
October 2017

Higher-Level Parallelism Abstractions for
Video Applications with SPar

Dalvan Griebler a,1, Renato B. Hoffmann a, Marco Danelutto b, Luiz G. Fernandes a

a Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
b Computer Science Department, University of Pisa, Italy

Abstract. SPar is a Domain-Specific Language (DSL) designed to provide high-
level parallel programming abstractions for streaming applications. Video process-
ing application domain requires parallel processing to extract and analyze informa-
tion quickly. When using state-of-the-art frameworks such as FastFlow and TBB,
the application programmer has to manage source code re-factoring and perfor-
mance optimization to implement parallelism efficiently. Our goal is to make this
process easier for programmers through SPar. Thus we assess SPar’s programming
language and its performance in traditional video applications. We also discuss dif-
ferent implementations compared to the ones of SPar. Results demonstrate that SPar
maintains the sequential code structure, is less code intrusive, and provides higher-
level programming abstractions without introducing notable performance losses.
Therefore, it represents a good choice for application programmers from the video
processing domain.

Keywords. High-Level Parallel Programming, Stream Parallelism, Video Processing,
Domain-Specific Language, C++11 Attributes

1. Introduction

For many years parallel computing has been mainly considered in specialized super-
computing centers. The situation dramatically changed in the last decade because of
the many-core and multi-core architectures that are now available outside of high-
performance computing centers. There are different challenges that need to be faced by
application programmers to achieve performance and productivity in video streaming ap-
plications [4,18]. Compilers such as GCC are not able to automatically parallelize code
from high-level C++ language abstractions [17]. Moreover, from the compiler’s point
of view, only limited cases of vectorized code can be automatically parallelized, while
other higher-level code (viewed as coarse-grained code regions) do not provide the nec-
essary semantic information for the compiler to perform code parallelization [10]. Con-
sequently, developers are forced to restructure their applications by using low-level and
architecture-dependent libraries to efficiently exploit parallelism.

On the other hand, traditional video applications have a predictable pattern of behav-
ior. Video streams are generated from cameras or read from a video file. Then, a sequence
of filters are used to improve quality, decode, detect objects, extract and write informa-
tion, and/or use other custom filter types. Lastly, the results are reproduced in a screen
or in an output video file. The most commonly used library for these applications is
OpenCV [8], which already has data parallelism support for GPU and CPU architectures
in some of its routines, using internally Threading Building Blocks (TBB) [15] and Com-
pute Unified Device Architecture (CUDA) [13]. However, stream parallelism can only be
achieved by using parallel programming frameworks that support pipeline pattern imple-

1Corresponding Author: dalvan.griebler@acad.pucrs.br

October 2017

mentation. Examples are TBB and FastFlow [3], which are considered general purpose
state-of-the-art alternatives and also support the implementation of stream parallelism.
Although they simplify parallel programming through parallel patterns, application pro-
grammers still have to deal with low-level mechanisms and code re-factoring/rewriting,
which we will discuss in detail below.

We designed SPar, a C++ internal Domain-Specific Language (DSL) for exploit-
ing parallelism in streaming applications [10,11]. It address the problem of supporting
the application programmer with higher-level and productive stream parallelism abstrac-
tions. Our primary design concern was to simplify the work of application programmers
by enabling them to avoid performing sequential code rewriting and by only requiring
them to introduce code annotations. SPar provides annotations to denote stream paral-
lelism regions that the compiler may process to generate parallel code for multi-core ar-
chitectures automatically. SPar is “de facto” a internal/embedded DSL as it preserves the
original semantics of the host language by using the standard C++11 attributes mech-
anism [1]. In this paper, our goal is to assess SPar’s abstractions and performance for
traditional video applications. The main contributions are summarized as follows:

• We parallelize two traditional video applications with three parallel programming
solutions (SPar, TBB, and FastFlow) and analysis of the implementation details.

• We compare and assess the performance, code intrusion, and higher-level paral-
lelism abstractions of SPar with the one achieved with TBB and FastFlow.

