
Performance and Usability Evaluation of a
Pattern-Oriented Parallel Programming Interface for

Multi-Core Architectures

Dalvan Griebler, Daniel Adornes, Luiz Gustavo Fernandes
Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS),

School of Informatics (FACIN), Graduate Program in Computer Science (PPGCC),

Parallel Application Modeling Group (GMAP).

Av. Ipiranga, 6681 - Building 32 - Porto Alegre - Brazil

dalvan.griebler@acad.pucrs.br, daniel.adornes@acad.pucrs.br, luiz.fernandes@pucrs.br

Abstract—Multi-core architectures have increased the power
of parallelism by coupling many cores in a single chip. This
becomes even more complex for developers to exploit the avail-
able parallelism in order to provide high performance scalable
programs. To address these challenges, we propose the DSL-
POPP (Domain-Specific Language for Pattern-Oriented Parallel
Programming), which links the pattern-based approach in the
programming interface as an alternative to reduce the effort of
parallel software development, and achieve good performance
in some applications. In this paper, the objective is to evaluate
the usability and performance of the master/slave pattern and
compare it to the Pthreads library. Moreover, experiments have
shown that the master/slave interface of the DSL-POPP reduces
up to 50% of the programming effort, without significantly
affecting the performance.

Keywords: Parallel Programming, Pattern-Oriented, Perfor-

mance Evaluation, Usability Evaluation.

I. Introduction

Parallel programming has become inserted in the daily ac-

tivities of software developers due to easy access to the multi-

core architectures. However, its higher computational power

achieved by coupling multiple processing elements on a single

chip, increases complexity in parallelism exploitation. Thus

requiring higher programming efforts to develop programs

with good scalability and high performance.

Initially, the main interest of software designers was to

provide flexible libraries. In recent years, the concern has

also been to create high-level abstractions including flexibility

issues without compromising the performance of the applica-

tion. Therefore, the challenge is to evaluate the programming

interface’s usability. This is not a simple task because it

requires volunteers to perform the experiments, and becomes

laborious for everyone involved [16].

Such challenges have already been targeted in many studies

that propose some level of abstraction [17]. On the other hand,

[14] proposed an environment to automatically evaluate the

usability of parallel language constructions, which does not

consider the programming effort. In this paper, we present

the master/slave pattern-oriented interface of DSL-POPP for

multi-core architectures in order to evaluate its performance

and usability. The contributions are the following:

• We present the master/slave pattern interface of the DSL-

POPP;

• We perform a usability experiment comparing the pro-

gramming effort between DSL-POPP and Pthreads;

• We conduct a performance experiment using four differ-

ent applications.

This paper is organized as follows: Section II discusses

related work; Section III presents the DSL-POPP in a nutshell;

Section IV demonstrates the usability experiment; Section V

describes the performance experiment; and finally, Section VI

presents the conclusions.

II. RelatedWork

We consider Delite the first project to face the challenge

of using DSLs as a programming environment for simplifying

parallel programming. It generates parallel embedded DSLs

for an application, whereas programmers implement domain-

specific operations by extending the DSL framework [4]. The

final result is a high performance DSL for a wider diversity of

parallel architectures. In its interface implementation, Delite

uses the Scala language. However, one disadvantage is that

the lack of some features in the host language may restrict

performance optimizations.

The concept of the algorithm skeleton was introduced

by Murray Cole [6], who later proposed a skeleton-based

programming environment called eSkel. Many libraries and

frameworks emerged [8], allowing skeleton constructions in

message passing and thread model scenarios. Other related

approaches have emerged like the CO2P3S, which is a

pattern-based parallel programming framework that creates

pre-defined templates through a high-level interface [3], and

the TBB (Thread Building Blocks) library that allows skeleton

implementation in low-level operations [10]. Recently, the

FastFlow template library [1] introduced a precise and op-

timized implementation of patterns for streaming applications

and has proven to be faster than TBB, due to its advanced

parallelism implementation through techniques such as lock-

free synchronization [2].

