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Abstract. Automatic result verification is an important tool to reduce the impact
of floating-point errors in numerical computation and to guarantee the mathemat-
ical rigor of results. One fundamental problem in Verified Computing is to find
an enclosure that surely contains the exact result of a linear system. Many works
have been developed for optimizing Verified Computing algorithms using parallel
programming techniques and message passing paradigm on clusters of computers.
However, the High Performance Computing scenario changed considerably since
the emergence of multicore architectures in the past few years. This paper presents
an ongoing research project which has the purpose of developing a self-verified
solver for dense interval linear systems optimized for parallel execution on these
new architectures.
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Resumo. A verificação automática de resultados é uma ferramenta poderosa para
reduzir o impacto de erros oriundos de operações com ponto-flutuante em com-
putação numérica pois garante o rigor matemático dos resultados. Um dos proble-
mas fundamentais em Computação Verificada é descobrir um intervalo que assegu-
radamente contém o resultado exato de um dado sistema linear. Nos últimos anos,
muitos trabalhos foram desenvolvidos no sentido de otimizar algoritmos de Com-
putação Verificada usando técnicas de Programação Paralela baseadas no paradigma
de troca de mensagens para clusters de computadores. Em anos recentes, no en-
tanto, o cenário da Computação de Alto Desempenho evoluiu consideravelmente
levando ao surgimento das arquiteturas multicore. Este trabalho introduz os resul-
tados iniciais de um projeto de pesquisa em andamento cujo principal objetivo é
desenvolver um solver auto-verificado para sistemas lineares densos otimizado para
essas novas arquiteturas.
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1. Introduction

Bounding the solution set of systems of linear equations is a major problem in
Computer Science. However, traditional methods offer no guarantee of correct
solutions and not even of the existence of a solution. The main cause of this is that
Floating Point Arithmetic uses finite fractions to represent the real numbers, which
are originally defined in Mathematics as infinite fractions. The difference between
the true value and the approximation is the round off error. Hence, automatic result
verification is an important additional tool to guarantee the mathematical rigor of
the results [15].

The basis for Verified Computing is provided by Interval Arithmetic, which is
defined on sets of intervals, rather than sets of real numbers. However, Verified
Computing increases the computational cost and, in some cases, the required res-
olution time becomes unacceptable. This occurs because, besides the additional
verification steps, the interval evaluation of an arithmetic expression costs about
twice as much as the evaluation of the expression in simple floating point arith-
metic. However, by employing interval function evaluation with directed rounding
the algorithm may provide a guarantee of the computed result which cannot be
achieved even with millions of floating point evaluations.

Additionally, Interval Arithmetic allows computers to deal with uncertain data.
In the context of linear systems, it implies that an interval linear system must be
solved. The solution of such a system is not trivial, since the infinite number of
matrices contained in the interval should be solved. However, the computation of
this solution set is an NP-complete problem [15]. Thus, the only possible way to
find a solution is to compute a narrow interval that contains this set [3, 4].

There are two main approaches for Interval Arithmetic: the Infimum-Supremum
and Midpoint-Radius representations. These representations are equivalent for the
theoretical operations. However, it changes when implemented in floating point sys-
tems where each of these representations has advantages and disadvantages. On one
hand, the standard definition of Midpoint-Radius Arithmetic causes overestimation
for multiplication and division. On the other hand, the operations for Infimum-
Supremum approach, specially the multiplication, must be carefully implemented,
since depending on the sign of the number, a different case will be used to compute
the operation. For Midpoint-Radius operations, it does not happen.

Previous works [3] show the Midpoint-Radius representation as a good choice for
implementations using floating-point arithmetic. The main point in using Midpoint-
Radius arithmetic is that it is possible to use optimized algorithms and software
libraries to implement operations. The latter bear the striking advantages that they
are available for almost every computer hardware and that they are individually
adapted and tuned for specific hardware and compiler configurations. Furthermore,
the overestimation is uniformly limited to 1.5, as proved by Rump [13]. Thus, these
libraries are used to find the approximation needed to compute the narrow interval
that contains the solution [3, 16, 17].

Besides the optimized libraries, the use of high performance computing (HPC)
techniques appears as a solution for computational cost problem. Several works
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have focused on optimizing Verified Computing performance for computer clusters.
However, many changes have been occurring in high performance computing. Given
the number of cores on multicore chips expected to reach tens in a few years, efficient
implementations of numerical solutions using shared memory programming models
is of urgent interest. In this context, we developed a self-verified solver for dense
interval linear systems optimized for parallel execution on multicore processors.