This paper is organized as follows. Section 2 presents related works. Section 3 in-
troduces SPar. Section 4 introduces the video streamming applications used in this work.
Section 5 demonstrates the parallelization of video streaming applications. Section 6
discusses the performance experiments, code intrusion, and abstraction results. Lastly,
Section 7 concludes the paper.

2. Related Work

Because this work is focused on video streaming, we present related work exploiting
stream parallelism on multi-core architectures and C++ programs. Among them, Fast-
Flow is a framework created in 2009 by researchers at the University of Pisa and the Uni-
versity of Turin in Italy [3]. It provides stream parallel abstractions adopting an algorith-
mic skeleton perspective and it is implementated on top of efficient fine grain lock-free
communication mechanisms [2]. FastFlow was primarily used as the target of our SPar
parallelism implementation, because it provides ready to use parallel patterns through
high-level C++ template classes.

TBB (Threading Building Blocks)is an Intel C++ library for general purpose parallel
programming. It emphasizes scalable and data parallel programming while abstracting
the concept of threads through the concept of task. TBB builds on C++ templates to offer
common parallel patterns (map, scan, parallel for, among others) implemented on top of
a work-stealing scheduler [15]. RaftLib [5] is a more recent C++ library designed to sup-
port both pipeline and data parallelism. It is based on the idea that the programmer im-
plements sequential code portions as computing kernels, where custom split/reduce can
be implemented when dealing with data parallelism. Moreover, there is a global online
scheduler that can use OS scheduler, round-robin, work-stealing, and cache-weighted
work-stealing. Yet, the communication between kernels is implemented by using lock-
free queues. Similar to FastFlow and TBB, RaftLib results in a lower-level parallelism
abstraction for the final application programmer than SPar. Therefore, all them are con-
sidered suitable runtimes for SPar.

October 2017

SPar provides parallelism abstractions by using the C++ attributes annotation mech-
anism. Other researchers from the REPARA project2 used the same mechanism. How-
ever, they did not produce a true DSLs and they focused on a different design method-
ology [6,9,16]. The general goals of REPARA are source code maintainability, energy
efficiency, and performance on heterogeneous platforms. Annotations are provided with
a parallel pattern semantic (farm, pipe, map, for, reduce, among others) to produce effi-
cient parallel code targeting heterogeneous architectures including multi-core, GPU, and
FPGA-based accelerators. Both the [6,7] present a methodology for introducing parallel
patterns/data stream processing via code annotation as well as rules to implement paral-
lelism using parallel programming frameworks. In contrast, SPar has its own compiler
that pre-processes the attributes and generates automatic parallel code, mainly focused on
stream parallelism. Other works [9,16] provide a methodology for generating REPARA
annotations and detect parallel patterns in sequential source code. This methodology may
be used for generating SPar annotations.

3. The SPar Domain-Specific Language

SPar [10,11,12] is an internal C++ DSL designed on top of the C++ attributes annota-
tion mechanism [1]. It provides high-level parallelism abstractions that are close to the
streaming application’s domain vocabulary. An annotation is performed by using double
brackets [[id-attr, aux-attr, ..]] that eventually specify a list of attributes. A
SPar annotation is considered valid when at least the first attribute of the list is speci-
fied. The first attribute is an identifier (ID) while the others are auxiliary attribute (AUX).
Table 1 presents all available attributes as well as their type and basic functionality.

Table 1. SPar Attributes

Attribute Type Functionality
ToStream ID Marks the stream region scope.
Stage ID Specifies a computational stage inside the stream.
Input(...) AUX Indicates the data consumed by a given stage.
Output(...) AUX Indicates the data produced for a subsequent stage.
Replicate(...) AUX Extends the degree of parallelism of a given stage.

The primary rule is that every ToStream code block must include at least one Stage
annotation as illustrated in Figure 1. The stream management stage is represented by
the code between ToStream and the first Stage, where the programmer generates and
manages the end of the stream. For instance, by introducing a stop condition that breaks
the loop. Also, this is the only piece of code inside a ToStream that can be left out of a
Stage scope. The ID attributes can be used in the loop body to define its scope. Another
restriction is to use Replicate only with a Stage to define the degree of parallelism.
Note that it is up to the programmer to identify which stages can be safely replicated.