Yet, there are also programming models that are not pattern-

based such as OpenMP [5], which have a set of pragma

primitives designated to exploit loop parallelism in sequential

programs. Charm++ is a parallel language based on the C++

syntax, parallelizing the execution through parallel objects and

channel mechanisms [12]. Lastly, Cilk++ is a C language

extension that provides keywords for spawn and synchronize

threads, and loop parallelism [13]. The drawback of these

specialized systems is that pattern-based implementations may

require substantial work.

This research differs from these previous related works in

it focuses on usability through a pattern-oriented interface,

although it continues to focus on high performance and scal-

able programming. Also, this paper will evaluate the perfor-

mance of parallel applications in multi-core architectures using

statistical method, which differs of studies for performance

prediction of parallel patterns [15].

III. DSL-POPP in a Nutshell

The POPP model is a standard way to design algorithms

capable of combining and nesting parallel patterns while

remaining compliant with different high performance archi-

tectures. It is framed on top of pattern-based approaches,

where these patterns are presented as routine, and the skeleton

templates are code blocks. The nesting of patterns occurs

when a pattern subroutine is called inside a code block, pro-

ducing a hierarchical composition. Additionally, it is possible

to have different pattern combinations, resulting in different

variations from the source application and implying different

parallelism behaviors [9]. However, in this paper we focus on

the master/slave, demonstrating how it can be nested in order

to achieve levels of parallelism. Therefore, we exemplify in

Figure 1(a) its behavior using process illustrations to represent

abstract parallelism.

The master is responsible for sending the computational

tasks to all slaves. Then, once all tasks have been computed,

results are sent back to the master to finalize the whole

computation. In this pattern, both the POPP routine and the

subroutines can implement their own master and slaves code

blocks. For instance, a slave block may have as many slave

processes as necessary running parallel, and nesting occurs

when a slave or master code block calls a Master/Slave

subroutine.

We named active processes those that are used to measure

the performance, and control processes those that are only

used to represent the skeleton behavior pattern. Through the

processes labeled second level, we see the point from which

levels of parallelism are achieved. In general, the control

process coordinates the computation flow and does not per-

form significant computations (being CPU idle) while active

processes are computing their tasks. For this reason, those

processes are not used to measure the speed-up. The levels

of parallelism can be achieved by calling subroutines from

inside the slave block. Even though the execution sequence

subroutine

subroutine
main routine

call

call

ProcessM Master Block S Slave Block

(a) Nesting

First level active process

L
e
g

e
n

d

Second level active process

Control process (coordinatior)

Code Block (representation)

Slave

Master

subroutine

(b) Levels of parallelism

Fig. 1. How to address nested patterns and levels of parallelism through the
POPP model for the master/slave pattern.

of the routines is not clearly defined in the example, the idea

is that each one executes after the other has finished. In other

words, using the example in Figure 1(b), slave block processes

do not run parallel with the subroutine called on the master

block, but they are on the same parallelism level.

The POPP model is built over the C language and stan-

dardized as follows: the specification of routines begins with

“$” and code blocks with “@”. The pattern routine should be

declared in a function followed by the return data type and its

name. Code blocks should be used inside of the pattern routine,

consisting of pure C code, and the skeleton communication

occurs through predefined arguments. Also, the code declared

inside each block is private and will not be accessible to other

code blocks. In the current master/slave interface, in the master

block only the buffer and its size have to be given, whereas in

the slave block it is necessary to specify the number of threads,

buffer, buffer size, and the load balancing policy (Listing 1).

1$MasterSlavePattern int func name () {
2 @Master (void ∗ b u f f e r , const int s i z e) {
3 / / f u l l C code
4 @Slave (const int num threads , void ∗

b u f f e r ,const int s i z e , const p o l i c y) {
5 / / f u l l C code
6 }

7 / / f u l l C code
8 }

9 }

Listing 1. Master/Slave programming interface.

