
JAR Tool: Using Document Analysis for Improving the
Throughput of High Performance Printing Environments

Mariana Kolberg
UFRGS

Porto Alegre, Brazil
mlkolberg@inf.ufrgs.br

Luiz Gustavo Fernandes
GMAP - FACIN - PUCRS

Porto Alegre, Brazil
luiz.fernandes@pucrs.br

Mateus Raeder
GMAP - FACIN - PUCRS

Porto Alegre, Brazil
mateus.raeder@acad.pucrs.br

Carolina Fonseca
GMAP - FACIN - PUCRS

Porto Alegre, Brazil
carolina.fonseca@acad.pucrs.br

ABSTRACT
Digital printers have consistently improved their speed in
the past years. Meanwhile, the need for document personal-
ization and customization has increased. As a consequence
of these two facts, the traditional rasterization process has
become a highly demanding computational step in the print-
ing workflow. Moreover, Print Service Providers are now
using multiple RIP engines to speed up the whole document
rasterization process, and depending on the input document
characteristics the rasterization process may not achieve the
print-engine speed creating a unwanted bottleneck. In this
scenario, we developed a tool called Job Adaptive Router
(JAR) aiming at improving the throughput of the rasteriza-
tion process through a clever load balance among RIP en-
gines which is based on information obtained by the analysis
of input documents content. Furthermore, along with this
tool we propose some strategies that consider relevant char-
acteristics of documents, such as transparency and reusabil-
ity of images, to split the job in a more intelligent way. The
obtained results confirm that the use of the proposed tool
improved the rasterization process performance.

Categories and Subject Descriptors
I.7 [Document and Text Processing]: Document man-
agement; I.7.2 [Document and Text Processing]: Doc-
ument Preparation; I.7.4 [Document and Text Process-
ing]: Electronic Publishing

Keywords
Document Analysis; Document profiling; High performance
printing; Load balancing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DocEng’14, September 16–19, 2014, Fort Collins, Colorado, USA.
Copyright 2014 ACM 978-1-4503-2949-1/14/09 ...$15.00.
http://dx.doi.org/10.1145/2644866.2644887.

1. INTRODUCTION
Digital printers have consistently improved their speed in

the past years. Meanwhile, the need for document personal-
ization and customization has increased. As a consequence
of these facts, the traditional rasterization process, respon-
sible for transforming documents described in formats that
most printers cannot interpret (e.g. PDF) in printable for-
mats (e.g. Bitmap), has become a highly demanding com-
putational step in the printing workflow. In general, a Print
Service Provider (or PSP) uses a set of RIP (Raster Image
Processing) engines in parallel to achieve the best possible
performance considering a queue of n initial jobs to be pro-
cessed and new jobs being inserted in the queue at any time.

However, a wide variety of PDF documents with different
characteristics can be found in the context of PSPs. The
presence of each characteristic in a document page has a
different impact on the computational time needed to raster
it. In this context, the information about documents char-
acteristics might be used to split the document in fragments
in a clever way, improving the load balance of documents
among RIP engines and leading to a better performance of
the rasterization process. This paper presents the develop-
ment of a tool named Job Adaptive Router (JAR) aiming at
balancing the workload among RIP engines and optimizing
the rasterization process. JAR uses the metrics proposed
in [1, 3] to estimate the job rasterization cost and chooses
the most suitable strategy to split the document considering
the job characteristics that might have an important influ-
ence on the computational time. Our main contribution in
this paper can be summarized as (i) the development of a
Job Adaptive Router (JAR) to obtain a fair load balance
among RIPs and (ii) the definition of 5 different strategies
based on document analysis to split the queue in such a way
that the workload will be balanced among RIPs.

2. JOB ADAPTIVE ROUTER
In general, load balance algorithms for the rasterization

process do not consider documents internal content. How-
ever, the document content is a key information in PSP sce-
nario and a detailed analysis of the PDF document char-
acteristics may improve the rasterization throughput. The
identification of some specific characteristics in each docu-
ment page allows a more intelligent workload division among
RIPs.

