
Analysis and Tracing of Applications Based on
Software Transactional Memory on Multicore Architectures

Márcio Castro∗, Kiril Georgiev†, Vania Marangozova-Martin∗, Jean-François Méhaut∗,
Luiz Gustavo Fernandes§ and Miguel Santana†

∗MESCAL Research Group (INRIA - LIG - Grenoble University), France
Email: FirstName.LastName@imag.fr

§GMAP Research Group (PPGCC - PUCRS), Brazil
Email: luiz.fernandes@pucrs.br

‡STMicroelectronics, Crolles, France
Email: Kiril.Georgiev@st.com, Miguel.Santana@st.com

Abstract—Transactional Memory (TM) is a new program-
ming paradigm that offers an alternative to traditional lock-
based concurrency mechanisms. It offers a higher-level pro-
gramming interface and promises to greatly simplify the
development of correct concurrent applications on multicore
architectures. However, simplicity often comes with an im-
portant performance deterioration and given the variety of
TM implementations it is still a challenge to know what kind
of applications can really take advantage of TM. In order
to gain some insight on these issues, helping developers to
understand and improve the performance of TM applications,
we propose a generic approach for collecting and tracing
relevant information about transactions. Our solution can be
applied to different Software Transactional Memory (STM)
libraries and applications as it does not modify neither the
target application nor the STM library source codes. We
show that the collected information can be helpful in order
to comprehend the performance of TM applications.

Keywords-software transactional memory; tracing mecha-
nism; benchmark.

I. INTRODUCTION

Multicore technology proves to be a promising solution
to the problem of achieving higher performance without
increasing power consumption. Because of that, it is strongly
expected that the number of processor cores will continue to
increase, resulting in manycore architectures with hundreds
or even thousands of cores. In this context, the development
of applications with high degrees of parallelism and the cor-
rect management of complex synchronization issues become
a major concern.

Traditional synchronization structures such as locks, mu-
texes and semaphores are extensively used in a multicore
context. They are simple to implement in hardware and
they offer a safe solution to the problem of multiple threads
sharing data. However, they have several disadvantages: (i)
they are “low-level” mechanisms, since one must explicitly
control the access to shared variables; (ii) they cause block-
ing, so threads always have to wait until a lock (or a set of
locks) is released; (iii) they are hard to manage effectively,

especially in large systems; and (iv) they can be vulnerable
to failures and faults, such as deadlocks and livelocks.

Transactional Memory (TM) [1] has recently been pro-
posed as an alternative synchronization solution. The idea
is to offer a high level synchronization interface where
developers only need to enclose concurrent accesses to
shared variables in atomic sections (transactions). Problems
such as correct synchronization, correct data race handling
and deadlocks avoidance are shifted to the TM mechanism,
which handles conflicts in an optimistic way [2].

Although TM promises to substantially simplify the de-
velopment of correct concurrent programs, programmers
will still need to debug code and study ways to optimize
TM applications. It is clear that even with TM it is still
a challenge to design and implement scalable concurrent
programs. In this context, the questions we are interested
in are the following. How can one know if an application
will perform well with TM? How can one get useful details
about the execution of TM applications? How can we use
them to improve performance?

In this paper, we show that the performances of ap-
plications using TM-based synchronization solutions de-
pend on both applications and TM solutions specifics. We
demonstrate that, depending on these specifics, the use of
TM may result in worse, equal or better performance for
the application. In order to gain some insight on these
issues, helping developers to understand and improve their
performance, we propose an approach for collecting and
tracing relevant information about transactions. Our solution
can be applied to different STM libraries and applications
as it does not modify neither the target application nor the
STM library source codes.

The rest of this paper is organized as follows. In Sec-
tion II, we describe the basic idea behind TM along with
some important design criteria that impact TM performance.
Sections III and IV motivate the use of STM as well as the
necessity of tools to better comprehend TM applications. In
Section V, we show our approach for tracing transactions.