Unlike C++ meta-programming for DSL design and implementation, C++ attributes
must be implemented at the compiler level. The SPar compiler is designed to recognize
our DSL and to generate parallel code with proper calls targeting the lower level parallel
programming library. It was developed using the CINCLE (A Compiler Infrastructure
for New C/C++ Language Extensions) support tools [10]. The compiler parses the code
(specified by a compiler flag called spar file) and builds an AST (Abstract Syntax
Tree) to represent the C++ source code. Subsequently, all code transformations are made
directly in the AST, where proper calls to the FastFlow library will be introduced. Once

2http://repara-project.eu/

October 2017

all SPar annotations are properly transformed, the compiler generates a file with C++
code and FastFlow calls, which is compiled by invoking the GCC compiler to produce a
binary output.

Figure 1. High-level representation of the SPar runtime parallelism.

In parallel code generation, SPar mainly uses the FastFlow’s Farm and Pipeline ob-
jects. In Figure 1, the first stream region (code in between ToStream and the first Stage)
and the last Stage are executed in two threads explicitly spawned for this purpose. The
Stage that has the Replicate attribute (degree of parallelism support) spawns as many
threads as the Replicate parameter that executes the same code portion. The underly-
ing runtime system will then automatically distribute the stream items (specified through
the Input and Output attributes) to these spawned threads. The communication is im-
plemented using lock-free queues that are interconnected to adjacent stages. By default,
the input items are distributed to the replicated Stage threads in a round-robin fash-
ion and the stream order is not necessarily preserved in the output. This distribution is
non-blocking, which means that the scheduler will be actively trying to put items in the
queues (by default the queue size is set to 512). SPar assumes that stages have stateless
operators when there is a Replicate attribute, while stateful operators must be manged
by the programmer. Moreover, it supports other options that can be activated when de-
sired (singly or combined) through the following compiler flags:

• spar ondemand: generates an on-demand stream item scheduler by setting the
queue size to one. Therefore, a new item will only be inserted in the queue when
the next stage has removed the previous one.

• spar ordered: makes the scheduler (on-demand or round-robin) preserve the
stream items input/output order. FastFlow provides us a built-in function for this
purpose so that SPar compiler simply generate proper calls to this functionality.

• spar blocking: switches the runtime to behave in passive mode (default is ac-
tive) blocking the scheduler when the communication queues are full. FastFlow
offers a pre-processing directive so that the SPar compiler may easily support it.

4. Video Streaming Applications

Two typical video applications were studied and described in the following sections: one
related to autonomous vehicles and one used to recognize people.

4.1. Lane Detection

This application is depicted in Figure 2. The Capture(...) function generates an infinite
sequence of image frames F = { f1, ...,∞ | f is an image frame} from a camera device

October 2017

and applies three computer vision algorithms. First, the Segment(...) function splits each
fi into three horizontal parts to reduce and focus the processing on the lower area, where
the street lane usually appears. Second, the application applies the Canny(...) filter to
detect edges, which computes δi = Canny(fi), and produces ∆ = {δ1, ...,δn | δi is the
result of Canny(fi)} where n represents the maximum number of frames or ∞. Third, the
application applies HoughT (...) to detect straight lanes, where the potential of detecting
these lanes is increased with the Canny filter. The HoughT (...) algorithm receives each
element of ∆ and produces a δi and an λi subset of detected lanes l, where m is the number
of lanes detected in each frame, λi = {l1, ..., lm | l is a detected lane in HoughT (δ)} and
Λ = {λ1, ...,λn | λ is a subset of lanes}.

Figure 2. Lane detection application workflow.