175

We first had to modify the PDF Profiler tool to be able
to compute the computational cost of each page of the doc-
ument. In addition, we developed a tool called PDF Split-
ter, which breaks the PDF document into several fragments
(which will be the tasks to be rasterized). PDF Splitter can
be used to break the input document in two ways: individ-
ual pages or groups of pages. Note that the least grain of
each piece of a fragment is a page.

2.1 JAR Architecture
The Job Adaptive Router main goal is to decide during

the runtime which developed strategy will be selected for
a given job. This decision is based on the document infor-
mation contained in a XML file provided by PDF Profiler.
Based on this information, JAR will split the document gen-
erating fragments that will be rasterized. Figure 1 shows an
overview of the rasterization process using JAR tool.

Figure 1: Overview of rasterization process using JAR

The Job queue has all jobs (PDF documents) that must
be rasterized, and each one of them is sent to PDF Profiler
tool. In addition to that, PDF Profiler also receives as input
a Configuration file which indicates which information must
be extracted from the job. Thus, PDF Profiler analyzes
the job and generates two files: (i) the file containing the
computational cost of each page; (ii) a XML file containing
information about each document page (which pages con-
tain text, which contain images, whether these images are
opaque, transparent or reusable, etc.). After that, JAR ana-
lyzes these files and discovers which strategy should be used
for a given job.

Figure 2 presents the JAR internal architecture. JAR is
divided into 3 modules: Strategy Identifier, Fragment Or-
ganizer and PDF Splitter. Each one of these modules has a
specific function and, in order to improve the performance,
they run in different concurrent threads. First, the XML and
cost files are read by the Strategy Identifier module. This
module is mainly responsible for finding out which strategy
will be used over the jobs. According to the information
obtained from the XML file, Strategy Identifier knows the
characteristics of the job, such as the amount of pages with
transparency and/or reusability, choosing the best strategy.
Strategy Identifier also reads the cost file to create a list of
job pages with their characteristics and costs.

After discovering the best strategy, the Strategy Identifier
module sends it along with a list of jobs pages characteris-
tics for the next module, the Fragment Organizer. This
module is responsible for informing the PDF Splitter mod-
ule how the job must be split. As mentioned before, the
PDF Splitter only divides the job into fragments and needs
to known which pages constitute each fragment. Thus, the
way fragments will be created depends on the selected strat-
egy. In this context, Fragment Organizer module receives

Figure 2: JAR internal architecture

the Strategy Identifier output and then creates a Fragments
vector, which contains the information of which pages will
be grouped to form each fragment. This Fragments vector
is sent to the PDF Splitter that creates the job fragments
and inserts them into another queue of jobs ready to be sent
to the available RIPs.

2.2 Developed Strategies
This section proposes five strategies to obtain a better load

balancing among RIPs, focusing on two job characteristics
that might have an important influence on the computa-
tional time for rasterizing a job [3]: the amount of reusable
objects and transparent images. The computational cost of
each page is obtained using PDF Profiler tool.

The first strategy, called Transparency Strategy, is suitable
for documents which have only transparent images without
any reusable images. Since the cost for rasterizing pages
with transparent images is high, these pages should not be
allocated to a single RIP. This algorithm separates the pages
with transparency, ordering them by their computational
cost (from the highest to the lowest cost) in a queue of pages.
After ordering these pages with transparency, the remaining
pages of the job (pages with opaque images and/or text)
are also sorted by their computational cost and are inserted
individually into the pages queue.

The Reusability Strategy deals with documents which have
reusable images but no transparent images. The proposed
algorithm first combines the pages with reusable objects,
creating sets of pages that contains the same image. After
that, these sets are inserted into the queue of pages, sorted
by their computational cost (from the highest to lowest).
The remaining pages are inserted in the same queue individ-
ually. Finally, the load distribution is performed creating n
fragments (where n is the number of RIPs).