2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing

1066-6192/11 $26.00 © 2011 IEEE

DOI 10.1109/PDP.2011.27

199

The collected information and results analysis are shown
in Section VI. Section VII reviews some related works
concerning STM. Finally, concluding remarks and future
works are pointed out in Section VIII.

II. TRANSACTIONAL MEMORY

The basic idea behind Transactional Memory comes from
transactional database management systems, in which a
transaction is a sequence of actions that appears indivisible
and instantaneous to an outside observer. In the context of
TM, a transaction is a portion of code that must be executed
atomically and with isolation. A transaction may commit
successfully, if its accesses to shared data did not conflict
with other transactions; otherwise the transaction aborts, and
none of its actions become visible to other threads. When a
transaction aborts, the TM runtime rollbacks the conflicting
transaction until it is possible to commit successfully.

Transactional Memory can be implemented in software
(Software Transactional Memory) [3], [4], [5], in hard-
ware (Hardware Transactional Memory) [6], [7] or in both
(Hybrid Transactional Memory) [8], [9]. Software Transac-
tional Memory (STM) has several advantages over Hardware
Transactional Memory (HTM). It offers flexibility in imple-
menting different mechanisms and conflict detection/resolu-
tion policies. It is easier to be modified or extended and
is not limited by small fixed-size hardware structures, such
as cache memories. Finally, STM does not require specific
hardware, so it can be used on current platforms.

When designing a TM solution, four important criteria
must be taken into account: transaction granularity, version
management, conflict detection and conflict resolution.

- Transaction Granularity: it defines the unit of storage
for conflict detection [2]. For instance, in object-based
languages, it is common to use object granularity,
which detects conflicts when the states of shared objects
are modified. Other examples are the word granularity
and the block granularity, which respectively use mem-
ory words or groups of words for conflict detection. The
transaction granularity cannot only have an important
impact on the number of conflicts to be managed but
also on the TM overall performance.

- Version Management: since a transaction typically
modifies data in memory, it is important to control how
these modifications are managed on memory. There
are two general ways to control it: eager version
management and lazy version management. If the first
one is applied, transactions will directly modify data
and the system will use some sort of concurrency
control to prevent other transactions from concurrently
modifying objects. The system records the original
data before updating, so it can be restored in case
of transaction abortion. If lazy version management is
used, transactions will deal with private copies of data.

When a transaction commits, it updates the original data
using the private copy.

- Conflict Detection: there are two possible strategies
to detect conflicts: eager conflict detection and lazy
conflict detection. The first strategy detects read/write
conflicts as they occur whereas the second one only
detects at commit time.

- Conflict Resolution: after detecting a conflict, the TM
system must solve it. The usual solution is to abort one
or more conflicting transactions. Usually, a TM system
has a specific module called contention manager, which
implements one or more contention resolution policies
that are responsible for deciding which conflicting
transaction must be aborted. The selected resolution
policy clearly affects the performance of a TM system.

To sum up, TM solutions must take care of these issues
in order to guarantee a functioning solution. The variety
of possible combinations of such criteria clearly affects the
behavior of TM applications as well as their performances.

III. STM VERSUS LOCKS

The performance and benefits of using STM have been
discussed since its first proposal in 1993 [10], [1]. In terms
of performance, the research community tends to claim that
it always results in considerably higher overheads than locks.
However, this statement is not always true and it is not easy
to foresee the performance of a TM application.

In this section we consider the well-known Traveling
Salesman Problem (TSP) [11] in which the goal is to find the
shortest possible path visiting each node of a graph exactly
once. Here, we aim at comparing the performance of our
two different solutions for the TSP: (i) using STM and (ii)
using POSIX mutex locks.

In both TSP implementations the graph exploration is
done by multiple threads which access shared variables
managing the current shortest path and the pool of paths to
explore. In the lock-based version, accesses to shared vari-
ables are enclosed by Pthread mutex lock/unlock sections.
This is the case, for instance, of the accesses to the minimum
variable, which stores the current shortest path (Listing 1).�

1 void tsp(...) {
2 ...
3 pthread_mutex_lock(&mutex_minimum);
4 if (len < minimum)
5 minimum = len;
6 pthread_mutex_unlock(&mutex_minimum);
7 ...
8 }
� �

Listing 1. Lock-based Accesses.

