2022 |
Garcia, Adriano Marques; Griebler, Dalvan; Schepke, Claudio; Fernandes, Luiz Gustavo Um Framework para Criar Benchmarks de Aplicações Paralelas de Stream Inproceedings doi Anais da XXII Escola Regional de Alto Desempenho da Região Sul, pp. 97–98, Sociedade Brasileira de Computação, Curitiba, Brazil, 2022. @inproceedings{GARCIA:ERAD:22, title = {Um Framework para Criar Benchmarks de Aplicações Paralelas de Stream}, author = {Adriano Marques Garcia and Dalvan Griebler and Claudio Schepke and Luiz Gustavo Fernandes}, url = {https://doi.org/10.5753/eradrs.2022.19180}, doi = {10.5753/eradrs.2022.19180}, year = {2022}, date = {2022-04-01}, booktitle = {Anais da XXII Escola Regional de Alto Desempenho da Região Sul}, pages = {97--98}, publisher = {Sociedade Brasileira de Computação}, address = {Curitiba, Brazil}, abstract = {Este trabalho apresenta o SPBench, um framework para o desenvolvimento de benchmarks de processamento de stream em C++. O SPBench fornece um conjunto de aplicações realísticas através de abstrações de alto nível e permite customizações nos dados de entrada e métricas de desempenho.}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } Este trabalho apresenta o SPBench, um framework para o desenvolvimento de benchmarks de processamento de stream em C++. O SPBench fornece um conjunto de aplicações realísticas através de abstrações de alto nível e permite customizações nos dados de entrada e métricas de desempenho. |
Garcia, Adriano Marques; Griebler, Dalvan; Schepke, Claudio; Fernandes, Luiz Gustavo Evaluating Micro-batch and Data Frequency for Stream Processing Applications on Multi-cores Inproceedings doi 30th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 10-17, IEEE, Valladolid, Spain, 2022. @inproceedings{GARCIA:PDP:22, title = {Evaluating Micro-batch and Data Frequency for Stream Processing Applications on Multi-cores}, author = {Adriano Marques Garcia and Dalvan Griebler and Claudio Schepke and Luiz Gustavo Fernandes}, url = {https://doi.org/10.1109/PDP55904.2022.00011}, doi = {10.1109/PDP55904.2022.00011}, year = {2022}, date = {2022-04-01}, booktitle = {30th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)}, pages = {10-17}, publisher = {IEEE}, address = {Valladolid, Spain}, series = {PDP'22}, abstract = {In stream processing, data arrives constantly and is often unpredictable. It can show large fluctuations in arrival frequency, size, complexity, and other factors. These fluctuations can strongly impact application latency and throughput, which are critical factors in this domain. Therefore, there is a significant amount of research on self-adaptive techniques involving elasticity or micro-batching as a way to mitigate this impact. However, there is a lack of benchmarks and tools for helping researchers to investigate micro-batching and data stream frequency implications. In this paper, we extend a benchmarking framework to support dynamic micro-batching and data stream frequency management. We used it to create custom benchmarks and compare latency and throughput aspects from two different parallel libraries. We validate our solution through an extensive analysis of the impact of micro-batching and data stream frequency on stream processing applications using Intel TBB and FastFlow, which are two libraries that leverage stream parallelism on multi-core architectures. Our results demonstrated up to 33% throughput gain over latency using micro-batches. Additionally, while TBB ensures lower latency, FastFlow ensures higher throughput in the parallel applications for different data stream frequency configurations.}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } In stream processing, data arrives constantly and is often unpredictable. It can show large fluctuations in arrival frequency, size, complexity, and other factors. These fluctuations can strongly impact application latency and throughput, which are critical factors in this domain. Therefore, there is a significant amount of research on self-adaptive techniques involving elasticity or micro-batching as a way to mitigate this impact. However, there is a lack of benchmarks and tools for helping researchers to investigate micro-batching and data stream frequency implications. In this paper, we extend a benchmarking framework to support dynamic micro-batching and data stream frequency management. We used it to create custom benchmarks and compare latency and throughput aspects from two different parallel libraries. We validate our solution through an extensive analysis of the impact of micro-batching and data stream frequency on stream processing applications using Intel TBB and FastFlow, which are two libraries that leverage stream parallelism on multi-core architectures. Our results demonstrated up to 33% throughput gain over latency using micro-batches. Additionally, while TBB ensures lower latency, FastFlow ensures higher throughput in the parallel applications for different data stream frequency configurations. |
Garcia, Adriano Marques; Griebler, Dalvan; Schepke, Claudio; Fernandes, Luiz Gustavo SPBench: a framework for creating benchmarks of stream processing applications Journal Article doi Computing, In press (In press), pp. 1-23, 2022. @article{GARCIA:Computing:22, title = {SPBench: a framework for creating benchmarks of stream processing applications}, author = {Adriano Marques Garcia and Dalvan Griebler and Claudio Schepke and Luiz Gustavo Fernandes}, url = {https://doi.org/10.1007/s00607-021-01025-6}, doi = {10.1007/s00607-021-01025-6}, year = {2022}, date = {2022-01-01}, journal = {Computing}, volume = {In press}, number = {In press}, pages = {1-23}, publisher = {Springer}, abstract = {In a fast-changing data-driven world, real-time data processing systems are becoming ubiquitous in everyday applications. The increasing data we produce, such as audio, video, image, and, text are demanding quickly and efficiently computation. Stream Parallelism allows accelerating this computation for real-time processing. But it is still a challenging task and most reserved for experts. In this paper, we present SPBench, a framework for benchmarking stream processing applications. It aims to support users with a set of real-world stream processing applications, which are made accessible through an Application Programming Interface (API) and executable via Command Line Interface (CLI) to create custom benchmarks. We tested SPBench by implementing parallel benchmarks with Intel Threading Building Blocks (TBB), FastFlow, and SPar. This evaluation provided useful insights and revealed the feasibility of the proposed framework in terms of usage, customization, and performance analysis. SPBench demonstrated to be a high-level, reusable, extensible, and easy of use abstraction to build parallel stream processing benchmarks on multi-core architectures.