Since HoughT (...) does not detect the lane extremities, this application also ap-
plies the Probabilistic Hough Transform in fourth step, giving the beginning and end
of the detected lanes. The HoughP(...) function also receives elements of ∆, but pro-
duces another set of lanes called Ω, where Ω = {ω1, ...,ωo | ω , which are the result
of HoughP()} and o represent the number of elements in Ω. In the fifth step, the
Bitwise(...) operation is applied to each δi element to use its common lanes in Λ and
Ω. Thus, the resulting lanes Γi for each frame δi are produced taking into account that
Γ = {ω | ∀λ ∈ Λ,∀ω ∈Ω,λ = ω}. Finally, each Γi element (lane) is overlapped with δi
(frames) to produce the image with the detected lanes and the Writer(...) function writes
it to a file.

4.2. Person Recognition

The Person Recognition application workflow is illustrated in Figure 3. First of all, it
receives a sequence of frames F = { f1, ...,∞} from the Capture(...) operation. Then, all
f elements are processed by Detector(...), which produces a set of faces ∆ = {δ1, ...,δm}
where m corresponds to the total number of faces detected in a single f element of F .
All detected faces are outlined with a red circle as demonstrated in step 2 of Figure 3.

Figure 3. Person recognition application workflow.

The Recognizer(...) step uses the previous set of image faces (called training set
T = {t1, ..., tn | t is a training face image }) in order to compare all ∆ (the faces detected in
f) to T (the faces training set). The result of the Recognizer(...) is D= {d | d ∈ T,d ∈∆}.
For each element of D, the application outlines this position in f with a green circle
as demonstrated in step 3 output in Figure 3. Lastly, the Writer(...) function write in
the output the frames and the information about the faces into two different file formats
(CSV and AVI).

October 2017

5. Parallelization

This section discusses the parallelization of Lane Detection and Person Recognition ap-
plications, using SPar, TBB, and FastFlow. We first used the Lane Detection application
(explained in Section 4.1) as a baseline example (Listing 1). This is a high-level descrip-
tion of the actual source code in order to demonstrate the extra code introduced by each
one of the tools. Our parallel code modeling strategy was the same for the two applica-
tions. There were three pipeline stages, where all independent operations were put to-
gether in a single stage that was replicated as many times as necessary. We also tried to
model the application with more stages, but the overall performance was decreased due
to communication overhead.

SPar’s Lane Detection parallel implementation is presented in Listing 2. Although
we have identified that Segment(), Canny(), HoughT (), HoughP(), Bitwise(), and
Overlap() may compute in parallel, we have opted to maintain them in a single sequen-
tial function in order to avoid load imbalance. When comparing the SPar and Sequential
versions, we can observe that the source code structure is maintained. As we can see in
Listing 2, we only had to add annotations in lines 3, 5 and 6 to support parallelism.

1 i n t main () {
2 v = Open (v i d e o) ;
3 whi le (! v . e o f ()) {
4 f = C a p t u r e (v) ;
5 f = Over l ap (Canny (

B i t w i s e (HoughP (
HoughT (Canny (
Segment (f)))))))
;

6 Wri te (f) ;
7 }
8 }

Listing 1 Sequential.

1 i n t main () {
2 v = Open (v i d e o) ;
3 [[spar : : ToStream , spar : : Input (v)]] whi le (! v .

e o f ()) {
4 f = C a p t u r e (v) ;
5 [[spar : : Stage , spar : : Input (f) , spar : : Output (

f) , spar : : R e p l i c a t e ()]]{ f = Over l ap (
Canny (B i t w i s e (HoughP (HoughT (Canny (
Segment (f))))))) ; }

6 [[spar : : Stage , spar : : Input (f)]]{Wri te (f) ;}
7 }
8 }

Listing 2 SPar.

The stream communication between the stages is handled by the Input and Output
annotations, therefore the programmer must only identify and indicate these data depen-
dencies. Moreover, SPar’s runtime system also handles thread and queue management.
However, lane Detection requires the original stream order to be maintained in the last
stage so that the output file maintains a correct frame sequence. In SPar, this can be
achieved with the addition of the -spar ordered compiler directive.