The More-Transparency-than-Reusability Strategy is a first
mixed strategy and deals with documents that have more
pages with transparent images than pages with reusable im-
ages. As the most costly pages of a PDF document are that
ones that contain transparency, these pages are sorted by
their computational cost and inserted in the page queue.
After that, pages with reusability are grouped, creating sets
of pages that are also inserted in the page queue, always
sorted by their computational cost. The remaining pages of
the job are inserted individually in the same queue. When
all pages are in this queue, the distribution of the pages or
sets among the fragments starts.

The More-Reusability-than-Transparency Strategy is suit-
able for PDF documents which combine transparency and

176

reusability but there are more pages with reusability than
pages with transparency. Similarly to the Reusability strat-
egy, the algorithm groups all pages with the same reusable
image, creating different sets. They are then inserted in the
page queue according to their computational cost. Pages
containing transparency are the next to be inserted in the
queue followed by pages with opaque images and/or text.
Once all pages/sets are in the queue, they are distributed
among the fragments.

Finally, the No-Transparency, No-Reusability Strategy was
developed to be used in the case where no transparent or
reusable object are found. In that case, the algorithm sorts
all pages by their computational cost (from the highest to
the lowest cost). After that, pages are inserted in the page
queue and they are distributed among fragments.

3. PERFORMANCE EVALUATION
This section presents the environment setup and input

job queues used to run the Job Adaptive Router and dis-
cusses the average gain achieved using our tool. Results
were obtained using the ImageMagick convert tool, which is
an open-source RIP engine. In the tests, PDF documents
were rasterized using a 40 dpi resolution.

Aiming at verifying JAR performance, we compared the
results with a well known algorithm: Largest Processing
Time First (LPT) [2]. Since we need the computational
time to use LPT algorithm, it is possible that RIP engines
are idle waiting for jobs that are blocked in the queue wait-
ing to be analyzed. To overcome this problem, we made
a slight modification in the LPT algorithm: while a thread
executes the PDF Profiler step, another thread concurrently
sends jobs to the RIPs - even though they were not analyzed
by the PDF Profiler tool. This improved version was called
Optimized-LPT (O-LPT).

In order to get closer to the reality of the PSPs, we per-
form tests on a cluster composed of 32 machines connected
by a high-speed Gigabit Ethernet network. Each machine
consists of two AMD Opteron 246 2.0 GHz, 8 GB of main
memory and 1TB hard drive. The operating system of these
machines is Linux (Ubuntu 4.2.4-1ubuntu4) version 2.6.24.
Each node of this cluster run one RIP engine.

To implement the five previously described strategies, the
programming language we used was Java (version 1.6). We
also used the Java iText library (version 2.0.7) to create the
set of input jobs. The MPJ-Express library was used to
enable the communication among processes.

A set of 75 jobs with different characteristics was created
to evaluate the JAR Tool and the five developed strategies.
The number of pages of each job vary from 60 to 220. These
jobs are divided into five groups: PDFs with transparencies,
PDFs with reusability, PDFs with more transparency than
reusability, PDFs with more reusability than transparency
and PDFs that present neither transparency nor reusability.

Moreover, for testing JAR using the five strategies devel-
oped, six different queue configurations were created: Queue
1 - 15 PDF documents with transparency; Queue 2 - 15 PDF
documents with reusability; Queue 3 - 15 PDF documents
with more transparency than reusability; Queue 4 - 15 PDF
documents with more reusability than transparency; Queue
5 - 15 PDF documents with no transparency or reusability;
Queue 6 - 15 PDF documents with mixed characteristics as
follows: 3 with transparency; 3 with reusability; 3 with more

transparency than reusability; 3 with more reusability than
transparency; 3 with no transparency or reusability.

3.1 JAR Performance Analysis
This section presents the performance analysis of the JAR

tool in comparison to the Optimized-LPT algorithm. In this
sense, 30 runs were performed over each one of the six queues
already described, from which the highest and lowest times
were removed, obtaining an average of the other 28 values.
For each execution, one process will execute JAR, meaning
that to exist RIPs in parallel, the number of processes should
not be less than three (one to run JAR and 2 for RIPs).
Moreover, the number of processes ranged from 3 to 19.

