the node
speed and inversely dependent by the buffer length. The
event rate c is given by:

c =
Node Speed

BL
(6)

Using the software tool PEPS2003 [3], it is possible to
obtain the stationary solution for the model proposed in Sec-
tion 5. Many numerical results can be computed from the
stationary solution of the proposed model. Some of them
are quite easy to compute, e.g., the average length of buffer
queue, or the average number of busy slaves. Some other
very important indexes can also be computed, but they re-
quire some additional effort. This is the case of the average
time of one single execution.

Observing the automaton Slices we see a mono-cyclic
behavior, i.e., from any local state, there is only one possi-
ble transition. For mono-cyclic automata, the average resi-
dence time in each local state x is inversely proportional to
the actual departure rate of state x, which is directly pro-
portional to the local state probability found in the station-
ary solution. Therefore, it is possible to say that, if we know
the average residence time of one local state of automaton
Slices and the stationary solution, we can compute the res-
idence time of each local state. Since the passage by all lo-
cal states of automaton Slices represents one execution, it
is possible to compute the average time one single execu-
tion in such way.

The actual rate of event up is independent of any con-
tention of the others automata. In fact, it represents the rate
corresponding the initial startup of the program, i.e., the
initial distribution of slices to the slave nodes. This infor-
mation is called τup and, therefore, t0 = 1

τup
is the av-

erage residence time in local state 0 of automaton Slices.
Computing the stationary solution of the model we can find
the probability of this local state (p0), as well the prob-
ability of the other local states of this same automaton
(p0̄ = 1 − p0 =

∑W−P
k=1 pk). The average residence time

of the other local states of automaton Slices (t0̄ can be com-
puted by:

t0̄ = t0
p0̄

p0

and the estimated average time of one single execution will
be:

t0 + t0̄ = t0 + t0
p0̄

p0
= t0

(
1 +

p0̄

p0

)

7. Conclusion

The development of the model for the parallel implemen-
tation of the propagation algorithm was a valid exercise. Ac-
cording to authors best knowledge, no other effort to pre-
dict performance was made so formally. The recent work
of Gemund [19] exploits a formal definition used for sim-
ulations to automatically generate a formal description of a
parallel implementation. More conservative works [14, 6]
tend to use unappropriated formalisms (queueing networks)
where the synchronization processes are not easy to de-
scribe.

The SAN formalism, instead was quite adequate to de-
scribe the quasi-independent behavior of the master and
slave nodes, and also the independent representation of
the buffer queue (automaton Buffer) and the workload, i.e.,
slices to analyse (automaton Slices) was very intuitive. The
definition of the events, their rates and probabilities was a
little bit more difficult but still intuitive. In fact, the main
difficult in the modeling process was to extract the predic-
tion information from the stationary solution.

Proceedings of the 15th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’03)

0-7695-2046-4/03 $17.00 © 2003 IEEE

The most obvious performance index wanted is the one
execution average time of the propagation algorithm. Un-
fortunately, the described SAN model must be defined by
an ergodic SAN, i.e., a SAN with a stationary behavior.
For such model, is not easy to define the time need for one
single execution. Luckily, the automaton Slices has a cyclic
behavior, therefore the time for a complete cycle can be ap-
proached by the stationary probability distribution and the
average residence time of one local state. This made possi-
ble to compute the time for one execution as presented in
Section 6. Nevertheless, other performance indexes can be
easily computed by the marginal probabilities of each au-
tomata local states, e.g., the average number of slave nodes
in use (from automata Slave(i)), or the average length of
buffer queue (from automaton Buffer).

The natural future work for this paper is to verify the
accuracy of the proposed model by comparison with some
real parallel implementations. A comparison to the numer-
ical figures presented in [4] is not yet possible due to the
absence of information concerning the machine in which
the experiments were executed. Information like the inter-
connection speed and processing times were not defined.
It is necessary to run the parallel algorithm in completely
known environment to do the fine-tunning of the proposed
model, i.e., to verify the modeling choices made. Specially
during the assigning parameters phase, some assumptions
were made with a lot of guessing. This is not a particular
flaw in the modeling procedure. In fact, the successive re-
finements in the model is a quite common technique in an-
alytical modeling.