In the runtime system, the master block creates as many

threads as defined in the slave block and waits until all slave

threads have finished their work. This is hidden from program-

mers, since thread creation occurs when the slave block starts

and the synchronization is performed automatically at the end

of the slave block. Moreover, at the end of a slave block, all

slave threads send their work back to the master (using the

buffer parametrized to the slave block) in order to allow it to

merge all results. This communication procedure, and the load

balancing are also hidden from developers.

In fact, slave threads receive their workloads according to

the policy argument in the slave block. The implementation of

these policies is automatically generated by the pre-compiler

system. Currently, we have only implemented an optimized

version of the static load balancing (POPP STATIC), where

the workload is uniformly divided by the number of threads,

and the resulting chunks are then statically assigned to slave

threads as they start their computations.

To use the programming interface, developers have to

include the DSL-POPP library (poppLinux.h) in the source

code and compile the program with the DSL-POPP compiler

(popp). This library includes all routine definitions and code

blocks. The compilation process of the source code is depicted

in Figure 2. The source-to-source code transformation between

DSL-POPP interface and C code is automatically done by the

pre-compiler, which is also responsible for checking syntax

and semantic errors. Then, the pre-compiler generates the C

parallel code using the Pthreads library based on the parallel

pattern used. Finally, we use the GNU C compiler to generate

binary code for the target platform.

Fig. 2. Compiler overview.

A. Matrix Multiplication Example

DSL-POPP can be used to design different parallel algo-

rithms [9]. However, we chose the classic matrix multiplication

algorithm to illustrate how programmers have to parallelize it

to perform the usability experiment. This application consists

of some auxiliary functions to load and print the matrix as well

as measure the execution time. We intend to present in details

only the main parts of the application, since the focus relies

on Matrix Multiplication (MM), which has to be implemented

with Pthreads (Listing 2) and DSL-POPP (Listing 3).

1#include < s t d i o . h>
2#include <p t h r e a d . h>
3#define MX 1000 / / m a t r i x s i z e
4long int num threads =2;
5long int m a t r i x 1 [MX] [MX] , m a t r i x 2 [MX] [MX] ,

m a t r i x [MX] [MX] ;
6double t i m e r () { / ∗ r e t u r n t h e t i m e i n s e c o n d s ∗ /

}

7void a t t r v a l (long int ∗∗mat r ix , long int ∗∗
mat r ix1 , long int ∗∗m a t r i x 2 { / ∗ v a l u e s
a t t r i b u t i o n ∗ / }

8void p r i n t M a t r i x (long int ∗∗m a t r i x) { / ∗ p r i n t s
a m a t r i x ∗ / }

9void ∗Thread (void ∗ th id) {
10 long int i d= (long int∗) th id ;
11 long int i , j , k , end ;
12 end=(i d ∗ (MX/ num threads)) +(MX/ num threads) ;
13 if (i d==num threads −1)
14 end=MX;
15 for (i= i d ∗ (MX/ num threads) ; i <end ; i ++)
16 for (j =0; j <MX; j ++)
17 for (k=0; k<MX; k++)
18 m a t r i x [i] [j] += (m a t r i x 1 [i] [k] ∗

m a t r i x 2 [k] [j]) ;

19 p t h r e a d e x i t (NULL) ;
20 }
21int main () {
22 double t s t a r t , t end ;
23 p t h r e a d t t h [num threads] ;
24 void ∗ s t a t u s ;
25 t s t a r t = t i m e r () ;
26 a t t r v a l (ma t r i x , ma t r ix1 , m a t r i x 2) ;
27 int i ;
28 for (i =0; i <num threads ; i ++)
29 p t h r e a d c r e a t e (& t h [i] , NULL, &Thread , (

void ∗) i) ;
30 for (i =0; i <num threads ; i ++)
31 p t h r e a d j o i n (& t h [i] , &s t a t u s) ;
32 t end = t i m e r () ;
33 p r i n t f (”EXECUTION TIME : %l f s e c o n d s \n ” ,

t end− t s t a r t) ;
34 p r i n t M a t r i x (m a t r i x) ;
35 }

Listing 2. MM implemented with Pthreads .