With STM, accesses to shared variables are enclosed by
transactions whose boundaries are indicated by two special
functions, namely stm_start() and stm_commit(). Dur-
ing a transaction, the shared variables are accessed using

200

stm_load() and stm_write() functions. If we consider
again the example of the minimum variable, the above lock-
based section is transformed in the following STM-based
code. It should be noted that locks must be explicitly named
by the programmer whereas this is not necessary when using
transactions (Listing 2).�

1 void tsp(...) {
2 ...
3 stm_start();
4 if (len < stm_load(minimum))
5 stm_store(minimum, len);
6 stm_commit();
7 ...
8 }
� �

Listing 2. STM Access to Shared Data.

We have carried out several experiments on a Symmetric
Multiprocessor machine (SMP) composed of four Intel Xeon
X7460 (2.66GHz) processors with four cores each. This
platform has 64GB of shared main memory and runs the
x86 64 GNU/Linux operating system (kernel 2.6.262). The
results were obtained through the average of 30 executions,
presenting a low standard deviation.

We have used two approaches in implementing TSP. Our
first approach is based on protecting all accesses to shared
variables with the synchronization mechanisms. After a
careful analysis, we noticed that some shared variables (such
as minimum) have multiple read-only accesses allowing the
removal of some “extra synchronization” without creating
data races and then increasing even more the parallelism.
This strategy was implemented in our second approach.
The execution times of these two approaches are shown in
Figures 1 and 2.

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14 16

ti
m

e
 (

s
e

c
o

n
d

s
)

number of cores

STM
Locks

Figure 1. TSP Results: First Approach.

Considering the first approach, the results show a poor
performance of TSP with locks in comparison to STM.
This occurs due to the large number of accesses to the
shared variable minimum, causing threads to be blocked

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16

ti
m

e
 (

s
e
c
o
n
d
s
)

number of cores

STM
Locks

Figure 2. TSP Results: Second Approach.

continuously. On the other hand, it is not a bottleneck for
the STM because of two reasons: (i) STM uses an optimistic
approach to handle multiple accesses to shared data, so it
does not block all threads; and (ii) most of the accesses
to this shared variable do not conflict, which benefits such
optimistic approach.

On the other hand, it can be observed that the performance
of the lock-based solution has drastically increased with the
second approach. There are also some slight performance
improvements for the STM solution. Both curves are very
similar and no considerable overhead has been added by
the STM (it is 5% worse on average), which shows that,
depending on the applications characteristics, STM and
locks can have similar performance.

IV. PERFORMANCE IMPACT OF STM SOLUTIONS

In order to investigate the impact of STM solutions on
the performance of TM applications, we have carried out
experiments with all non-trivial TM applications available
from the Stanford Transactional Applications for Multi-
Processing (STAMP). STAMP is a benchmark which in-
cludes 8 applications developed for TM [12]. However, in
this paper we have selected the three most interesting case
studies obtained from three different TM applications.

STAMP offers several advantages: (i) the applications use
a variety of algorithms and belong to different application
domains; (ii) it is possible to simulate different transactional
behaviors varying the size of transactions (in terms of the
number of instructions), the amount of contention and their
granularity; and (iii) the applications can be easily executed
with different STM libraries.

The selected applications from STAMP are the following:
- genome: it takes a large number of DNA segments and

tries to match them in order to reconstruct the original
source genome. This application is characterized by
medium-sized transactions and it spends most of its
execution time executing transactions.

201

- intruder: this application emulates a network intrusion
detection system which scans network packets in order
to detect a known set of intrusion signatures. This
application is composed by considerably fewer (but
bigger) transactions than genome.

- labyrinth: this is a variant of Lee’s routing algorithm
[13]. It has very different characteristics: short trans-
actions (few instructions inside transactions) but it is
composed by an extremely large number of transactions
in comparison to the others.