}, keywords = {}, pubstate = {published}, tppubtype = {article} } In a fast-changing data-driven world, real-time data processing systems are becoming ubiquitous in everyday applications. The increasing data we produce, such as audio, video, image, and, text are demanding quickly and efficiently computation. Stream Parallelism allows accelerating this computation for real-time processing. But it is still a challenging task and most reserved for experts. In this paper, we present SPBench, a framework for benchmarking stream processing applications. It aims to support users with a set of real-world stream processing applications, which are made accessible through an Application Programming Interface (API) and executable via Command Line Interface (CLI) to create custom benchmarks. We tested SPBench by implementing parallel benchmarks with Intel Threading Building Blocks (TBB), FastFlow, and SPar. This evaluation provided useful insights and revealed the feasibility of the proposed framework in terms of usage, customization, and performance analysis. SPBench demonstrated to be a high-level, reusable, extensible, and easy of use abstraction to build parallel stream processing benchmarks on multi-core architectures. |
2021 |
Löff, Júnior; Hoffmann, Renato Barreto; Griebler, Dalvan; Fernandes, Luiz G High-Level Stream and Data Parallelism in C++ for Multi-Cores Inproceedings doi XXV Brazilian Symposium on Programming Languages (SBLP), pp. 41-48, ACM, Joinville, Brazil, 2021. @inproceedings{LOFF:SBLP:21, title = {High-Level Stream and Data Parallelism in C++ for Multi-Cores}, author = {Júnior Löff and Renato Barreto Hoffmann and Dalvan Griebler and Luiz G Fernandes}, url = {https://dl.acm.org/doi/10.1145/3475061.3475078}, doi = {10.1145/3475061.3475078}, year = {2021}, date = {2021-09-01}, booktitle = {XXV Brazilian Symposium on Programming Languages (SBLP)}, pages = {41-48}, publisher = {ACM}, address = {Joinville, Brazil}, series = {SBLP'21}, abstract = {Stream processing applications have seen an increasing demand with the increased availability of sensors, IoT devices, and user data. Modern systems can generate millions of data items per day that require to be processed timely. To deal with this demand, application programmers must consider parallelism to exploit the maximum performance of the underlying hardware resources. However, parallel programming is often difficult and error-prone, because programmers must deal with low-level system and architecture details. In this work, we introduce a new strategy for automatic data-parallel code generation in C++ targeting multi-core architectures. This strategy was integrated with an annotation-based parallel programming abstraction named SPar. We have increased SPar’s expressiveness for supporting stream and data parallelism, and their arbitrary composition. Therefore, we added two new attributes to its language and improved the compiler parallel code generation. We conducted a set of experiments on different stream and data-parallel applications to assess the efficiency of our solution. The results showed that the new SPar version obtained similar performance with respect to handwritten parallelizations. Moreover, the new SPar version is able to achieve up to 74.9x better performance with respect to the original ones due to this work.}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } Stream processing applications have seen an increasing demand with the increased availability of sensors, IoT devices, and user data. Modern systems can generate millions of data items per day that require to be processed timely. To deal with this demand, application programmers must consider parallelism to exploit the maximum performance of the underlying hardware resources. However, parallel programming is often difficult and error-prone, because programmers must deal with low-level system and architecture details. In this work, we introduce a new strategy for automatic data-parallel code generation in C++ targeting multi-core architectures. This strategy was integrated with an annotation-based parallel programming abstraction named SPar. We have increased SPar’s expressiveness for supporting stream and data parallelism, and their arbitrary composition. Therefore, we added two new attributes to its language and improved the compiler parallel code generation. We conducted a set of experiments on different stream and data-parallel applications to assess the efficiency of our solution. The results showed that the new SPar version obtained similar performance with respect to handwritten parallelizations. Moreover, the new SPar version is able to achieve up to 74.9x better performance with respect to the original ones due to this work. |