As can be observed, we used a very simple strategy to

parallelize the MM with Pthreads. The main function is

responsible for creating auxiliary threads (lines 28 - 31), which

will perform the MM in parallel (lines 15 - 18). Therefore,

each thread performs the MM on a sub-matrix. The sub-matrix

is obtained by dividing the number of rows of the resulting

matrix by the number of threads. We used the thread ID to

select a different sub-matrix for each thread, avoiding the use

of synchronization mechanisms (lines 12 - 14).

1#include < s t d i o . h>
2#include ” poppLinux . h ”
3#define MX 1000 / / m a t r i x s i z e
4long int num threads =2;
5long int m a t r i x 1 [MX] [MX] , m a t r i x 2 [MX] [MX] ,

m a t r i x [MX] [MX] ;
6double t i m e r () { / ∗ r e t u r n t h e t i m e i n s e c o n d s ∗ /

}

7void a t t r v a l (long int ∗∗mat r ix , long int ∗∗
mat r ix1 , long int ∗∗m a t r i x 2 { / ∗ v a l u e s
a t t r i b u t i o n ∗ / }

8void p r i n t M a t r i x (long int ∗∗m a t r i x) { / ∗ p r i n t s
a m a t r i x ∗ / }

9$MasterSlavePattern int main () {
10 @Master (ma t r i x , MX) {
11 double t s t a r t , t end ;
12 t s t a r t = t i m e r () ;
13 a t t r v a l (ma t r i x , ma t r ix1 , m a t r i x 2) ;
14 @Slave (num threads , ma t r i x , MX,

POPP STATIC) {
15 long int i , j , k ;
16 for (i =0; i <MX; i ++)
17 for (j =0; j <MX; j ++)
18 for (k=0; k<MX; k++)
19 m a t r i x [i] [j] += (m a t r i x 1 [i] [k]∗

m a t r i x 2 [k] [j]) ;
20 }

21 t end = t i m e r () ;
22 p r i n t f (”EXECUTION TIME : %l f s e c o n d s \n ” ,

t end− t s t a r t) ;
23 p r i n t M a t r i x (m a t r i x) ;
24 }

25 }

Listing 3. MM implemented with DSL-POPP .

The corresponding DSL-POPP version of the MM is pre-

sented in Listing 3. The main routine is composed of a master

block (line 9) and a slave block (line 14). The master block

does not contribute to the whole parallel computation, since it

starts the computation, joins the results of each slave threads,

and creates the slaves and waits for them to finish so that it is

automatically performed by the pre-compiler. The slave block

contains the sequential code of the MM which will be split

among independent slave workers (threads).

It is possible to notice that DSL-POPP considerably reduces

the amount of code necessary to parallelize the application.

Additionally, developers do not have to worry about how to

split the work. To evaluate how this will impact the program-

ming effort, we performed a usability experiment using this

application in the next section.

IV. Usability Evaluation

In this experiment, we only considered the time spent

(in minutes) to implement the parallel solution, using it as

the metric to evaluate the programming effort when using

DSLPOPP compared to Pthreads. In order to do so, we invited

M.Sc. and Ph.D. students in Computer Science and asked them

to parallelize the matrix multiplication with these approaches.

Then, we performed an analysis using the hypothesis statistical

test, making the assumption of a null hypothesis (H0) that will

be rejected or not. We used 95% reliability and the significance

level (max probability to reject the H0) adopted was 5%. This

means that to reject the H0 result has to be less than 0.05 (this

value is called p-value in the literature) [7]. The hypotheses

are formalized as follows:

1) Null hypothesis (H0): the effort in parallel programming

with Pthreads is equal to the effort using DSL-POPP

(Pthreads = DSL-POPP).