We have executed the selected STAMP applications with
three state-of-art STM libraries, namely TinySTM [5],
TL2 [3] and SwissTM [4]. We have used the same SMP
machine described in the previous section, running all exper-
iments with 2, 4, 8 and 16 threads (in STAMP, the number of
threads must be 2n). All results were also obtained through
the average of 30 executions (an insignificant standard
deviation has also been observed).

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 8 16

ti
m

e
 (

s
e
c
o
n
d
s
)

number of cores

TinySTM
SwissTM

TL2

Figure 3. Execution times - Genome.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 8 16

ti
m

e
 (

s
e
c
o
n
d
s
)

number of cores

TinySTM
SwissTM

TL2

Figure 4. Execution times - Labyrinth.

Figure 3 shows the execution times we have obtained by
executing genome with the three STM libraries. For this
particular application, TinySTM has always presented lower

 18

 21

 24

 27

 30

 33

 36

 39

 42

 2 4 8 16

ti
m

e
 (

s
e
c
o
n
d
s
)

number of cores

TinySTM
SwissTM

TL2

Figure 5. Execution times - Intruder.

execution times (1.1s with 16 cores) and better scalability
than the others. We can notice that TinySTM and SwissTM
perform still better with 16 cores, while TL2, on the contrary,
presents a considerable performance degradation.

The results of the labyrinth executions are shown in Fig-
ure 4. Unlike the previous results, SwissTM has presented
better results than the others (9.75s with 16 cores). TL2 has
shown better scalability in comparison to the genome results
but it has still presented poor performance compared to the
other STM libraries.

Finally, in Figure 5, we show the execution times obtained
while executing intruder. We can observe a very different
behavior: all three STM libraries fail to scale with 16 cores.

Regarding the results presented above we can conclude
that it is not trivial to predict the performance of a TM
application. The characteristics and design choices of the
STM library can undoubtedly change its performance. In this
context, we argue that such characteristics must be taken into
account in order to develop a performant TM application.
Thus, it emerges the necessity of having ways to better
comprehend their behavior. In order to obtain some insight
on such issues, we propose an approach for collecting and
tracing relevant information about transactions.

V. TRACING TRANSACTIONS

Tracing applications basically consists in recording a
chronological history of events, representing the application
behavior. An event is an action during the execution of an
application that changes its state. In this work, we are specif-
ically interested in events deriving from the use of STM. In
the following sections, we describe how these events can be
traced. Firstly, we specify the desired characteristics of our
approach. Secondly, we explain the general functioning of
STM libraries and what events we intend to trace. Finally,
we describe our tracing mechanism.

A. Goals
Our mechanism aims to tackle two relevant issues:

202

- Application and STM library independency: we want a
tracing solution which does not change neither the TM
application nor the STM library source codes. In order
to do so, we have chosen to implement an interception
mechanism placed between the STM application and
the STM library.

- Low Intrusiveness: our tracing solution should mini-
mize intrusiveness meaning that it should not imply an
important execution overhead. Indeed, when that over-
head is important, the application behaves differently
and the traces may not represent the real application
behavior. In order to minimize intrusiveness, we have
decided trace a very reduced set of events.

B. Traced Events

We have selected the two most important functions to be
traced, i.e., stm_start() and stm_commit(), which re-
spectively indicate the beginning and the end of transactions.
We believe that, by intercepting them, relevant information
about TM applications can be extracted without increasing
the degree of intrusiveness.

The function stm_start() is responsible for initializing
the transaction specific structures, as well as for saving
the calling environment for later use in case of abort.
It typically saves the stack context containing the current
thread local program counter and registers values. The role
of the stm_commit() function is to verify whether the
current transaction is in conflict with any other transaction.