Andrade, Gabriella; Griebler, Dalvan; Santos, Rodrigo; Danelutto, Marco; Fernandes, Luiz Gustavo Assessing Coding Metrics for Parallel Programming of Stream Processing Programs on Multi-cores Inproceedings doi 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pp. 291-295, IEEE, Pavia, Italy, 2021, ISBN: 978-1-6654-2705-0. @inproceedings{ANDRADE:SEAA:21, title = {Assessing Coding Metrics for Parallel Programming of Stream Processing Programs on Multi-cores}, author = {Gabriella Andrade and Dalvan Griebler and Rodrigo Santos and Marco Danelutto and Luiz Gustavo Fernandes}, url = {https://doi.org/10.1109/SEAA53835.2021.00044}, doi = {10.1109/SEAA53835.2021.00044}, isbn = {978-1-6654-2705-0}, year = {2021}, date = {2021-09-01}, booktitle = {2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)}, pages = {291-295}, publisher = {IEEE}, address = {Pavia, Italy}, series = {SEAA'21}, abstract = {From the popularization of multi-core architectures, several parallel APIs have emerged, helping to abstract the programming complexity and increasing productivity in application development. Unfortunately, only a few research efforts in this direction managed to show the usability pay-back of the programming abstraction created, because it is not easy and poses many challenges for conducting empirical software engineering. We believe that coding metrics commonly used in software engineering code measurements can give useful indicators on the programming effort of parallel applications and APIs. These metrics were designed for general purposes without considering the evaluation of applications from a specific domain. In this study, we aim to evaluate the feasibility of seven coding metrics to be used in the parallel programming domain. To do so, five stream processing applications implemented with different parallel APIs for multi-cores were considered. Our experiments have shown COCOMO II is a suitable model for evaluating the productivity of different parallel APIs targeting multi-cores on stream processing applications while other metrics are restricted to the code size.}, keywords = {}, pubstate = {published}, tppubtype = {inproceedings} } From the popularization of multi-core architectures, several parallel APIs have emerged, helping to abstract the programming complexity and increasing productivity in application development. Unfortunately, only a few research efforts in this direction managed to show the usability pay-back of the programming abstraction created, because it is not easy and poses many challenges for conducting empirical software engineering. We believe that coding metrics commonly used in software engineering code measurements can give useful indicators on the programming effort of parallel applications and APIs. These metrics were designed for general purposes without considering the evaluation of applications from a specific domain. In this study, we aim to evaluate the feasibility of seven coding metrics to be used in the parallel programming domain. To do so, five stream processing applications implemented with different parallel APIs for multi-cores were considered. Our experiments have shown COCOMO II is a suitable model for evaluating the productivity of different parallel APIs targeting multi-cores on stream processing applications while other metrics are restricted to the code size. |
Parallel Applications Modelling Group
GMAP is a research group at the Pontifical Catholic University of Rio Grande do Sul (PUCRS). Historically, the group has conducted several types of research on modeling and adapting robust, real-world applications from different domains (physics, mathematics, geology, image processing, biology, aerospace, and many others) to run efficiently on High-Performance Computing (HPC) architectures, such as Clusters.
In the last decade, new abstractions of parallelism are being created through domain-specific languages (DSLs), libraries, and frameworks for the next generation of computer algorithms and architectures, such as embedded hardware and servers with accelerators like Graphics Processing Units (GPUs) or Field-Programmable Gate Array (FPGAs). This has been applied to stream processing and data science-oriented applications. Concomitantly, since 2018, research is being conducted using artificial intelligence to optimize applications in the areas of Medicine, Ecology, Industry, Agriculture, Education, Smart Cities, and others.
Research Lines
Applied Data Science
Parallelism Abstractions
The research line HSPA (High-level and Structured Parallelism Abstractions) aims to create programming interfaces for the user/programmer who is not able in dealing with the parallel programming paradigm. The idea is to offer a higher level of abstraction, where the performance of applications is not compromised. The interfaces developed in this research line go toward specific domains that can later extend to other areas. The scope of the study is broad as regards the use of technologies for the development of the interface and parallelism.
Parallel Application Modeling
Team

Prof. Dr. Luiz Gustavo Leão Fernandes
General Coordinator

Prof. Dr. Dalvan Griebler
Research Coordinator
Last Papers
2022 |
Um Framework para Criar Benchmarks de Aplicações Paralelas de Stream Inproceedings doi Anais da XXII Escola Regional de Alto Desempenho da Região Sul, pp. 97–98, Sociedade Brasileira de Computação, Curitiba, Brazil, 2022. |
Evaluating Micro-batch and Data Frequency for Stream Processing Applications on Multi-cores Inproceedings doi 30th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 10-17, IEEE, Valladolid, Spain, 2022. |
SPBench: a framework for creating benchmarks of stream processing applications Journal Article doi Computing, In press (In press), pp. 1-23, 2022. |
2021 |
High-Level Stream and Data Parallelism in C++ for Multi-Cores Inproceedings doi XXV Brazilian Symposium on Programming Languages (SBLP), pp. 41-48, ACM, Joinville, Brazil, 2021. |
Assessing Coding Metrics for Parallel Programming of Stream Processing Programs on Multi-cores Inproceedings doi 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pp. 291-295, IEEE, Pavia, Italy, 2021, ISBN: 978-1-6654-2705-0. |
Projects
Software
Last News
Contact us!
Or, feel free to use the form below to contact us.