2) Alternative hypothesis (H1): the effort in parallel pro-

gramming with Pthreads is greater than DSL-POPP

approach (Pthreads > DSL-POPP).

We invited students to answer a questionnaire to evalu-

ate their previous knowledge (the options were: none, low,

medium, and high). Based on this questionnaire, we removed

the students that did not have the required skills (knowledge in

C language, parallel programming and Linux platform). Thus,

we split the remaining 20 participants into two groups with

equal knowledge. Group 1 parallelized the problem with the

DSL-POPP first and then with Pthreads. Group 2 parallelized

the same problem but in the reverse order.

In order to avoid external influences, the experiment was

carried out in a controlled environment (laboratory), where

participants only had access to a user manual (previously re-

viewed by another researcher) and the original sequential code.

Each participant used a desktop machine with Ubuntu Linux

installed and no Internet access was allowed. All students had

to achieve correct parallel implementations with performance

above a minimum threshold (of at least 90% of the linear

speedup with two threads) for the experiment to be considered

completed.

Table I presents the results obtained from the effort evalu-

ation. For each participant, we present his/her previous ex-

perience with Pthreads (taken from the questionnaire) and

the time spent to implement the problem using the DSL-

POPP and Pthreads. Therefore, it is important to highlight

that all participants had never developed applications with

the DSL-POPP and most of them had already developed

parallel applications with Pthreads. The results demonstrate

that the DSL-POPP demands less work from the developers.

An exception was found in Group 1 (ID=1), which parallelized

the problem faster with Pthreads than with DSL-POPP. This is

due to two factors: (i) the participant had already implemented

a matrix multiplication with Pthreads and (ii) he had significant

experience in developing applications with Pthreads.

We used the Statistical Package for the Social Sciences

(SPSS) to analyze the obtained results. The analysis showed

a significantly higher level of effort to program with Pthreads

than with DSL-POPP. The average time spent to implement the

parallel version of the matrix multiplication was 51.45 minutes

with Pthreads (the 95% confidence interval was 42.98 to 59.92

minutes) whereas it was 20.70 minutes for the average with

DSL-POPP (the 95% confidence interval was 17.59 to 23.81).

For the hypothesis test, there are basically two statistical

tests that can be applied: parametric and nonparametric. The

parametric test normally requires distributed data and homo-

geneity of variance. However, the time spent to implement the

solution with Pthreads did not follow a normal distribution,

thus indicating a non-parametric test. Due to that, we used the

Wilcoxon approach for paired sample tests [7]. This hypothesis

test is based on the differences between the scores of the

two approaches, ranking them positively and negatively. The

results are shown in Table II.

TABLE II
Statistical hypothesis test.

Ranks N Mean Rank Sum of Ranks

Negative Ranks 1 (a) 4.0 4.0

Positive Ranks 19 (b) 10.8 206.0

Ties 0 (c) – –

Total 20

(a) Pthreads ¡ DSL POPP

(b) Pthreads ¿ DSL POPP

(c) Pthreads = DSL POPP

Wilcoxon test Pthreads vs. DSL-POPP

Z -3.771*

Asymp. Sig. (2-tailed) 0.0

*Based on negative ranks.

We noticed that only one negative rank was found in the

statistical test. This means that Pthreads require more effort

than DSL-POPP ((b) Pthreads > DSL POPP). In order to

confirm whether the effort is significantly different between

these approaches, we used the significance level (Sig.), which

must be less than 0.05 [7]. The SPSS returned the result shown

at the bottom (Wilcoxon test) of Table II, concluding that the

effort is significantly different. Thus, we can reject the null

hypothesis (H0) and based on the mean results, we can accept

the alternative hypothesis H1, which states that the effort in

TABLE I
Effort evaluation results.