FastFlow and TBB require programmers to restructure the sequential code by using
the Farm and Pipeline parallel patterns, as presented in Listing 3 and 4. These two frame-
works look similar in terms of code re-factoring and expressiveness. While TBB only
offers Pipeline, FastFlow supports both parallel patterns. Although FastFlow allows us
to combine Pipeline with Farm, it already provides us the most efficient and less intru-
sive parallelization by using only the Farm. In Listing 3, the main details for FastFlow’s
implementation version are presented. We used Capture() inside the emitter (the input
frame stream scheduler), Writer() in the collector (gathering/reducing results from the
workers), and the sequence of filters were assigned to the Farm workers. After building
the classes, we created a vector of worker replicas (S2) and initialized the Farm template
to preserve the order of the stream items (ff OFarm). Also, we distinguished between
the collector and emitter classes (lines 29 and 31) to run Farm (line 32). Note that Fast-
Flow requires implementing the business logic code inside the svc method, which is a
virtual member function of the ff node class. The runtime calls this method and when
it returns, the pointer is stored in a lock-free queue managed by FastFlow runtime.

October 2017

1 s t r u c t t d { /∗ s e t o f d a t a ∗ / } ;
2 c l a s s S1 : p u b l i c f f n o d e t<td> {
3 t d ∗ svc (t d ∗){
4 whi le (! v . e o f ()) {
5 f = C a p t u r e (v) ;
6 t d ∗ t = new t d (f , . . .) ;
7 f f s e n d o u t (t) ;
8 }
9 re turn EOS ;

10 }} ;
11 c l a s s S2 : p u b l i c f f n o d e t<td> {
12 t d ∗ svc (t d ∗ t) {
13 t−>f = Over l ap (Canny (B i t w i s e (

HoughP (HoughT (Canny (Segment
(t−>f))))))) ;

14 re turn t ;
15 }} ;
16 c l a s s S3 : p u b l i c f f n o d e t<td> {
17 t d ∗ svc (t d ∗ t) {
18 Wri te (t−>f) ;
19 d e l e t e t ;
20 re turn GO ON ;
21 }} ;
22 i n t main () {
23 v = Open (v i d e o) ;
24 s t d : : v e c t o r<u n i q u e p t r <f f node

>> worke r s ;
25 f o r (i n t i =0 ; i < n t h r e a d s ; i

++)
26 worke r s . p u s h b a c k (s t d : :

make unique<S2 > (. . .)) ;
27 ff OFarm<td> ofarm (move (

worke r s)) ;
28 S1 E (v , . . .) ;
29 ofarm . se tEmi t t erF (E) ;
30 S3 C (. . .) ;
31 ofarm . s e t C o l l e c t o r F (C) ;
32 ofarm . run and wai t end () ;
33 }

Listing 3 FastFlow.

1 s t r u c t t d { /∗ s e t o f d a t a ∗ / } ;
2 c l a s s S1 : p u b l i c f i l t e r {
3 S1 (. . .) : . . . , f i l t e r (f i l t e r : :

s e r i a l i n o r d e r) {}
4 void∗ operator () (void ∗){
5 whi le (! v . e o f ()) {
6 f = C a p t u r e (v) ;
7 t d ∗ t = new t d (f , . . .) ;
8 re turn t ;
9 }

10 re turn NULL;
11 }} ;
12 c l a s s S2 : p u b l i c f i l t e r {
13 S2 (. . .) : . . . , f i l t e r (f i l t e r : : p a r a l l e l) {}
14 void∗ operator () (void∗ i n) {
15 t d ∗ t = s t a t i c c a s t <t d∗> (i n) ;
16 t−>f = Over l ap (Canny (B i t w i s e (HoughP (

HoughT (Canny (Segment (t−>f))))))) ;
17 re turn t ;
18 }} ;
19 c l a s s S3 : p u b l i c f i l t e r {
20 S3 (. . .) : . . . , f i l t e r (f i l t e r : :

s e r i a l i n o r d e r) {}
21 void∗ operator () (void∗ i n) {
22 t d ∗ t = s t a t i c c a s t <t d∗> (i n) ;
23 Wri te (t−>f) ;
24 d e l e t e t ;
25 re turn NULL;
26 }} ;
27 i n t main () {
28 v = Open (v i d e o) ;
29 p i p e l i n e p ;
30 S1 s1 (v , . . .) ;
31 p . a d d f i l t e r (s1) ;
32 S2 s2 (. . .) ;
33 p . a d d f i l t e r (s2) ;
34 S3 s3 (. . .) ;
35 p . a d d f i l t e r (s3) ;
36 t a s k s c h e d u l e r i n i t i n i t p a r a l l e l (

n t h r e a d s) ;
37 p . run (n t h r e a d s) ;
38 }

Listing 4 TBB.