Two techniques were employed on the development of the solver. The first one
was to optimize the matrix inversion step of algorithm by employing PLASMA [20]
routines. The second was to divide the computation of the interval iteration matrix
bounds by using different threads to execute the operations in each rounding mode.
The adopted strategies have resulted in a scalable solver that obtained up to 85%
of reduction at execution time and a speedup of 6.70 with efficiency nearly to 84%
when solving a 15,000 × 15,000 interval linear system on an eight core computer.
Additional discussion and details are presented in [21].

2. Initial Solution

The Residual Iteration Scheme [2] adaptation to solve interval linear systems using
Verified Computing led to Algorithm 1, proposed on [15]. Its result is a high accu-
racy interval vector that surely contains the correct result. Verification process is
composed by steps 5 to 15. These steps use the Midpoint-Radius arithmetic with
direct rounding [3].

Algorithm 1 Enclosure of a square interval linear system

1: R ≈ mid ([A])−1 {Compute an approximate inverse using LU-Decomposition
algorithm}

2: x̃ ≈ R.mid ([b]) {Compute the approximation of the solution}
3: [z] ⊇ R ([b]− [A] x̃) {Compute enclosure for the residuum}
4: [C] ⊇ (I −R [A]) {Compute enclosure for the iteration matrix}
5: [w] := [z] , k := 0 {Initialize machine interval vector}
6: while not ([w] ⊆ int [y]ork > 10) do
7: [y] := [w]
8: [w] := [z] + [C] [y]
9: k + +

10: end while
11: if [w] ⊆ int [y] then
12:

∑
([A] , [b]) ⊆ x̃+[w] {The solution set (

∑
) is contained in the solution found

by the method}
13: else
14: No Verification
15: end if

An initial version of Algorithm 1 using Midpoint-Radius arithmetic was imple-
mented and used to obtain the computational costs of each step. This implementa-
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tion was developed in C++ using the Intel MKL 10.2.1.017 [14] library for optimized
LAPACK and BLAS routines for Intel processors. In order to achieve better perfor-
mance, the approximate inverse R and approximate solution x are calculated using
only traditional floating point operations using only the midpoint matrix. Later, for
computation of the residuum, interval arithmetic is applied with original interval
matrix [A] and interval vector

[
~b
]

to ensure the accuracy of the result [3]. Further
details as well as an accuracy and a performance evaluation of this solution can be
found in [21].

Experiments were carried out in order to measure the computational cost of
each step of Algorithm 1. They were executed considering linear systems randomly
generated with values between 0 and 1 for A and b and a radius of 0.1.10−10 on
both cases. For simplicity reasons, steps from 6 to 15 were joined into 1 step. Table
1 presents the amount of time that was consumed for each step solving a linear
system with n = 5000.

Table 1: Pencentual times for a randomly generated system with n = 5000.
Task Percentage
Computation of approximate inverse R (Step 1) 55.06%
Computation of approximate solution x (Step 2) 0.41%
Computation of enclosure for the residuum z of x (Step 3) 0.94%
Compute enclosure for the iteration matrix C (Step 4) 41.66%
Machine interval vector initialization (Step 5) 0.16%
Iterative refinement and inner inclusion verification (Steps 6 to 15) 1.77%

Table 1 shows that the computation of the approximate inverse R and the com-
putation of the interval matrix C (steps 1 and 4 respectively) are the two most com-
putational intensive operations in this algorithm. Step 1 takes more then 55.06%
of the total time while Step 4 takes 41.66%. These two steps correspond to 97% of
total processing time, and therefore, they must be carefully parallelized aiming at
a better performance.

3. Optimized Parallel Approach

As presented in the previous subsection, steps 1 and 4 are the most computational
intensive operations in the algorithm. Thus, the proposed parallelization focused
on these two steps as follows.

3.1. Optimization of the Approximate Inverse Calculation

Since the Newton Like Iteration requires only an approximation of the inverse ma-
trix of A and once our approach employs Midpoint-Radius Interval Arithmetic,
R can be computed using highly optimized software libraries. In [3], the pdgetri
routine of ScaLAPACK was employed for R calculation. Our initial approach was
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implemented using analogous LAPACK routine dgetri. However, although MKL im-
plementation of LAPACK is highly optimized for Intel processors, LAPACK algebra
algorithms are not efficient on multicore. Hence, as expected LAPACK routines had
no performance gain when increasing the number of cores.

Therefore, our strategy for Step 1 is to explore fine granularity parallelism as
well as asynchronous and out of order scheduling of operations by employing the
PLASMA library. However, the most actual version of PLASMA does not provide
yet a matrix inversion routine. In fact, when dealing with multicore processors
there are no libraries available that can be directly employed for optimized matrix
inversion. Thus, the idea is exploit PLASMA dgesv routine.