Group 1: DSL-POPP → Pthreads Group 2: Pthreads → DSL-POPP

ID
Experience DSL-POPP Pthreads

ID
Experience DSL-POPP Pthreads

with Pthreads Time (min) Time (min) with Pthreads Time (min) Time (min)
1 Medium 29 18 11 High 15 33
2 Medium 23 32 12 Medium 17 54
3 Low 13 30 13 Medium 12 65
4 Medium 25 29 14 Low 15 70
5 Medium 19 27 15 Low 17 60
6 Low 33 65 16 Low 15 71
7 Low 15 39 17 Low 12 61
8 Low 31 81 18 Zero 21 63
9 Zero 28 59 19 Zero 24 61
10 Low 28 45 20 Low 22 66

parallel programming with Pthreads is greater than with DSL-

POPP.

V. Performance Experiments

This experiment seek to evaluate the performance in order to

identify whether there are significant performance differences

between DSL-POPP and Pthreads. The metric associated with

this experiment is the execution time, which is used to calcu-

late the speed-up and compare the performance results. The

hypotheses for this experiment are the follows:

1) Null hypothesis (H0): the performance of the algorithms

implemented with Pthreads is equal to the implemented

using DSL-POPP (Pthreads = DSL-POPP).

2) Alternative hypothesis (H1): the performance of the

algorithms implemented with Pthreads is significantly

different than implemented with DSL-POPP (Pthreads

! = DSL-POPP).

The performance tests were carried out on a machine run-

ning Ubuntu-Linux-12.04-server-64bits and the architecture

was composed of Intel Xeon X3470 (2.93GHz), 8GB of main

memory, and 2TB of disk. We chose four well-known algo-

rithms from the literature to be parallelized by one volunteer

from the usability experiment. This programmer implemented

these algorithms with Pthreads and DSL-POPP, and we cer-

tified that the output result was the same as the sequential

version in order to guarantee the parallelization correctness.

Also, for each sample we performed 40 random executions to

measure/compare the performance and efficiency.

Therefore, the first program Estimates an Integral (EI) over

a domain of two dimensions using an averaging technique. The

second is a Molecular Dynamic (MD) simulation algorithm.

The other application sets up a dense Matrix Multiplication

(MM), and the last application counts the Prime Numbers

(PN) between 1 to N. We used the SLOCCount tool [18]

to present an overview of the physical source lines of code

and the development effort for this application. The results

are presented in Table III. As can be seen, the estimate of

this tool demonstrates that the programmer used more lines of

code and the development effort was probably more expensive

than with DSL-POPP.

TABLE III
Code analysis.

Source Lines of Code (SLOC) Development Effort Estimate (Min.)

App. Ori. DSL-POPP Pthreads Ori. DSL-POPP Pthreads

EI 91 93 135 8322 8760 12702
MD 249 259 352 24528 25404 35040
MM 99 105 209 9198 10074 20148
PN 78 100 142 7008 9198 13578

It is important to highlight that this tool is not equivalent to

the usability experiment because it does not effectively evalu-

ate human interaction. Additionally, it does not consider some

parallel programming issues, for example, the programmers

have to find the pieces of code that can/must be parallelized,

study how to split the computation, how to communicate, and

how to perform synchronization. Due to this, it only gives

an overview of the development effort to show some trends.

For example, applying this test over the matrix multiplication

application used in the usability experiment, it estimates a

development effort for the sequential version of (52 SLOC)

80.18 hours, for DSl-POPP (59 SLOC) 87.36 hours, and with

Pthreads (73 SLOC) 109.30 hours.