When a conflict occurs, a rollback mechanism calls
stm_start() in order to restart the transaction. The system
rollbacks the transaction by restoring the environment that
has been saved by the first call to stm_start(). In order to
do that, stm_start() and stm_commit() use the system
calls sigsetjmp() and siglongjmp() to respectively save
and restore the thread environment. This strategy is applied
in the majority of STM libraries, including TinySTM, TL2
and SwissTM. When there is no conflicts, all changes that
have been done by the transaction are made permanent
(validation).

C. Tracing Mechanism

Our tracing solution relies on the Linux dynamic link-
ing mechanism which provides a simple way to intercept
function calls. It provides the environment variable called
LD_PRELOAD which is used to dynamically load a library
LIB when launching applications. During the execution,
the system will intercept the functions having the same
signatures as the ones implemented in LIB, calling the cor-
responding LIB functions (wrappers). Wrapper functions
may implement their proper behavior but it is still possible
to call the original functions.

In this work, a shared library called libTraceSTM.so

has been implemented, containing two wrappers for the
stm_start() and stm_commit() functions. By executing

LD_PRELOAD=./libTraceSTM.so app (where app is the
target STM application), the original STM functions are
dynamically overridden by our wrapper functions. The wrap-
pers are responsible for tracing and calling the corresponding
original functions, i.e., stm_start() and stm_commit().

Listing 3 shows the two selected wrapper functions:
stm_start() (line 1) and stm_commit() (line 10). In
stm_start(), we first obtain a handle to the original STM
function (line 2), trace the related event using the trace()

function (line 5) and call the original STM function (line
6). In stm_commit(), however, we first call the origi-
nal STM function before tracing it. As explained before,
stm_commit() performs a rollback in case of conflicts
(stm_start() is called by the rollback mechanism). Thus,
by tracing events after stm_commit() we ensure that trans-
actions have already committed successfully.�

1 void stm_start() {
2 realStmStart = dlsym(handle, "stm_start");
3 ...
4 pthread_mutex_lock(&trace_lock);
5 trace("stm_start");
6 (∗realStmStart)(); //calls the real function
7 pthread_mutex_unlock(&trace_lock);
8 }
9

10 void stm_commit() {
11 realStmCommit = dlsym(handle, "stm_commit");
12
13 pthread_mutex_lock(&trace_lock);
14 ...
15 (∗realStmCommit)(); //calls the real function
16 ...
17 trace("stm_commit");
18 pthread_mutex_unlock(&trace_lock);
19 }
� �

Listing 3. STM Function Wrappers.

It is important to notice that calls to trace() and the real
STM functions must be atomic. Otherwise, the order of the
recorded events may not correspond to the real sequence of
calls to STM functions. This is the reason why we use locks
and some additional treatments in order to avoid deadlock
situations that can easily arise during rollbacks.

STM Application

Th 1 Th 2

STM

TinySTM TL2 SwissTM ...

STM function call

libTraceSTM
Th 2 circular buffer

Th 1 circular buffer

Th 2

0015 stm_start
0030 stm_commit

Th 1

0001 stm_start
0009 stm_start
0023 stm_commit...

...

STM function call interception

Figure 6. Overview of the Tracing Mechanism.

Figure 6 shows our tracing mechanism. When a thread
is initialized by the STM application, our shared library

203

adds the thread ID in an internal data structure, creates a
trace file and instantiates a circular memory buffer. When
subsequent STM function calls are intercepted, the trace
record is written into the corresponding thread’s circular
buffer. When the circular buffer is full, its contents are
flushed to the corresponding trace file.

Each event to be traced is represented by a timestamp and
the name of the intercepted function. As we target shared
memory multithreaded applications, timestamps correspond
to the value of the machine’s clock. At the end of the
execution, we obtain a set of files, one per thread. This is
illustrated in Figure 6, which shows a STM application with
2 threads (named Th1 and Th2). The trace file of Th1,
for example, shows two successive calls to stm_start()

followed by a stm_commit(), which indicates that the
transaction has been aborted once. The trace file of Th2
shows a transaction that has been started and committed
successfully.