The dgesv was developed to compute the solution of a system of linear equations.
However, it is possible to operate the right hand side b of dgesv as a matrix and
it is a well-known mathematical property that multiplying a matrix by its inverse
results the identity matrix. Thus, we employed PLASMA dgesv routine passing to
A and b parameters, respectively, the A and its identity matrices. This way, the
result computed by dgesv is the approximate inverse R.

It is important to mention that while packages like LAPACK and ScaLAPACK
exploit parallelism within multithreading BLAS, PLASMA uses BLAS only for
high performance implementations of single core operations (often referred to as
kernels). PLASMA exploits parallelism at the algorithmic level above the level of
BLAS. For that reason, PLASMA must be linked with a sequential BLAS library
or a multithreaded BLAS library with multithreading disabled. PLASMA must not
be used in conjunction with a multithreaded BLAS, as this is likely to create more
threads than actual cores, which annihilates PLASMA′s performance [20]. Since our
approach takes advantage of multithreaded BLAS in operations executed by other
steps (like matrices multiplication) we used multithreaded MKL. To avoid affecting
PLASMA performance, the function mkl set num threads is used to dynamically
control the number of threads.

3.2. Optimization of the Iteration Matrix Computation

Concerning Step 4, the computation of the enclosure for the iteration matrix [C],
the adopted strategy is to use half of the available processors to compute the interval
upper bound and the other half to compute the interval lower bound. A similar
strategy was successfully employed in [16] where threads were used to compute the
interval bounds on a dual core processor. In that case, however, synchronization is
simpler and it was not necessary to deal with load balancing.

The idea is to utilize different threads to execute the operations in each round-
ing mode. This strategy avoids the constant rounding mode changing which is a
time expensive operation. Additionally, since the cache is shared between cores,
computing distinct bounds over the same data in parallel optimizes data locality.
Threads are created and managed using the standard POSIX threads library and
inter-thread synchronization is done using shared memory and POSIX semaphores
primitives.

Initially, a routine verifies the number of available cores and distributes the
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number of each bound threads among them. Cores identified by odd numbers are
assigned to upper bound computation and the even numbers to lower bound. If the
number of total cores available is odd, then upper bound will be computed with one
more thread than lower bound. The cpu set t variables of sched.h header are used
to create the core pools. Threads are then statically attributed to cores by calling
sched setaffinity function. It is important to highlight, that defining the processor
affinity instructs the operating system kernel scheduler to not change the processor
used by one particular thread.

After, threads are assigned to processors they start setting their rounding modes
and get blocked by semaphores until the main flow releases them all at once. On
the sequence, each thread calls the dgemm BLAS routine for the matrix-matrix
multiplication. The main flow blocks itself with a semaphore until the computation
of upper and lower bounds ends. Once the computation of [C] is completed, threads
send signals to unblock main flow semaphore, which then follows to next step.

4. Experiments and Evaluation

In order to verify the benefits of employed optimizations, two kind of experiments
were performed. The first concerns the correctness of the result. The second ex-
periment was done to evaluate the speedup improvement brought by the proposed
method. The evaluations were executed in a 2 processors quad-core Intel Xeon
E5520 2.27 GHz with 128 KB L1, 1MB L2, 8MB L3 shared and 16 GB of DDR3
1066 MHz RAM. The operating system is Linux Ubuntu 9.04 (kernel 2.6.28-11-
server), the compiler used was gcc v. 4.3.3 and the libraries MKL 10.2.2.025 and
PLASMA 2.1.0.

Once modifications were done in the algorithm, we conducted some experiments
with the same well-conditioned and ill-conditioned matrices solved by our initial
approach to confirm that there were no accuracy loss on the result. The tests
generated by the Boothroyd/Dekker formula presented almost the same accuracy
on both versions (initial and optimized). Actually, for this example, the result
of the initial version is minimally better than the result of the optimized version.
As required by the algorithm, both results contain the exact result. For well-
conditioned matrices, both implementations give exactly the same results.

Table 2 presents the execution times in seconds for each algorithm step when
solving a random 15,000 × 15,000 interval linear system varying the number of
cores. Column Imp. refers to the approach where In. is the initial implementation
and Op. is the optimized version. Cores column indicates the number of cores
employed in that execution and Step 1..15 refers to the algorithms steps. As we
had a small standard deviation we just run the solver 10 times for each situation.
The upper and lower bounds, i.e., highest and lowest execution times, were removed
and the final times were obtained by calculating the arithmetic mean of remaining
times.