2

4

6

8

S
pe

ed
up

EI

0.99 0.99 0.96 0.960.99 0.99 0.97 0.96

1.99

4.00

5.82

7.75

1.99

4.00

5.82

7.75

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

E
ffi

ci
en

cy

MD

1.00 1.00

0.80 0.80

1.00 1.00

0.81 0.80

2.00

4.02
4.85

6.40

2.00

4.01
4.87

6.42

2

4

6

8

2 4 6 8

S
pe

ed
up

Number of Threads

MM

0.99 1.00

0.78
0.67

1.00 1.00

0.78
0.67

2.00

4.01
4.68

5.39

2.00

4.00
4.68

5.38

2 4 6 8 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

E
ffi

ci
en

cy

Number of Threads

PN

0.68
0.58

0.45
0.40

0.68
0.58

0.46
0.40

Ideal
DSL-POPP

1.36

2.35
2.76

3.27

Pthreads

1.36

2.35
2.79

3.21

Fig. 3. Speed-up and Efficiency.

The performance and efficiency of these applications are

presented in the graphs of the Figure 3. The EI, MD, and

MM achieved ideal speed-ups until 4 threads. However, with

6 and 8 threads they have performance losses due to the

use of logical cores. As expected, the PN does not achieve

good performance over the other applications, because the

algorithm is not embarrassingly parallel. Finally, both speed-

up and efficiency presents similar results between DSL-POPP

and Pthreads implementations.

Even though it seems there are no significant performance

differences according to the graphs of speed-up and efficiency,

we performed a significance (Sig) test using the SPSS tool.

It was performed with 95% reliability (the probability to

reject the H0 is 5%) over the 40 execution time of each

sample so that the Sig. must be < 0.05 for reject the H0. The

place where the statistics test indicates significant performance

differences are in bold (Table IV), thus in these particular

cases H0 is rejected. Overall, all performance tests of MM

application presented results without significant differences

admitting 95% reliability, which is considered one of the most

accurate statistic evaluations for software usability [11].

TABLE IV
SPSS output for the test of significance (Sig.)

Threads EI MD MM PN

2 0.455 0.135 0.059 0.281
4 0.740 0.090 0.174 0.001
6 0.000 0.000 0.837 0.199
8 0.000 0.269 0.381 0.011

VI. Conclusions

This paper presented a performance and usability evaluation

of a pattern-oriented interface for multi-core architectures. It

was performed using software experiments and statistical anal-

ysis, whose results demonstrated that the master/slave pattern

interface of the DSL-POPP requires less programming effort

than Pthreads in the parallelization of a matrix multiplication

algorithm. Additionally, we demonstrated that the performance

is not significantly affected in four applications, and we discuss

the development effort estimated by the SLOCCount tool in

order to demonstrate some programming effort trends in these

applications.

The comparative analysis with Pthreads library was per-

formed because it is used to implement parallel code gener-

ation. Hence, we could see the efficience of the DSL-POPP

for usability and performance issues. However in the future,

we intend to evaluate the impact of the parallel programming

efforts in applications that can exploit the nested pattern abil-

ity, and repeat these experiments for other pattern interfaces

available in the DSL-POPP. Also, we plan to compare the

performance and usability with other programming interfaces

that are not pattern-oriented, such as OpenMP and Cilk.

Acknowledgments

Authors wish to thank the research support of FAPERGS

(Fundação de Amparo à Pesquisa do Estado do Rio Grande do

Sul) and CAPES (Coordenação de Aperfeiçoamento Pessoal

de Nı́vel Superior). Additionally, authors would like to thank

the financial support of FACIN (Faculdade de Informática)

and PPGCC (Programa de Pós-Graduação em Ciência da

Computação).

References

[1] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and
M. Torquati. Accelerating Code on Multi-cores with FastFlow. In Euro-

Par 2011 Parallel Processing, volume 6853, pages 170–181, Berlin,
Heidelberg, August 2011. Springer-Verlag.

[2] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and
M. Torquati. An Efficient Unbounded Lock-Free Queue for Multi-core
Systems. In Proc. of 18th Intl. Euro-Par 2012 Parallel Processing,
volume 7484, pages 662–673, Rhodes Island, Greece, August 2012.
Springer.