Finally, our experience developing a model for paral-
lel implementation using SAN seems to be very promis-
ing. The definition of quasi-independent subsystems by au-
tomata, communication processes by synchronizing events,
and independent changes by local events are very intuitive.
The applicability and the usefulness of the proposed tech-
nique is yet to prove, but it is the authors opinion that the
effort of exploring this possibility is worthwhile.

References

[1] K. Atif and B. Plateau. Stochastic Automata Networks for
modelling parallel systems. IEEE Transactions on Software
Engineering, 17(10):1093–1108, 1991.

[2] A. Bennoit, L. Brenner, P. Fernandes, and B. Plateau. Ag-
gregation of Stochastic Automata Networks with replicas. In
Fourth International Conference on the Numerical Solution
of Markov Chains, Urbana and Monticello, Illinois, USA,
2003.

[3] A. Benoit, L. Brenner, P. Fernandes, B. Plateau, and W. J.
Stewart. The PEPS Software Tool. In Proceedings of the
13th International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, Urbana and
Monticello, Illinois, USA, 2003. Springer-Verlag.

[4] L. G. Fernandes. Parallélisation d’un Algorithme
d’Appariement d’Images Quasi-dense. PhD thesis, Institut
National Polytechnique de Grenoble, France, 2002.

[5] P. Fernandes, B. Plateau, and W. J. Stewart. Efficient descrip-
tor - Vector multiplication in Stochastic Automata Networks.
Journal of the ACM, 45(3):381–414, 1998.

[6] E. Gelenbe, R. Lent, A. Montuoria, and Z. Xu. Cognitive
Packet Network: QoS and Performance. In 10th IEEE In-
ternational Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunications Systems (MAS-
COTS’02), Fort Worth, Texas, October 2002.

[7] E. Gelenbe and H. Shachnai. On G-Networks and Resource
Allocation in Multimedia Systems. In IEEE Research in
Data Engineering, pages 104–110, Orlando, Florida, Febru-
ary 1998.

[8] C. Harris and M. Stephens. A Combined Corner and Edge
Detector. In Proceedings of the 4th Alvey Vision Conference,
pages 147–151, Manchester, UK, 1988.

[9] L. Hu and I. Gorton. Performance Evaluation for Parallel
Systems: A Survey. Technical Report 9707, University of
NSW, Sydney, Australia, 1997.

[10] W. M. Jr. Modeling Performance of Parallel Programs. Tech-
nical Report 589, The University of Rochester, Rochester,
New York, 1995.

[11] W. S. Kendall. Perfect simulation for the area-interaction
point process. In L. Accardi and C. Heyde, editors, Proba-
bility Towards 2000, pages 218–234, Manchester, UK, 1988.
Springer Verlag New York.

[12] M. Lhuillier and L. Quan. Image Interpolation by Joint View
Triangulation. In Proceedings of the International Confer-
ence on Computer Vision and Pattern Recognition, pages
139–145, Fort Collins, Colorado, USA, 1999.

[13] M. Lhuillier and L. Quan. Robust Dense Matching using Lo-
cal and Global Geometric Constraints. In Proceedings of the
15th International Conference on Pattern Recognition, pages
968–972, September 2000.

[14] D. A. Menascé and V. A. F. Almeida. Capacity planning for
web services: metrics, models, and methods. Prentice Hall,
2002.

[15] O. Monga. An Optimal Region Growing Algorithm for Im-
age Segmentation. International Journal of Pattern Recog-
nition and Artificial Intelligence, 1(3):351–375, 1987.

[16] B. Plateau. De l’Evaluation du Paralllisme et de la Synchro-
nisation. PhD thesis, Paris-Sud, Orsay, 1984.

[17] C. Schimid, R. Mohr, and C. Bauckhage. Comparing and
Evaluating Interest Points. In Proceedings of the 6th In-
ternational Conference on Computer Vision, pages 230–235,
Bombay, India, 1998.

[18] W. J. Stewart. Introduction to the numerical solution of
Markov chains. Princeton University Press, 1994.

[19] A. J. C. van Gemund. Symbolic Performance Modeling of
Parallel Systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 14(2):154–165, 2003.

Proceedings of the 15th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’03)

0-7695-2046-4/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