Figure 1 shows the speedups obtained from Table 2. Line Sp T.T.Seq. is the
speedup of total execution time comparing optimized implementation running in
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Table 2: Execution times (sec) to solve a 15,000 × 15,000 interval linear system.
Impl. Cores Step 1 Step 2 Step 3 Step 4 Step 5 Step 6–15 Total
In. 1 1,90550 8.39 23.63 2,204.06 0.02 73.07 4,488.75
Op. 1 1,147.87 5.67 19.14 2,218.51 0.02 70.41 3,461.60
Op. 2 575.89 5.70 19.38 1,169.31 0.02 64.81 1,835.10
Op. 3 387.98 5.62 18.18 1,058.50 0.02 68.97 1,539.26
Op. 4 292.68 5.69 19.45 646.02 0.02 32.45 996.31
Op. 5 249.25 5.57 18.19 626.27 0.02 34.95 934.24
Op. 6 209.52 5.74 19.30 493.25 0.02 33.68 761.49
Op. 7 182.30 5.60 17.89 474.70 0.02 34.17 714.67
Op. 8 160.89 5.69 18.93 451.52 0.02 32.99 670.02

n cores to the initial approach in 1 core (i.e., T Op.(n)
T In.(1) ). Sp T.T.Par. concerns to

optimized total time in n cores compared to optimized algorithm executing in 1
core (i.e., T Op.(n)

T Op.(1) ). Sp Inv. Seq. and Sp Inv. Par. illustrate speedups obtained
in an analogous manner considering only the Step 1 execution time. Sp S4. Par.
presents the speedup for Step 4 of algorithm.
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Figure 1: Speedups obtained solving an interval linear system of size 15,000 ×
15,000.

In Table 2 and Figure 1 it is possible to see a significant reduction in the ex-
ecution time. Sp T.T.Seq. initially presented super linear speed up and slowly
decreased until 6.70 for 8 cores, which is a expected result due to scalability issues
like as the influence of sequential portions of code. Sp T.T.Par. also presented high
speedups and a similar behavior. The main reason for this difference is the Step
1 of the algorithm. The optimized implementation running in 1 core spent only
60% of the time spent by the initial approach. This is because PLASMA optimiza-
tions not boil down only to the parallelism but also to new algorithmic approaches
for data management and tasks scheduling which are more suitable for multicore
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architectures.
Sp Inv. Seq. and Sp Inv. Par. can be explained by these same reasons. It is

important to note that Step 1 computed with LAPACK dgetri routine on 8 cores
spent 1,864.168661 seconds, which means a speedup of 1.02 and confirms that this
is not suitable for multicore.

Sp S4. Par. presented good speedups too. We suppose that this is due to
cache effects. In the sequential version, all matrix elements must be loaded in the
cache to compute [C] with rounding-up, and after that, again, to compute it with
rounding-down. If the entire matrix does not fit in the cache, there will be many
cache misses for each rounding mode. Since more threads use the same data at
the same time, the multithreaded version allows a more effective utilization of the
available cache memory, resulting in a better speedup as expected.

At last, verification steps (6–15) although not explicit parallelized showed per-
formance gains too. The reason is that the use of dgemm routine benefits from
multithreaded MKL.

5. Considerations and Future work

This paper presented the current version of a self-verified solver for dense interval
linear systems optimized for parallel execution on multicore architectures. The im-
plementation delivered enclosures of the correct solutions for interval input data
with considerable accuracy. The computational costs of each of its intermediate
steps were computed and the main time expensive oh them were optimized aiming
at obtaining performance gain on multicore processors. The proposed solution led
to a scalable implementation which has achieved up to 85% of reduction at execu-
tion time when solving a 15,000 × 15,000 interval linear system over an eight core
computer.

It is important to mention that the presented solver was written for dense sys-
tems. However, sparse systems are also supported although they will be treated as
a dense system. No special method or data storage is used concerning the sparsity
of these systems. Many performance related issues still remain under investigation.
There is a clear tradeoff between the overhead incurred by thread synchronization
and the performance gain, which affects the solver scalability. Therefore, future
directions includes the investigation of how to optimize the parallelized steps, the
identification other parts of the algorithm to parallelize and the exploitation of new
architectures as the hybrid computers that mix GPUs and multicore processing.

The ability of finding verified results for dense linear systems of equations in-
creases the result accuracy. The possibility to perform this computation in multicore
architectures reduces the computational time that verified computing need through
the benefits of high performance computing. Therefore, the use of verified and high
performance computing together appears as a suitable way to increase the reliability
and performance of many applications, specially when those applications deal with
uncertain data.
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