After the execution of the application, we perform a merge
sort of the individual trace files considering their timestamps.
In the merged trace file, each event is represented by a times-
tamp, a thread ID and the name of the intercepted function.
Figure 7 shows the result of the merge sort considering two
individual trace files from threads Th1 and Th2.

Th 1

0001 stm_start
0009 stm_start
0023 stm_commit

Th 2

0015 stm_start
0030 stm_commit

Merge
Sort

Trace

0001 Th1 stm_start
0009 Th1 stm_start
0015 Th2 stm_start
0023 Th1 stm_commit
0030 Th2 stm_commit

Figure 7. Merge Sort of Individual Trace Files.

We believe that our approach to intercept STM function
calls is very simple and it can be easily extended if more
functions should be traced. It is also generic enough, since
it can be used with all STM libraries (e.g., TinySTM, TL2
and SwissTM) and it does not change neither the STM
application nor the STM library source codes.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results we have
obtained by using our tracing mechanism with the STAMP
applications. We have carried out experiments of all STM
applications available from STAMP, but in this paper we
present only the results we have obtained from the appli-
cations described in Section IV. We have decided to use
TinySTM as the target STM library for all experiments
presented in this section, executing the three applications
with 16 threads.

Our tracing mechanism allows us to obtain different met-
rics and statistics about the execution of STM applications.

For instance, we can calculate the number of transactions or
the number of commits and aborts. We can also observe
the wasted work, i.e., the percentage of the transactions
execution time that has been spent executing aborted transac-
tions (total and per thread). Other accessible metrics concern
the evolution of the number of aborts and commits and
the instantaneous commit rate (the proportion of committed
transactions at sample points) during the execution. In this
paper, we present the evolution of the number of commits
and aborts during the execution. We believe that such
information can be very helpful since the number of aborts
is one of the most important metrics that influences the
performance of STM applications.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

n
u
m

b
e
r

o
f
e
v
e
n
ts

time (seconds)

aborts
commits

Figure 8. Commits and Aborts - Genome.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 1 2 3 4 5 6 7 8 9 10 11 12

n
u
m

b
e
r

o
f
e
v
e
n
ts

time (seconds)

aborts
commits

Figure 9. Commits and Aborts - Labyrinth.

Figure 8 concerns the genome application. What may
be observed is that the commit/abort behavior changes
during the execution. Namely, the number of aborts in-
creases drastically between 0.3s and 0.4s. This suggests
that, during this period, the probability of having conflicting
transactions is very high. However, since the time period
is short compared to the total execution time, it does not

204

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 0 2 4 6 8 10 12 14 16 18 20 22 24 26

n
u
m

b
e
r

o
f
e
v
e
n
ts

time (seconds)

aborts
commits

Figure 10. Commits and Aborts - Intruder.

interfere considerably with its overall performance (as seen
in Section IV, Figure 3).

The results obtained with labyrinth are shown in Figure
9. As it can be seen, this application takes advantage of the
optimistic approach of TM, since the aborts curve is always
placed under the commits curve. The difference increases
towards the end of the execution (exponential growth). The
few number of aborts in comparison to the commits justifies
the performance obtained in Section IV.

Finally, the results for intruder are shown in Figure 10.
Its poor performance observed in Section IV is confirmed by
the presence of a very high number of aborts in comparison
to commits, which means that it does not take advantage of
the TM optimistic approach.

We have also measured the intrusiveness of our tracing
mechanism considering two important metrics: the execution
time and the number of aborts. If execution times and num-
ber of aborts obtained by executing the STM applications
with the tracing mechanism are very distinct in comparison
to the original ones, we can conclude that our trace mech-
anism is very intrusive and it may change significantly the
behavior of the applications. Table I shows such information,
comparing these two metrics after executing all applications
with and without the tracing mechanism.

Table I
INTRUSIVENESS OF THE TRACING MECHANISM.