For the TBB parallelization (Listing 4), we used a data structure because the
operator() method supports only one argument. The idea is similar to FastFlow. In
contrast, the classes are modeled using the particular operator() member function and
specifying the filter type in the class constructor. To maintain the order of the stream
items, Capture() and Write() are necessary serial in order while the sequence of
filters are parallel. The communication between classes occurs through pointers that
are stored in a global queue when a pointer returns inside operator(). The final step
is to initialize the pipeline, add the stage classes, and execute the pipeline (line 37). The
Person Recognition application followed a similar code structure in the Lane Detection
for SPar, TBB, and FastFlow. In this second case, Capture() and Write() were made the
first and last stages while the middle stage processed Detector() and Recognizer() in
sequence over distinct f from F = { f1, ...,∞}. These two applications differ in the se-
quence of filters applied over the stream items and workloads. The next section discusses
the differences regarding performance, source lines of code, and cyclomatic complexity.

October 2017

6. Experiments

Our experiments were carried out to assess parallel programming abstractions and per-
formance of SPar (spar), TBB (tbb), and FastFlow (ff) for Lane Detection and Per-
son Recognition applications. The experiments were performed with the default par-
allelization presented in Section 5 and the combination of the SPar compilation flags:
-spar blocking (spar-blk), -spar ondemand (spar-ond), and their combinations
(spar-ond-blk). We measured the Cyclomatic Complexity Number (CCN) [14] and the
Source Lines of Code (SLOC) to evaluate code intrusion. These metrics give us valuable
insights regarding the amount of coding needed and additional complexity to support
parallelism in the applications.

Instead of reading from a camera device, we adapted the code to read from a video
file to test our parallelizations. We used a MPEG-4 video of 5.25MB (640x360 pixels)
for Lane Detection and a MPEG-4 video of 1.36MB (640x360 pixels) along with a train-
ing set of 10 image faces of 150x150 pixels for Person Recognition. The machine used
was equipped with 24GB of RAM memory and a dual socket Intel(R) Xeon(R) CPU
E5-2620 v3 2.40GHz (24 threads with Hyper-Threading). The operating system was
Ubuntu Server 64 bits with kernel 4.4.0-59-generic. We used the following tools: GCC
5.4.0, libraries TBB (4.4 20151115), FastFlow (revision 13) and OpenCV (2.4.9.1). We
compiled using the -O3 flag. All values represent averages of 10 different testing cycles.

6.1. Programming Comparison

As presented in Section 5, both Fastflow and TBB required the definition of data struc-
tures, pointers management, and code re-factoring to use the parallel patterns available
as C++ templates. On the other hand, SPar preserved the source code semantics by only
requiring the insertion of standard C++ annotations in the correct place. Another advan-
tage is that SPar only uses five attributes, which are flexible enough to model different
pipeline compositions. Also, three compiler flags can support different runtime system
behavior as the programmer sees fit. Thus, because these applications are already struc-
tured, SPar can be implemented without increasing complexity. SPar implementation of
these applications may be easily derived from code such as the one of Listing 1. In ad-
dition, we provide a quantitative analysis of the parallelized application versions using
software engineering metrics such as CCN and SLOC, in Table 2 (higher numbers entail
more intrusive and complex coding).

Table 2. Programming metrics.