Queue 1 3 4 5 6 7 8 9 10 11
JAR 447.6 312.4 305.2 220.2 190.8 170.6 146.6 131.8 126.6

O-LPT 488.6 308.8 258.6 250.8 189.4 150.8 154.8 139.6 157.4
12 13 14 15 16 17 18 19

JAR 122.4 120.2 119.8 121.2 117.6 122.8 123.8 118.4
O-LPT 136.8 137.2 131.6 131.8 148.2 147.2 133.6 148.4

Queue 2 3 4 5 6 7 8 9 10 11
JAR 758.4 537.8 515.4 422.2 337.6 300.2 292.4 274.8 261.2

O-LPT 896.8 480.6 504.8 328.2 301.4 310.2 260.6 259.6 273.6
12 13 14 15 16 17 18 19

JAR 232.4 226.6 223.8 227.2 225.8 225.4 226.8 224.4
O-LPT 205.6 204.4 231.6 232.2 241.4 250.2 249.8 213.6

Queue 3 3 4 5 6 7 8 9 10 11
JAR 467.4 333.8 292.8 240.4 181.8 151.6 134.2 129.6 128.4

O-LPT 485.4 265.6 264.6 241.6 197.8 169.4 153.2 148.4 164.2
12 13 14 15 16 17 18 19

JAR 118.4 115.8 115.6 116.8 118.4 116.8 117.6 118.4
O-LPT 122.6 137.8 132.2 123.4 147.8 131.8 131.6 139.2

Queue 4 3 4 5 6 7 8 9 10 11
JAR 408.4 325.4 234.6 213.6 179.8 141.6 129.8 114.6 111.8

O-LPT 425.8 224.2 221.4 208.6 147.8 159.2 133.4 125.4 137.4
12 13 14 15 16 17 18 19

JAR 108.4 108.8 109.8 108.8 112.2 109.4 113.8 113.6
O-LPT 117.4 134.2 120.2 115.2 136.6 127.2 126.2 124.4

Queue 5 3 4 5 6 7 8 9 10 11
JAR 381.8 285.2 259.8 196.6 166.6 150.8 146.2 122.4 120.2

O-LPT 401.8 266.4 263.8 219.4 167.6 150.2 148.2 126.4 133.8
12 13 14 15 16 17 18 19

JAR 118.4 118.8 103.4 103.2 105.4 107.8 107.8 107.2
O-LPT 121.6 132.2 115.4 117.8 127.4 132.2 119.2 128.2

Queue 6 3 4 5 6 7 8 9 10 11
JAR 408.6 350.2 285.2 233.8 213.2 167.6 159.6 145.4 147.2

O-LPT 498.4 300.6 288.2 232.8 218.6 169.4 164.2 150.8 168.6
12 13 14 15 16 17 18 19

JAR 147.6 146.4 140.6 143.8 136.8 138.2 132.4 131.6
O-LPT 160.8 143.4 137.2 133.6 153.4 161.2 146.8 162.2

Table 1: Execution times (in seconds)

It is possible to see in Table 1 the situation in which the
Transparency strategy was selected by JAR for Queue 1.
This strategy achieved better results in 13 of the 17 pro-
cesses configurations, and when using 5 process JAR exe-
cution time presented a execution time more than 40 sec-
onds faster than Optimized-LPT. The values obtained for
Reusability strategy are also shown in Table 1. In this
case, the Optimized-LPT, in general, presented better per-
formance than JAR selected strategy in 9 of the 17 con-
figurations. The better results of Optimized-LPT over the
Reusability strategy can be explained by the chosen grain
size. It is possible that the gain of grouping pages with
reusable images may not compensate the time spent by JAR.

The time obtained using the queue containing documents
with more transparency than reusability (Queue 3) can be
seen in Table 1. Note that the performance of Optimized-
LPT is better than the More-Transparency-than-Reusability
strategy only in processes 4 and 5, showing that JAR chosen
strategy has a better performance in this case. In the case
of queue 4 (documents with more reusability than trans-

177

Figure 3: JAR Percentual Average Gain

parency), the results obtained with JAR lost in some con-
figurations, but in general JAR presents better performance
than Optimized-LPT. For instance, the strategy selected by
JAR performed the rasterization process 25.6 seconds faster
than Optimized-LPT over 11 processes.