[3] S. Bromling, S. MacDonald, J. Anvik, J. Schaeffer, D. Szafron, and
K. Tan. Pattern-Based Parallel Programming. In Parallel Processing,

2002. Proceedings. International Conference on, pages 257–265, British
Columbia, Canada, 2002. IEEE Computer Society.

[4] H. Chafi, A. Sujeeth, K. Brown, H. Lee, A. Atreya, and K. Olukotun. A
Domain-specific Approach to Heterogeneous Parallelism. In Proceed-

ings of the 16th ACM Symposium on Principles and Practice of Parallel

Programming, volume 1, pages 35–46, New York, NY, USA, February
2011. ACM.

[5] B. Chapman, G. Jost, and R. Pas. Using OpenMP: Portable Shared

Memory Parallel Programming. Massachusetts Institute of Technology,
London, England, 2008.

[6] M. Cole. Algorithmic Skeletons: Structured Management of Parallel

Computation. MIT Press, Cambridge, USA, 1989.
[7] A. Field. Discovering Statistics Using SPSS. SAGE, Dubai, EAU, 2009.
[8] H. González-Vélez and M. Leyton. A Survey of Algorithmic Skele-

ton Frameworks: High-level Structured Parallel Programming Enablers.
Softw. Pract. Exper., 40(12):1135–1160, 2010.

[9] D. Griebler and L. G. Fernandes. Towards a Domain-Specific Language
for Patterns-Oriented Parallel Programming. In Programming Languages

- 17th Brazilian Symposium - SBLP, volume 8129 of Lecture Notes

in Computer Science, pages 105–119, Brasilia, Brazil, October 2013.
Springer Berlin Heidelberg.

[10] Intel. Thread Building Block (Intel TBB), Extracted from
<https://www.threadingbuildingblocks.org>, 2014.

[11] N. Juristo and A. M. Moreno. Basics of Software Engineering Experi-

mentation. Springer, Boston, USA, 2001.
[12] L. V. Kale and S. Krishnan. CHARM++: A Portable Concurrent Object

Oriented System Based on C++. In Proceedings of the Eighth Annual

Conference on Object-oriented Programming Systems, Languages, and

Applications, pages 91–108, New York, NY, USA, October 1993. ACM.
[13] C. E. Leiserson. The Cilk++ Concurrency Platform. In Proceedings

of the 46th Annual Design Automation Conference, volume 1, pages
522–527, New York, NY, USA, July 2009. ACM.

[14] V. Pankratius. Automated Usability Evaluation of Parallel Programming
Constructs (NIER Track). In Proceedings of the 33rd International

Conference on Software Engineering, ICSE ’11, pages 936–939, New
York, NY, USA, May 2011. ACM.

[15] M. Raeder, D. Griebler, L. Baldo, and L. G. Fernandes. Performance
Prediction of Parallel Applications with Parallel Patterns Using Stochas-
tic Methods. In Sistemas Computacionais (WSCAD-SSC), XII Simpósio

em Sistemas Computacionais de Alto Desempenho, pages 1–13, Espı́rito
Santo, Brasil, October 2011. IEEE Computer Society.

[16] C. Sadowski and A. Shewmaker. The Last Mile: Parallel Programming
and Usability. In Proceedings of the FSE/SDP Workshop on Future of

Software Engineering Research, volume 1, pages 309–314, New York,
NY, USA, November 2010. ACM.

[17] D. Szafron and J. Schaeffer. An Experiment to Measure the Usability of
Parallel Programming Systems. Concurrency - Practice and Experience,
8(2):147–166, 1996.

[18] D. A. Wheeler. SLOCCount, Access from
<http://www.cic.unb.br/f̃acp/cursos/ps/slides/doc/SLOCCount.html>,
2014.