Genome Labyrinth Intruder
normal trace normal trace normal trace

Time (s) 1.10 1.21 10.37 11.51 24.03 25.70
Intrusiveness 9.09% 9.90% 6.5%
Aborts 4,362 4,030 209 205 57,058 54,805
Intrusiveness 7.63% 1.91% 3.95%

As it can be observed, our trace mechanism was not
considerably intrusive when comparing both metrics (exe-

cution times and number of aborts). For all experiments,
we have obtained a maximum intrusiveness of 9.90% and
7.63% considering the execution time and the number of
aborts, respectively. This means that the collected informa-
tion about transactions by our tracing mechanism represent
the execution behavior of the analyzed STM applications.

VII. RELATED WORK

Considering that TM is an emerging research area, in
the majority of cases, works have been based on proposals
of different TM solutions and algorithms. Recently, some
works have addressed the performance analysis of different
TM solutions and/or TM applications, as in [12] and [14].
However, few works have been done concerning tools to help
the development using TM. That is the case of the proposals
presented in [15] and [16].

Minh et al. [12] have described the eight non-trivial
STAMP applications, showing their performance gains with
different TM systems and configurations. However, they
have used a multicore simulator for all experiments instead
of a real multicore platform. Marathe et al. [17], on the
other hand, have compared the performance of their STM
solution with other STM implementations on two multicore
machines. The performance analysis has been based on
four simple micro-benchmarks, which do not represent the
behavior of real applications. Chung et al. [14] have studied
35 benchmarks from different domains. In that work, the
authors have translated the original synchronization mecha-
nisms applied on all benchmarks to TM. However, they have
neither studied the non-trivial TM applications presented
here nor they have analyzed aborts and commits, which are
very important metrics.

Our work differs from these three, since we have tackled
both issues: a performance analysis of non-trivial TM ap-
plications by using three different state-of-art STM libraries
over a real multicore machine.

Ansari et al. [15] have manually instrumented the DSTM2
STM library to collect relevant information during the exe-
cution of the applications. They have chosen three applica-
tions from STAMP and an implementation of Lee’s routing
algorithm, investigating some relevant metrics to compre-
hend TM applications. Lourenço et al. [16] have proposed
a monitoring framework, which collects the transactional
events into a log file as well as a tool to visualize the results.
Their instrumentation mechanism is based on a API, so the
user must insert the tracing function calls within applications
source codes.

Unlike these two proposals, our solution uses an in-
terception approach based on the Linux dynamic linking
mechanism. By using such method, we can achieve the STM
application and STM library independency, since it does
not change neither the TM application nor the STM library
source codes and it can be easily applied with different STM
libraries.

205

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we have shown that the performance of
applications based on STM is related to two issues: the
application itself and the STM library. A TM application
that takes into account the characteristics of the underlying
TM system may benefit of its optimistic approach, reducing
the probability of having conflicts and then, resulting in
better performance. On the other hand, we have seen that
an application may also behave differently depending on
the STM library, which means that the developer must be
aware of how the STM library works to achieve the desirable
performance.

In order to obtain a better understanding of the perfor-
mance of STM applications, we have proposed an approach
for collecting relevant information about transactions. It is
based on a shared library which is dynamically linked with
the STM application. Events to be traced are implemented
as wrapper functions, which can be easily extended if other
events must be traced. Moreover, our solution can be applied
to different STM libraries and applications as it does not
modify neither the target application nor the STM library
source codes.

The collected information representing each event allows
a general comprehension about the behavior of all trans-
actions. However, we cannot correlate each event to its
corresponding transaction in the context of a specific thread,
since transactions are not explicitly identified. As a future
work, we intend to study ways of discerning transactions in
our tracing mechanism, so finer information can be obtained.
Moreover, we aim at investigating the behavior of other
non-trivial TM applications, proposing general guidelines to
reduce conflicts by analyzing TM applications. Finally, we
also plan to study what support we would need in order
to use our trace mechanism with hardware and hybrid TM
solutions.

REFERENCES

[1] J. Larus and C. Kozyrakis, “Transactional Memory: Is TM
the Answer for Improving Parallel Programming?” Commu-
nications of ACM, vol. 51, no. 7, pp. 80–88, 2008.