(a) Lane Detection (b) Person Recognition
Implementation SLOC CCN SLOC CCN

Sequential 100 14 100 12
SPar 104 14 106 12

Fastflow 138 22 148 22
TBB 144 22 149 20

For all implemented versions in both applications, SPar provides lower SLOC and
CCN when compared to TBB and FastFlow. SPar does not increase the CCN with respect
to the sequential code because there are not significant code intrusions or re-factoring.
In contrast, CCN increases when using TBB and FastFlow due to the their classes and
methods. These results evidence the higher-level parallelism abstractions of SPar with
respect to TBB and FastFlow, where programmers may reduce the learning curve due to
SPar’s domain-oriented approach, simpler code syntax, and on-the-fly stream parallelism
implementation.

October 2017

6.2. Performance Comparison

The graphs in Figures 4(a) and 4(b) present the throughput achieved by Lane Detection
and Person Recognition. We obtained an average of 0.85% standard deviation for Lane
Detection, and 0.54% for Person Recognition. The sequential version is plotted as the 0
replica position of the X axis. The one replicate point is where the parallel code starts
varying the degree of parallelism. In both applications, the parallelization provided good
scalability before reaching hyper-thread resource usage. Then, the throughput decreases
with SPar and FastFlow versions (identical results in the two). This occurred because
the FastFlow runtime scheduler implements the default ordering and this significantly
impacts the performance due to its limitation of ondemand scheduling. We can see this
even more clearly in the Person Recognition application. TBB continues to increase the
performance, but it is not able to reach the best SPar and FF performances. We only noted
a small performance overhead in TBB for Lane Detection when using hyper-threading,
which is expected in applications where threads compete for the ALU usage.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20

F
ra

m
e
s
 p

e
r

S
e
c
o
n
d

Number of Replicas

Lane Detection (Throughput)

spar
ff

tbb
spar−blk

spar−ond
spar−ond−blk

(a) Results of the Lane Detection versions.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20

F
ra

m
e
s
 p

e
r

S
e
c
o
n
d

Number of Replicas

Person Recognition (Throughput)

spar
ff

tbb
spar−blk

spar−ond
spar−ond−blk

(b) Results of the Person Recognition versions.

Figure 4. Performance comparison.

SPar generates customized FastFlow code. All parallelized versions can be imple-
mented manually using the FastFlow library. Only the equivalent default version of SPar
was implemented with FastFlow and plotted on the graphs. In Figure 4(a) and 4(b) we
can see that SPar and FastFlow achieved identical results. We thus were able to conclude
that the SPar’s high-level abstraction did not affect the performance of these applica-
tions, because the parallel code generated by SPar is very similar to manually tuned code
in FastFlow. In theory, every streaming application developed with SPar could achieve
identical performance compared to FastFlow. Moreover, the default scheduling of SPar
and FastFlow yields better results than TBB before using hyper-threading. It is better
when the items are balanced such as in the Lane Detection (see Figure 4(a)). The lower
performance in Lane Detection TBB is justified by its runtime scheduler that dynami-
cally works on a global queue, thereby not necessary being suited for these kind of appli-
cations. However, in the Person Recognizer, TBB provides better load balancing when
using hyper-threading resources due to its dynamism.

7. Conclusions

This paper presented an assessment of SPar for parallelizing traditional video applica-
tions in comparison with other parallel programming frameworks (TBB and FastFlow).
The experiments were performed to evaluate performance, CCN, and SLOC of these par-

October 2017

allel versions, discussing aspects of the implementation, runtime behavior, and code in-
trusion. We concluded that SPar provides a good trade-off between high-level parallelism
abstractions and performance for application programmers for these tested applications.
Also, SPar may be used by application programmers to easily introduce parallelism in se-
quential legacy codes, especially for video applications that extend the OpenCV library.
Future works will explore and evaluate how SPar can be used in combination with the in-
ternal parallelism support of OpenCV for GPUs. In addition, we plan to parallelize a set
of video applications that extend other computer vision features such as deep-learning.

Acknowledgements
Authors would like to thank the partial financial support from CAPES and FAPERGS
Brazilian research institutions. Moreover, this work has also received partial financial
support from the EU H2020-ICT-2014-1 project RePhrase (No. 644235).