For a queue composed of documents with no transparency
nor reusable images, the strategy chosen by JAR wins in 15
of the 17 occasions compared to Optimized-LPT. Only in 2
occasions the performance obtained with Optimized-LPT is
better, and in the case of 8 processes the difference is only
0.6 seconds; Finally, the results for the sixth queue (using for
each document the suitable strategy, thereby addressing all
five strategies) once again show that JAR performs better
than Optimized-LPT in most cases (12 out of 17).

3.2 JAR Percentual Avarage Gain
This section discusses the percentual average gain for each

strategy using JAR. Figure 3 presents six graphs comparing
all obtained results between JAR and Optimized-LPT in
terms of percentage difference. Moreover, Table 2 contains
important information about each queue tested.

As can be seen in Figure 3a, only in 4 situations JAR pre-
sented worse results. However, in general the Transparency
strategy performed better than Optimized-LPT, with an av-
erage of percentage difference equals to 7.22%. That also
occurs with the More-Reusability-than-Transparency strat-
egy (Figure 3d), which lost also in four cases but in most
cases obtained a better gain than Optimized-LPT, with an
average of the percentage differences equals to 3.60%.

Queue Average of % differences JAR wins Highest % gain

1 7.22 13/17 20.64
2 -2.79 8/17 15.43
3 7.50 15/17 21.80
4 3.60 13/17 18.93
5 7.17 15/17 18.47
6 4.38 12/17 18.87

Table 2: Performance summary

More-Transparency-than-Reusability (Figure 3c) and No-
Trans-parency, No-Reusability (Figure 3e) strategies pre-
sented worse results than Optimized-LPT only in 2 situ-
ations. When a queue of heterogeneous documents was
used (Figure 3f), JAR obtained a better performance than
Optimized-LPT with an average of percentage differences
equals to 4.38%. Only the Reusability strategy showed a
performance loss in general (Figure 3b), resulting in an av-
erage of -2.79%.

4. CONCLUSION
This paper presented the Job Adaptive Router tool for

achieving a fair load balance among RIPs in the rasterization
process of high performance printing environments. JAR ar-
chitecture uses the information about documents content to
decide during runtime which load balance strategy should
be used for a given job considering its characteristics. The
results obtained using JAR presented a better load balance,
resulting in performance gains in comparison to Optimized-
LPT. It is important to highlight that PSPs deal with a wide
variety of documents with different characteristics, like the
scenario of queue 6. As can be seen in Figure 3f, in this situa-
tion JAR presents average gains up to 18.87%. This scenario
is specially important since it illustrates the JAR ability to
dynamically choose the best strategy for each document.
Moreover, it is possible to notice that the more processes
we use, the better is the average gain of JAR in compari-
son with Optimized-LPT, which indicates a good scalabil-
ity. Based on the good results, a further research is needed
for investigating the JAR portability for multiprocessor ma-
chines, once nowadays clusters are typically multiprocessor
machines. In addition, the analysis of the impact of other
document characteristics in the rasterization time will be
conducted aiming at the creation of new strategies.

5. REFERENCES
[1] L. G. Fernandes, T. Nunes, M. Kolberg, F. Giannetti,

R. Nemetz, and A. Cabeda. Job profiling and queue
management in high performance printing. Computer
Science - Research and Development, 27(2):147–166,
May 2012.

[2] R. L. Graham. Bounds on Multiprocessing Timing
Anomalies. SIAM Journal on Applied Mathematics,
17(2):416–429, March 1969.

[3] T. Nunes, F. Giannetti, M. Kolberg, R. Nemetz,
A. Cabeda, and L. G. Fernandes. Job profiling in high
performance printing. In Proceedings of the 9th ACM
symposium on Document engineering, DocEng ’09, pages
109–118, New York, NY, USA, 2009. ACM.

178