[2] J. Larus and R. Rajwar, Transactional Memory (Synthesis
Lectures on Computer Architecture), 1st ed. Madison, USA:
Morgan & Claypool Publishers, 2007.

[3] O. S. D. Dice and N. Shavit, “Transactional Locking II,”
in DISC ’06: Proc. of the 20th International Symposium on
Distributed Computing, 2006, pp. 194–208.

[4] A. Dragojević, R. Guerraoui, and M. Kapalka, “Stretching
Transactional Memory,” ACM SIGPLAN Notices, vol. 44,
no. 6, pp. 155–165, 2009.

[5] P. Felber, C. Fetzer, and T. Riegel, “Dynamic Performance
Tuning of Word-Based Software Transactional Memory,” in
PPoPP ’08: Proc. of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2008, pp.
237–246.

[6] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D.
Carlstrom, L. Hammond, C. Kozyrakis, and K. Olukotun,
“Characterization of TCC on Chip-Multiprocessors,” in PACT
’05: Proc. of the 14th International Conference on Parallel
Architectures and Compilation Techniques, 2005.

[7] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood, “Logtm: Log-based Transactional Memory,” in HPCA
’06: Proc. of the 12th International Symposium on High-
Performance Computer Architecture, 2006, pp. 254–265.

[8] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen,
“Hybrid Transactional Memory,” in PPoPP ’06: Proc. of Sym-
posium on Principles and Practice of Parallel Programming,
2006.

[9] A. Shriraman, V. J. Marathe, S. Dwarkadas, M. L. Scott,
D. Eisenstat, C. Heriot, W. N. S. III, and M. F. Spear,
“Hardware Acceleration of Software Transactional Memory,”
in TRANSACT ’06: Proc. of the 1st ACM SIGPLAN Workshop
on Languages, Compiler and Hardware Support for Transac-
tional Computing, 2006.

[10] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu,
S. Chiras, and S. Chatterjee, “Software Transactional Mem-
ory: Why Is It Only a Research Toy?” Queue, vol. 6, no. 5,
pp. 46–58, 2008.

[11] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook,
The Traveling Salesman Problem: A Computational Study
(Princeton Series in Applied Mathematics). Princeton, NJ,
USA: Princeton University Press, 2007.

[12] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun,
“STAMP: Stanford Transactional Applications for Multi-
Processing,” in IISWC ’08: Proc. of The IEEE International
Symposium on Workload Characterization, 2008.

[13] X. Ji-Guang and T. Kozawa, “An Algorithm for Searching
Shortest Path by Propagating Wave Fronts in Four Quad-
rants,” in DAC ’81: Proc. of the 18th Design Automation
Conference. Piscataway, NJ, USA: IEEE Press, 1981, pp.
29–36.

[14] J. Chung, H. Chafi, C. C. Minh, A. Mcdonald, B. D.
Carlstrom, C. Kozyrakis, and K. Olukotun, “The Common
Case Transactional Behavior of Multithreaded Programs,” in
HPCA ’06: Proc. of the 12th International Conference on
High-Performance Computer Architecture. IEEE Computer
Society, 2006.

[15] M. Ansari, K. Jarvis, C. Kotselidis, M. Luján, C. Kirkham,
and I. Watson, “Profiling Transactional Memory Applica-
tions,” in PDP ’09: Proc. of the 17th International Confer-
ence on Parallel, Distributed, and Network-based Processing,
2009, pp. 11–20.

[16] J. Lourenço, R. Dias, and J. Luı́s, “Understanding the Behav-
ior of Transactional Memory Applications,” in PADTAD ’09:
Proc. of the 2009 ACM Workshop on Parallel and Distributed
Systems: Testing and Debugging, 2009.

[17] V. J. Marathe and M. Moir, “Toward High Performance Non-
blocking Software Transactional Memory,” in PPoPP ’08:
Proc. of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. New York, NY, USA:
ACM, 2008, pp. 227–236.

206