References

[1] 14882:2014-ISO/IEC. Information Technology - Programming Languages - C++. Technical report,
International Standard, Geneva, Switzerland, December 2014.

[2] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M. Torquati. An Efficient Unbounded
Lock-Free Queue for Multi-core Systems. In Euro-Par Parallel Processing, volume 7484, pages 662–
673, Rhodes Island, Greece, August 2012. Springer.

[3] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. FastFlow: High-Level and Efficient Stream-
ing on Multi-core. In Programming Multi-core and Many-core Computing Systems, volume 1 of PDC,
page 14. Wiley, March 2014.

[4] H. C. M. Andrade, B. Gedik, and D. S. Turaga. Fundamentals of Stream Processing. Cambridge
University Press, New York, USA, 2014.

[5] J. C. Beard, P. Li, and R. D. Chamberlain. RaftLib: A C++ Template Library for High Performance
Stream Parallel Processing. In 6th Inter. Works. Progr. Models and App. for Multicores and Manycores,
PMAM’ 2015, pages 96–105, San Francisco, USA, Febuary 2015. ACM.

[6] M. Danelutto, J. D. Garcia, L. M. Sanchez, R. Sotomayor, and M. Torquati. Introducing Parallelism by
using REPARA C++11 Attributes. In 24th Euromicro Inter. Conf. on Parallel, Distributed and Network-
Based Processing (PDP), page 5. IEEE, February 2016.

[7] M. Danelutto, T. D. Matteis, G. Mencagli, and M. Torquati. Data Stream Processing Via Code Annota-
tions. The Journal of Supercomputing, pages 1–15, 2016.

[8] S. Datta. Learning OpenCV 3 Application Development. Packt, 2016.
[9] D. del Rio Astorga, M. F. Dolz, L. M. Snchez, J. D. Garca, M. Danelutto, and M. Torquati. Find-

ing Parallel Patterns Through Static Analysis in C++ Applications. The International Journal of High
Performance Computing Applications, 2017.

[10] D. Griebler. Domain-Specific Language & Support Tool for High-Level Stream Parallelism. PhD thesis,
Faculdade de Informática - PPGCC - PUCRS, Porto Alegre, Brazil, June 2016.

[11] D. Griebler, M. Danelutto, M. Torquati, and L. G. Fernandes. An Embedded C++ Domain-Specific
Language for Stream Parallelism. In Parallel Computing: On the Road to Exascale, Proceedings of the
International Conference on Parallel Computing, ParCo’15, pages 317–326, Edinburgh, Scotland, UK,
September 2015. IOS Press.

[12] D. Griebler, M. Danelutto, M. Torquati, and L. G. Fernandes. SPar: A DSL for High-Level and Produc-
tive Stream Parallelism. Parallel Processing Letters, 27(01):20, March 2017.

[13] D. B. Kirk and W. mei W. Hwu. Programming Massively Parallel Processors. Morgan Kaufmann, 2013.
[14] L. M. Laird and M. C. Brennan. Software Measurement and Estimation: A Practical Approach. Wiley-

IEEE Computer Society Pr, 1st edition, 2006.
[15] J. Reinders. Intel Threading Building Blocks. O’Reilly, USA, 2007.
[16] R. Sotomayor, L. M. Sanchez, J. G. Blas, J. Fernandez, and J. D. Garcia. Automatic CPU/GPU Gen-

eration of Multi-versioned OpenCL Kernels for C++ Scientific Applications. International Journal of
Parallel Programming, 45(2):262–282, 2017.

[17] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and K. Olukotun. Delite: A
Compiler Architecture for Performance-Oriented Embedded Domain-Specific Languages. ACM Trans.
on Embe. Comp. Sys. (TECS), 13(4):25, 2014.

[18] W. Thies and S. Amarasinghe. An Empirical Characterization of Stream Programs and Its Implications
for Language and Compiler Design. In Inter. Conf. on Par. Arch. and Compil. Tech., PACT ’10, pages
365–376, Austria, September 2010. ACM.

